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Abstract

We present a fast and accurate framework for registra-
tion of multi-modal volumetric images based on decoupled
estimation of registration parameters utilizing spatial infor-
mation in the form of ‘gradient intensity’. We introduce gra-
dient intensity as a measure of spatial strength of an image
in a given direction and show that it can be used to deter-
mine the rotational misalignment independent of transla-
tion between the images. The rotation parameters are ob-
tained by maximizing the mutual information of 2D gradient
intensity matrices obtained from 3D images, hence reduc-
ing the dimensionality of the problem and improving effi-
ciency. The rotation parameters along with estimations of
translation are then used to initialize an optimization step
over a conventional pixel intensity-based method to achieve
sub-voxel accuracy. Our optimization algorithm converges
quickly and is less subject to the common problem of mis-
registration due to local extrema. Experiments show that
our method significantly improves the robustness, perfor-
mance and efficiency of registration compared to conven-
tional pixel intensity-based methods.

1. Introduction
Registration is a problem frequently encountered in med-

ical image analysis. It is often required to align images
acquired by different imaging devices and techniques (ac-
counting for multi-modalities) and at different times (in-
cluding long periods resulting in multi-temporal images).
Registration allows for comparison of complimentary fea-
tures, natural or pathological differences, data fusion and
compiling atlases and is used in diagnosis, treatment plan-
ning and image guided surgery to name a few applications.

For certain applications it is impractical or impossible to
use fiducial markers or landmarks or simply the images may
have been acquired without such planning. The group of au-
tomatic registration methods align images by maximizing a
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similarity measure using image information over a possible
range of transformation parameters, or formally

Topt = argmin
T

−S(IF ; IM(T )), (1)

where S is the similarity function to be maximized 1, and
IF and IM(T ) are the fixed and transformed moving im-
ages, respectively.

Since it is virtually impossible to try all combinations
of transformation parameters, an optimization method such
as Powell, simplex, gradient descent, etc has to be used.
There are two major limitations with automatic registration
methods: (a) the robustness of the optimization is depen-
dent on the shape of the cost function and can often lead
to mis-registration due to presence of local minima, (b) the
calculation of the cost function involves image transforma-
tion and calculation of the similarity measure which can be
time consuming.

In this paper, we present a method to overcome the above
limitations and allow for accurate and efficient automatic
registration of multi-modal images of the brain, including
MR, PET, and CT scans.

2. Previous Work
Automatic retrospective registration has been exten-

sively researched in the past decade with focus on MI-based
methods. Pluim et al. provide a comprehensive survey of
MI-based methods in [7]. MI-based registration, pioneered
by Collignon et al. [2] and Viola et al. [13], is widely re-
garded as a suitable similarity measure for multi-modal and
multi-temporal images.

There are two broad approaches to solving the local min-
ima problem for MI-based registration of images: (a) reduc-
ing local minima by improving the shape of the similarity
function (b) skipping local minima by starting the optimiza-
tion step closer to the actual alignment.

Studholme et al. [12] and Maes et al. [5] have pro-
posed (virtually equivalent) normalized mutual information

1In line with the optimization literature, our notation shows minimizing
the equivalent cost function, −S.



(NMI) measures to reduce sensitivity to the amount of over-
lap between the images. Pluim et al. [6] introduce spatial
information to an MI-based cost function using a correc-
tion factor based on co-occurrence of gradient vectors. Liu
et al. [4] propose an adaptive combination of intensity MI
and gradient field MI with a multi-resolution approach to
improve the shape of the cost function. The improved per-
formance comes at the cost of increasing the computational
complexity of the cost function calculation, which requires
time consuming gradient image computation in addition to
standard transformation and MI computation. Both meth-
ods have shown improved performance over NMI particu-
larly for lower-resolution and down-sampled images. De-
spite favorable results, it cannot be analytically established
whether the combined measures will always improve the
smoothness of the cost function and can sufficiently cancel
one-another’s local minima and prevent formation of fur-
ther ripples. Moreover, selection of coefficients, used in
combined measures, is non-trivial and may well depend on
the domain of the registration problem.

