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Abstract

We present an accurate and fast method for rigid reg-
istration of images with large non-overlapping areas using
a Hough transformation of image gradients. The Hough
space representation of gradients can be used to separate
estimation of the rotation parameter from the translation.
It also allows us to estimate transformation parameters for
2D images over a 1D space, hence reducing the compu-
tational complexity. The cost functions in the Hough do-
main have larger capture ranges compared to the cost func-
tions in the intensity domain. This allows the optimization
to converge better in the presence of large misalignments.
We show that the combination of estimating registration pa-
rameters in the Hough domain and fine tuning the results
in the intensity domain significantly improves performance
of the application compared to the conventional intensity-
based multi-resolution methods.

1. Introduction

The aim of registration is to find the optimal transforma-
tion, which best aligns two or more images by minimizing
some cost function. Registration is a fundamental task fre-
quently encountered in various domains, including surveil-
lance, remote sensing, environmental monitoring, mapping,
and medical imaging [2].

Given a suitable cost function, registration is an N -
dimensional optimization problem, where N is the num-
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ber of parameters that comprise the transformation space.
Typically, at each iteration of the optimization algorithm,
the moving (or floating) image IM is transformed and the
cost function is calculated against the fixed (or reference)
image IF . The optimal transformation Topt is determined
by finding the transformation parameters that minimize the
cost function

Topt = argmin
T

−S(IF ; IM(T )), (1)

where,−S is the cost function (S is the similarity measure),
T is the transformation, and IM(T ) is the transformed mov-
ing image. Image transformation and cost function compu-
tation are time consuming. It is hence desirable to reduce
the number of iterations required by the optimization algo-
rithm to converge.

The cost function should ideally be smooth, have a large
capture range and a single minimum that coincides with the
transformation parameters that align the images. However,
in practice, cost functions may contain several local min-
ima and have a limited capture range that can prevent the
optimization algorithm from converging to the global mini-
mum, resulting in mis-registration.

The performance of the registration task can be enhanced
by improving the shape of the cost function or by proper ini-
tialization of the optimization algorithm to avoid local min-
ima and start within the attraction range of the cost function.
The latter usually entails obtaining estimates of the regis-
tration parameters. We achieve this by transforming image
gradients to Hough space and using a mutual information
(MI) cost function.

MI-based cost functions that operate on pixel intensities
have been very successful in registration of multi-modal im-
ages in the medical imaging domain [9]. This is due to the
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Figure 1. Sample MI functions computed for
the image shown in Fig. 5(a). (a) Transla-
tion capture range improves at lower resolu-
tions. (b) Rotation capture range is almost
unchanged at lower resolutions and local ex-
trema are introduced.

fact that the cost function does not require a linear relation-
ship between the corresponding intensities, is very accurate,
can be used automatically, does not rely on features, and
can be virtually applied to any type of image. However,
one often overlooked aspect is the limited capture range of
MI-based methods [13]. This may not be a major issue if
the misalignment between the images is small, but limits
the applicability of the method as a general purpose regis-
tration technique. Multi-resolution methods provide some
relief and extend the capture range of translation param-
eters (Fig. 1(a)), but are less effective for the rotation or
scale (Fig. 1(b)). They can also introduce additional local
extrema at lower resolutions (Fig. 1(b)). The lower reso-
lutions have also been reported to be more sensitive to the
initial order of the parameters that are being optimized [8].

In [10] and [7], authors show that the shape of the pixel
intensity-based MI function can be improved by introduc-
ing a correction factor based on the co-occurrence of im-
age gradients and mutual information (MI) of image gra-
dients, respectively. The improved robustness of the regis-
tration task, using these methods, comes at the cost of in-

creasing the computational complexity of the cost function
by introducing the image gradient calculation at each step.
Our method, however, improves performance and computa-
tional efficiency at the same time.

2. Approach and Contribution

We consider the class of proper rigid transformations
(proper rotation and translation). We improve accuracy, ro-
bustness and efficiency of the registration task by acquiring
a close initial estimate of the registration parameters.