Mutual information of image gradients together with
centroid-based estimation of scale and translations parame-
ters have been used in [11] to improve the efficiency of the
registration. The method is limited to 2D images and the
centroid-based estimations are sensitive to partial overlap.

The performance and efficiency of MI-based registra-
tion can be improved by using multi-resolution methods,
which iteratively register the images at lower resolutions
and initialize the optimization for the later steps from the
estimated parameters at the lower resolution. MI optimiza-
tion at lower resolutions can still be trapped by local min-
ima or even worse, an incorrect global minimum may be
formed at lower resolutions, which can mislead the algo-
rithm at higher levels. Multi-resolution methods can extend
the capture range of the translation parameters, but do not
usually improve the capture range of the rotation and scale
parameters [10]. Registration at lower resolutions has also
been reported to be more sensitive to the order in which the
parameters are being optimized [5].

3. Approach and Contributions
We propose a method for registration of 3D images,

comprising two main steps: first we acquire close esti-
mates of the transformation parameters using image gradi-
ents, hence incorporating spatial information and second we
use estimated parameters to initialize the optimization algo-
rithm in the vicinity of the actual alignment and achieve
sub-voxel accuracy while significantly improving the ro-
bustness and efficiency of the registration. Most other ap-
proaches improve the performance at the cost of increased
computational complexity, whereas we improve the effi-
ciency and performance at the same time.

The three rotation parameters are obtained by maximiz-

ing MI of 2D gradient intensity (GI) matrices of 3D vol-
umes. The GI matrices are invariant to scale and translation
between the images and allow us to determine rotation pa-
rameters on a 2D data-set. The reduction in dimensional-
ity of the optimization problem and the fact that we only
need to optimize 3 parameters significantly improves the
efficiency of the algorithm. However, optimization of the
GI-based cost function is challenging due to the shape of
the cost function which is not very smooth and the pres-
ence of several local minima. This is a natural result of
increased noise, quantization error, interpolation error, and
limited size of the gradient kernels as well as reduction of
the data-set from a 3D volume to a 2D matrix. We over-
come this limitation by introducing a histogram calculation
method which is not as sensitive to noise and gradient errors
and also by proposing a robust optimization algorithm to re-
trieve the global minimum in the presence of local minima.

Given the rotation parameters, the images are brought
into partial alignment. Assuming that the rotational estima-
tion is close enough, the images will now differ by trans-
lation. The translation parameters are found by optimizing
an MI-based cost function over pixel intensities of three 2D
images, each obtained by reducing the 3D volume along a
principal axis. This again allows us to obtain registration
parameters efficiently by working on a much smaller 2D
data-set.

We finally use a guided optimization algorithm on a con-
ventional pixel intensity (PI)-based MI function to achieve
sub-voxel accuracy. Our guided optimization algorithm is
designed to converge quickly, leveraging from the knowl-
edge that it has been initialized close to the actual align-
ment.

We claim two main novelties in this paper:
• We introduce gradient intensity (GI) as a measure of

directional strength of an image, invariant to scale and
translation between the images. The GI matrices are
2D data-sets calculated for 3D volumes and computa-
tionally efficient.

• We propose the uniform volume histogram method for
generating the GI matrices, which is robust against
noise and gradient calculation errors and results in bet-
ter shaped cost functions and improves convergence
and success rate of image registration.

Other contributions of this paper include:
• Proposing an optimization algorithm for finding the

global minimum in the presence of local minima based
on the Sobol quasi-random sequence and the simplex
optimization.

• Implementation of an improved Powell-based opti-
mization algorithm designed to converge quickly in the
vicinity of the actual alignment for the final registra-
tion step.



4. Method

4.1. Gradient Map

Let I be a 3D image and Kx, Ky and Kz be 3D differ-
entiating kernels in x, y and z directions, respectively. The
gradient images are then calculated using

Gx = Kx ⊗ I, Gy = Ky ⊗ I, Gz = Kz ⊗ I, (2)

where Gx, Gy and Gz are 3D image gradient arrays in
x, y and z directions and ⊗ denotes 3D convolution. We
used 9 × 9 × 9 derivative of Gaussian kernels with stan-
dard deviation σ = 2.0 and used the separability feature
of the kernels to speed up the convolutions. The resulting
vector field is then expressed in spherical coordinates with
g(x) = [ρg(x) φg(x) θg(x)]T components, where ρg ,
φg and θg represent magnitude, zenith and azimuth angles,
respectively for the gradient vector at spatial location x.

The GI matrices, as described in the next section, are
based on gradient angles, so we would like to remove gra-
dient vectors whose phases cannot be relied upon. To this
end, we define a binary gradient map function f derived for
3D images using (2)

f(x) =
{

1, ρg(x) > t
0, ρg(x) ≤ t

, x , [x y z]T , (3)

where t is the gradient magnitude threshold. Gradient an-
gles are defined everywhere except where ρg(x) = 0. How-
ever, smaller gradients are also more sensitive to noise,
quantization and interpolation errors and may substantially
change between transformed images.

Conventionally, an empirical or a statistical value such as
RMS is used as the threshold. However lack of a principled
method for selecting t may either result in removal of im-
portant gradient vectors or leave too many sensitive vectors
behind. To resolve this dilemma, we use a noise-resistant
phase histogram method, described in 4.3, which also re-
moves sensitivity to the gradient threshold and allows us to
conveniently set t = 0.

4.2. Gradient Intensity

Gradient intensity is a measure of directional strength of
an image and is defined as the number of significant gradi-
ent vectors which pass through a given area on the surface of
the unit sphere. Fig. 4.2 depicts gradient intensity mapped
on the surface of the unit sphere with sample gradient vec-
tors.

We define the gradient intensity at the center of the area
specified by the angular resolution 2δφ and 2δθ

Γ(φ, θ) =
∫ ∫ ∫

hφ(x)hθ(x)f(x)dxdydz, (4)
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Figure 1. Gradient intensity mapped on the surface of the unit
sphere. Intensity of each cell is a function of the number of gradi-
ents that pass through the cell. The gradient vectors are displayed
for three cells.

where Γ is the gradient intensity at the center of the bin
specified by (φ, θ) and hφ(x) and hθ(x) are defined as

hφ(x) =
{

1, φ− δφ ≤ φg(x) < φ + δφ
0, elsewhere , (5)

hθ(x) =
{

1, θ − δθ ≤ θg(x) < θ + δθ
0, elsewhere , (6)

To compare gradient intensity of different volumes we use
a normalized version of (4)

Γ̃(φ, θ) =
Γ(φ, θ)

max Γ(φ, θ)
. (7)

Gradient intensity is different from a Gaussian sphere [3]
representation of the orientation. A Gaussian sphere repre-
sentation only captures the orientation of the surface nor-
mals, ignoring information inside the object (e.g. internal
brain organs). It also assumes that there is an object to start
with, hence implying that the object of interest is already
segmented. The gradient intensity does not require segmen-
tation and utilizes all the information which is in a 3D med-
ical image and as such, is more suitable for the registration
problem.

4.3. Uniform Volume Histogram

Equation (4) assumes that a continuous (and integrable)
representation for gradient phases (φg and θg) of the image
volume exists. In the absence of a continuous representa-
tion, equation (4) can be replaced by a standard 2D his-
togram. Standard histogram representations are sensitive
to the number of bins, gradient threshold selection, noise,
quantization, and interpolation errors.

In [9], the authors propose a probability density esti-
mation for 2D image pixel-intensities based on a continu-
ous representation of image intensities and report improved



robustness of the probability distribution function against
noise and selection of the number of bins. The method in [9]
assumes that the intensity in a triangle comprised of three
adjacent pixels can be estimated as a linear function of the
intensity of the vertices. This in effect fits a plane to the
vertices. This method could be adapted to improve gradient
histograms as well, however, the extension to 3D volumes
requires calculation of hyper-planes and simplex structures
and is unnecessarily time consuming.