We calculate image gradients first and assume that each
gradient vector represents a directional line that can be
parametrized by its angle φ and its orthogonal distance from
the origin ρ as shown in Fig. 2. The Hough transformation
of the gradient vectors, obtained in this manner, provides a
spatially relaxed function of the image shape that we use for
registration of the images (more on this in Section 3). We
show that this transformation separates estimation of the ro-
tation parameter from translation and scale. Rotation, in the
image domain, transforms to a circular shift in the Hough
domain, which is invariant to the translation and scale be-
tween the images. This allows us to obtain a robust estimate
of the rotation parameter quickly by performing an exhaus-
tive search on a 1-parameter cost function that operates on
a 1D data-set.
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Figure 2. Gradient vectors in Cartesian co-
ordinates and corresponding Hough space
parameters. Each gradient vector is
parametrized with its orthogonal distance ρ
from the origin and its angle φ.



Given the rotation parameter, we obtain estimates of the
translation parameters by optimizing a similarity measure
along a number of 1D lines parallel to the ρ axis in Hough
space. We back-project the cost functions into a 2D transla-
tion space to obtain a robust estimate of the x and y transla-
tions.

Finally, we use estimated parameters to initialize an op-
timization algorithm that operates on a conventional pixel
intensity-based cost function in a multi-resolution set-up to
achieve sub-pixel accuracy.

Our method has a number of benefits such as reduction
in dimensionality of the problem, increased efficiency, ap-
plicability to multi-modal images, applicability to images
with large intensity variances, and tolerance to large non-
overlapping areas. The combination of these properties
and use of the Hough transform of gradient images rather
than the intensity images differentiates our work from ex-
isting approaches such as the gradient field method in [6],
intensity-based Hough registration in [3], and the gradient-
intensity method in [13]. The rotation estimation in [13] is
robust w.r.t to non-overlapping areas but the centroid-based
translation estimations are sensitive to non-overlapping ar-
eas of the image.

In Section 4, we show that our method significantly im-
proves performance while maintaining a high level of ac-
curacy and computational efficiency. The parameter esti-
mations are robust w.r.t non-overlapping areas. We achieve
99% and 95% success rate (for two sets of experiments) on
a wide range of images with a large dynamic range, whereas
under the same conditions the conventional multi-resolution
method achieves 24% and 15% success rate.

3. Method

3.1 Image Gradients

Let I be an image and Kx and Ky be differentiating ker-
nels in x and y directions, the gradient image is then calcu-
lated using (2) and (4).

Gx = Kx ⊗ I, Gy = Ky ⊗ I, (2)

rg(x, y) =
√

gx(x, y)2 + gy(x, y)2, (3)

φg(x, y) = arctan
gy(x, y)
gx(x, y)

, (4)

where Gx and Gy are image gradient matrices in x and y
directions, rg and φg are the gradient magnitude and phase
at position (x, y), respectively, and ⊗ denotes convolution.

Note that the gradient calculations only need to be done
once for each image and as such, we can use a more ac-
curate filter with wider support without affecting the over-
all efficiency of the algorithm. We use a 7 × 7 derivative

of a Gaussian filter (which has the desired effect of differ-
entiating the smoothed image [5]) with standard deviation
σ = 1.5. The separability property of differentiating Gaus-
sian kernels was used to speed up the convolutions.

3.2 Gradient Image Transformation in
Hough Space

Image gradients can be fully described by their spatial
location (x, y), magnitude and phase. We assume that each
gradient represents a line L parallel to the direction of the
gradient vector which also passes through the gradient’s
spatial location as shown in Fig. 2. Each gradient vector
is parametrized with its phase (angle of L) and the distance
of L from the origin. This parametrization of the gradient
field, drops the gradient magnitude and relaxes the spatial
dependency of the gradient vector (all parallel gradient vec-
tors on L are represented with the same parameters). We
will show how this parametrization allows us to break down
rigid registration, which is normally a 3-parameter opti-
mization problem, to three simpler 1-parameter optimiza-
tions.