We use a histogram algorithm called uniform volume,
which assumes a continuous representation for the gradi-
ent field g(x) = [ρg(x) φg(x) θg(x)]T exists locally
within each cubic volume C comprising 8 adjacent vertices
of the gradient image. Let V = {x1,x2, ...,x8} represent
the set of vertices. We assume that the gradient phase func-
tion within C is bounded by the values of function at the
vertices of C, i.e., for all x ∈ C

min
x∈V

φg(x) ≤ φ(x) ≤ max
x∈V

φg(x),

min
x∈V

θg(x) ≤ θ(x) ≤ max
x∈V

θg(x). (8)

Now assume a gradient intensity binning scheme with an-
gular resolution of 2δφ and 2δθ. Let (φi, θj) be the center
of a bin which falls within the extents of the cubic volume
C, i.e.,

min
x∈V

φg(x) ≤ φi ≤ max
x∈V

φg(x),

min
x∈V

θg(x) ≤ θj ≤ max
x∈V

θg(x), (9)

if the gradient field has the property that∫ ∫ ∫
C

hφ(x)hθ(x)f(x)dxdydz (10)

is the same for all 2D bin pairs represented by their center
(φi, θj), then the histogram contributions have to be uni-
formly distributed between bins that satisfy (9). Simply put,
the condition in (10) allows us to uniformly distribute his-
togram contributions to the bins which fall within the ex-
tents of the cubic volume vertices.

One benefit of the uniform volume distribution as de-
scribed above is that it is computationally inexpensive, since
it does not explicitly require calculation of g(x) except at
the bounding vertices. The histogram distribution favors
areas of the image where the second derivative of the in-
tensity is smaller or in other words the gradient function is
smoother. This is in line with the findings in [9] for a robust
histogram with less sensitivity to noise. We also designed
the histogramming method to suppress the contributions of
the areas of the image where there is a large discrepancy
between the function values at the adjacent vertices.

Compare the 1D histograms of gradient vectors’ azimuth
angle θ for an MR-T1 volume and its noisy version in
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(a) Standard histogram
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(b) Uniform volume histogram
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(c) Standard histogram for a noisy
image
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(d) Uniform volume histogram for
a noisy image

Figure 2. Uniform volume histograms exhibit smoother curves and
better resistance to noise.

Fig. 2, where white Gaussian noise with σ = 0.1 is added.
Notice that uniform volume histograms are smoother and
less affected by noise compared to standard histograms.
These properties translate to smoother cost functions with
fewer local minima, in the later stages of the algorithm
(see Fig. 3), and allow our optimization method to converge
more easily.

4.4. Mutual Information of Gradient Intensity

MI of the gradient intensity of two images is a measure
of directional similarity of the images, regardless of their
relative size (scale) and position (translation) and is maxi-
mum, where images are rotationally aligned. Since the gra-
dient intensity is a 2D function of azimuth and zenith an-
gles, we can find the rotational misalignment between the
images by calculating MI over a 2D data-set for 3D images,
hence reducing the dimensionality of the problem.

4.5. Estimating Rotation Parameters

The 2D GI matrices are calculated for the fixed and mov-
ing images. We use an angular resolution of 2δφ = 2δθ =
1.0◦, which results in GI matrices of 180 × 360 size re-
gardless of the size of the original 3D volumes. To find the
optimal rotation parameters, we apply the transformation
directly to the GI matrix of the moving image. As illus-
trated by Fig. 4, the GI matrix is transformed from spherical
coordinates to cartesian coordinates, the Euler transforma-
tion T (α, β, γ) is applied and the result is transformed back
to spherical coordinates. Note that, based on the definition
of gradient intensity, ρ = 1 for spherical/cartesian conver-
sions.
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Figure 3. Comparison of 2D MI functions based on (a) standard
and (b) uniform volume histogramming. Uniform volume his-
togram results in a better shaped and smoother cost function.

Figure 4. The process of transforming the GI matrix of a moving
image by the three Euler angles α, β and γ.

The rotation parameters are then located by finding the
maximum of the MI between the fixed GI matrix GF

h , and
the transformed GI matrix G

M(T )
h

[αt, βt, γt] = argmin
α,β,γ

−MI(GF
h ;GM(T )

h ). (11)

This is a 3-parameter optimization problem over a 2D data-
set which is much easier to solve than the original 9-
parameter (for similarity registration) or 6-parameter prob-
lem (for rigid registration) over the much larger 3D data-set.
The use of MI as a non-linear and statistical similarity mea-
sure is justified due to the multi-modal nature of the images
which will result in non-linearly related GI matrices.

4.6. Soblex Optimization

The GI cost function attains a global minimum where
the images are rotationally aligned. The cost function is
relatively smooth, however, a standard optimization algo-
rithm such as Powell or simplex [8] can easily be trapped by

local minima and fail to converge to the global minimum.
We propose a robust optimization method based on simplex
and sampling of the parameter space with the Sobol quasi-
random sequence [8], called Soblex optimization.

The Soblex optimization is initially given a budget, in
terms of time or number of cost function calls. Within the
initial budget, Soblex evaluates the cost function using the
Sobol sequence and initializes a simplex-shaped subspace,
which is constructed from points with the lowest costs. The
Sobol sequence ensures that we can progressively sample
the parameter space in a virtually uniform fashion. Intu-
itively, if the budget is large enough, the simplex subspace
can sufficiently close in on the global minimum to allow
successful execution of the optimization algorithm.

Unlike most optimization methods that start with a single
point in space, the simplex algorithm allows us to start from
a region of space that can arbitrarily be made close to the
global minimum by increasing the Soblex budget.

4.7. Estimating Translation Parameters

When images are rotationally aligned, translation (and
scale) parameters can be estimated by optimizing the pa-
rameters on the reduced 2D images (see Fig. 5). Let I(x)
be the image intensity at voxel x, and Ix, Iy, Iz reduced
images in the x, y and z directions, respectively obtained
by averaging the pixel intensities across the corresponding
dimensions. Translation parameters xt, yt, and zt can be
found using

[yt, zt] = argmin
y,z

−MI(IF
x ; IM(T )

x ), (12)

[zt, xt] = argmin
z,x

−MI(IF
y ; IM(T )

y ), (13)

[xt, yt] = argmin
x,y

−MI(IF
z ; IM(T )

z ), (14)

where IF , and IM(T ) are fixed and translated moving im-
ages, respectively and MI is the similarity function. We
perform all three optimizations and average the results to
get more robust estimations.

We use estimated rotation parameters to bring the images
into rotational alignment, then reduce the volumes along
principal axes and use Soblex to find the translation param-
eters. Note that the translation estimation shows some re-
sistance to noise due to the averaging of the image layers.
One could also include the isotropic scale parameter at this
stage for similarity (rigid + scale) registration.

4.8. Final Optimization

We use estimations of rotations, translations and scale
in order to initialize an optimization algorithm based on
Powell’s multi-dimensional direction set. The final opti-
mization round is performed using the standard PI-based



(a) Reduced MR-T1 (b) Reduced CT

Figure 5. (a) MR-T1 and (b) CT images, rotationally aligned and
averaged along the z axis. The 2D images are used to determine
the x and y translation between the images. Note that the sil-
houettes are similar, which allows the MI-based optimization to
quickly converge and return the translation parameters.

MI cost function on the full 3D volumetric data to achieve
sub-voxel accuracy. Our implementation of Powell resem-
bles the method described in [8] with one major difference
that it takes advantage of the fact that it has been initialized
not far from the minimum and as such, can quickly converge
by refraining from checking the perimeter excessively. We
define a minimum distance or resolution for the cost func-
tion. The cost function keeps track of each point in the N -
dimensional space that it evaluates and will only evaluate a
new point if it falls outside all previously evaluated points
by a specified minimum distance. Obviously, this method
is not suitable as a general purpose optimization tactic, and
can only be used when the optimization algorithm can be
properly initiated.

The choice of final optimization method is somewhat
arbitrary. We chose Powell, primarily because it does
not require calculation of the cost function gradient, only
needs one point for initialization, and could be more easily
adapted to our finite resolution method.

5. Results
We evaluated the performance and efficiency of our

method using various images from the Retrospective Image
Registration Evaluation project (RIRE) database [1], where
a gold standard for registration using fiducial markers was
known. We considered CT to MR-T1, T2, PD and PET to
MR-T1, T2, PD and MR-T2 to T1 registration. The images
were rather low quality and low resolution (refer to Table 1),
which made the registration more challenging and allowed
us to experiment with our method under a more difficult
condition.

The images in the RIRE database were brought into
alignment using the gold transformation, then 100 random
rigid transformations were applied to one of the images
for each pair and our method was used for registration.
The dynamic range of transformations were [−25◦, 25◦]
for rotation parameters and [−32 mm, 32 mm] for transla-
tion parameters. The conventional PI-based method was

Image Dimensions Voxel Size (mm)

MR 256× 256× 26 1.25× 1.25× 4.00

CT 512× 512× 29 0.65× 0.65× 4.00

PET 128× 128× 15 2.59× 2.59× 8.00

Table 1. Resolution and size of images used in the experiments.

Figure 6. Superior performance of the GI-based method for vari-
ous combinations of modalities.

used as the baseline for comparison. We used the standard
implementation of Powell for the conventional PI-based
method, which was initialized from the origin of the pa-
rameter space. The registration errors were calculated by
averaging the registration errors of 10, 000 equally spaced
points within the brain volume. Soblex optimizations were
given an initial budget of 1000 cost function calls for ro-
tation estimation and converged with an average of 1100
calls (including the initial budget). For translation estima-
tion Soblex with an initial budget of 100 function calls was
used and converged with an average of 150 iterations. For
translations a much smaller initial budget can be used as
the cost function is much smoother for the pixel intensities
compared to the gradient intensities.

5.1. Performance

We declared a registration failed if the average error ex-
ceeded the diagonal voxel size of the moving image, which
was approximately 8.80 mm for PET images and 4.40 mm
for CT and MR images. Fig. 6 compares the success rate of
our method with the conventional method for various reg-
istration pairs and shows the superior performance of our
method. Note that our method outperforms the PI-based
method by a large margin, even if a lower threshold is cho-
sen for registration errors. This can be better demonstrated
by looking at the mean and median error graphs presented
in the next section.

5.2. Accuracy

Fig. 7 shows average and median registration errors for
each method. Registration errors are significantly reduced



Figure 7. Improved accuracy of the GI-based method with a lower
mean and median error is demonstrated. PI mean, GI mean, PI
median and GI median errors are shown for each combination of
modalities from left to right.

using the GI-method, due to the ability of the method to by-
pass local minima. Also note that, median and mean errors
are close for the GI method, which indicates the superior
robustness of the method.

The improved statistical accuracy of our method com-
pared to the standard PI-based method, as demonstrated
in Fig. 7, is the result of improved robustness and success
rate of our method, whereas the PI method fails to con-
verge for large misalignments. However, we emphasize that
where both methods converge, the accuracy of the standard
method is similar to our method. This is because both meth-
ods use the same MI-based registration as the final stage.

Interpretation of errors should be treated with care. A
common approach is to identify a number of volumes of in-
terests (VOIs) and average the distance between centroids
of VOIs, in registered images [14]. Obviously, error calcu-
lations will depend on the selection of VOIs and their dis-
tance from the center of transformation, as well as accuracy
of segmentation of VOI pairs. The advantage of this method
is that the error is meaningful for anatomical or pathologi-
cal details of interest. The statistical-based method, on the
other hand, does not require segmentation and definition of
VOIs. However, it may overestimate the errors by inclusion
of points that may not be of interest. Hence, one should not
compare error calculations obtained by different methods.

5.3. Efficiency

Both the GI and PI-based methods finally register the
images using a Powell based optimization over pixel in-
tensities. The computational cost of the methods are di-
rectly comparable at this stage. We included the compu-
tational cost of pre-processing required by the GI method
by increasing the number of Powell iterations. The Soblex
optimization stage of the GI method was approximately
1/100th of the cost of each iteration for the final Powell-
based optimization or on average equal to 11 Powell opti-
mizations. This has been factored in the end-results to allow

Figure 8. Superior efficiency of the GI-based method for various
combination of modalities. The number of iterations are signifi-
cantly reduced using the GI method. Computation times are pro-
portional to the number of iterations.

(a) PET (b) Noisy PET (c) MR-T1

Figure 9. A PET volume (a) and its noisy version (b) registered to
MR-T1 (c) in our experiments. The original PET volume itself has
a low resolution and SNR.

a fair comparison. Another 15 iterations were added to ac-
count for gradient intensity calculations. Fig. 8 compares
registration efficiency of the GI and PI-based methods, and
shows around 500% improvement as a result of using the
GI method.

5.4. Robustness w.r.t. Noise

Gradient based methods are often more sensitive to
noise. To demonstrate the robustness of the method w.r.t
to noise, we added white Gaussian noise with σ = 0.1
to a PET image as shown in Fig. 9 and registered the im-
age to MR-T1 100 times with random transformations ap-
plied to the PET image. The mean and median errors were
4.99 mm and 4.57 mm, up almost by only 1.00 mm com-
pared to registration results without noise. The good results
are to some extent due to the noise reduction feature of the
uniform volume histogram (other noise resistant elements
of our algorithm include the translation estimation process
and the Gaussian gradient kernel itself).

5.5. Robustness w.r.t. Image resolution

Initial estimates using the GI-based method are invariant
to scale. We conducted another experiment for PET to T1
registration where we scaled the size of T1 and PET im-
ages in each direction by 0.5. 100 random transformations
were applied, the resulting mean and median registration er-



rors were 2.02 mm and 1.74 mm, respectively. The results
outperformed registration results obtained at the higher res-
olution. This suggests that our method could be further im-
proved if combined with a multi-resolution scheme. How-
ever, further validations on other modalities and at lower
resolutions are required to draw a concrete conclusion.

6. Discussion
Gradient intensity is useful in determining the spatial ori-

entation of 3D images and can be used to rotationally align
the images, irrespective of their relative size and position.
We experimented with various modalities of brain images
and showed that our method is robust and performs well for
all combinations, including the low resolution and conven-
tionally challenging PET images.

We used an MI-based registration method in the final
registration stage. However, the GI-based registration can
be combined with other registration techniques and sim-
ilarity measures. The registration performance using our
method was on average 92%, up almost by 30% compared
to the conventional PI-based method. The computational
efficiency improved on average by 510% and median error
was down from an average 4.13 mm to 2.14 mm across the
whole range of our experiments comprised of 700 registra-
tions for a relatively large range of misalignments.

In our experiments, we encountered a few cases where
the final optimization algorithm had to recover from a com-
pletely incorrect initial estimate. This is not necessarily
worse than starting from any other arbitrary position within
the parameter space, such as the origin. However, the al-
gorithm converges with performance and efficiency levels
comparable to the PI-based method. Such cases can be fur-
ther avoided and the performance can be improved by using
a method that can estimate translation and scale indepen-
dent of the rotation. Another avenue for getting better per-
formance is to improve the GI-based cost function to obtain
more accurate and more robust initial estimates. One such
improvement is to consider a weight function for GI calcu-
lation to compensate for the non-linear size of the GI bins
on the unit sphere. Another potential extension is to add a
multi-resolution scheme for GI-based registration. We are
also investigating the possibility of adapting our method for
affine and non-rigid registration.
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