A gradient vector at spatial coordinates (x, y) with angle
φ (as shown in Fig. 2) can be represented in Hough space
by (ρ, φ), where

ρ = y cos φ− x sinφ. (5)

Gradient parametrization is different from the standard
Hough parametrization for lines and takes direction into ac-
count. In gradient parametrization, ρ is a signed real num-
ber and the gradient angle φ is used instead of the perpen-
dicular line angle θ. Using a signed ρ prevents formation of
unwanted local minima in the cost function, that would oth-
erwise be created due to ambiguity of the standard Hough
parametrization of the lines that ignores direction.

The similarity (rigid + scale) transformation of an image
can be written as

x′ = sRx + t, or (6)[
x′

y′

]
= s

[
cos γ − sin γ
sin γ cos γ

] [
x
y

]
+

[
tx
ty

]
(7)

where tx and ty are translation parameters, γ is the rotation
angle, and s is scale. The transformation will result in the
following change in Hough space

ρ′ = y′ cos φ′ − x′ sinφ′, (8)
ρ′ = s[y cos(φ′ − γ)− x sin(φ′ − γ)] + ty cos φ′ − tx sinφ′︸ ︷︷ ︸

ρt(φ′)

.

(9)

We now re-organize (9) so that it is comparable with the
line equation in (5)



ρ′ − ρt(φ′)
s

= y cos(φ′ − γ)− x sin(φ′ − γ), (10)

by comparing (10) with (5) we have[
ρ′

φ′

]
=

[
sρ + ρt(φ + γ)

φ + γ

]
(11)

Equation (11) specifies a similarity transformation in
Hough space. One immediate benefit is the separation of
the rotation parameter from the translation and scale. Addi-
tionally, transformation in Hough space is computationally
efficient as it consists of a shift along the φ axis and a mul-
tiplication and a constant shift for each value of φ along the
ρ axis.

We now define the Hough transform function Γ(ρ, φ), as
the number of gradient vectors at a particular direction φ
and at a distance ρ from the origin. In practice, we need
a discrete version of Γ(·). We use the uniform volume his-
togram [12], which has been shown to be robust w.r.t. gra-
dient calculation errors and noise and results in smoother
cost function for image registration purposes [12]. We will
discuss how Γ(·) can be used for image registration in the
next section.

3.3. Estimation of Transformation Parame-
ters

Using (11) we have

Γ′(ρ, φ) = Γ(sρ + ρt, φ + γ), (12)∑
ρ

Γ′(ρ, φ) =
∑

ρ

Γ(sρ + ρt, φ + γ), (13)

or Γ′(φ) = Γ(φ + γ), (14)

where Γ′(·) is the gradient function of the transformed im-
age and Γ(·) and Γ′(·) are the average of gradient functions
along the ρ axis.

Equations (12) and (13) allow us to decouple estimation
of the transformation parameters. It can be readily seen that
rotation reduces to a shift along the φ axis in the Hough
domain and is independent of the scale and translation. As
such, finding the rotation parameter between the images re-
duces to a 1-parameter optimization problem over the rota-
tion dynamic range of (−π, π]

γ̂ = argmin
γ

−MI(Γ′(φ); Γ(φ + γ)), (15)

where MI is the mutual information similarity measure [9].
In practice, due to the small overhead in calculating the 1D
cost function, we use an exhaustive optimization strategy
by calculating the cost function at 1◦ intervals and choosing
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Figure 3. 1D MI functions are shown for
images of Fig. 5(a). The misalignment be-
tween the images is [−98.03 − 97.00 140.52◦].
Our method estimates the transformation pa-
rameters as [−98 − 97 140◦]. Note that the
shape of MI functions are unimportant at this
stage, since we are performing an exhaustive
search to estimate the parameters.

the rotation parameter which results in the minimum cost.
Resolving γ is an important step, since multi-resolution
methods perform much better if the images are rotationally
aligned.

We can further exploit Hough space transformation to
quickly estimate translation parameters. For rigid registra-
tion (s = 1), we pick a number of lines parallel to the ρ axis
and calculate MI for all values of ρt in the dynamic range
at 1 pixel intervals. MI calculation is very efficient since
we are computing the similarity for two 1D data-sets (two
lines in Hough space). Let us pick φ = π/2 line for which
ρt = tx. As shown in Fig. 3(b), the MI function attains its
maximum at tx. Similarly, we could estimate ty by look-
ing at φ = 0 line. However, this may not always be robust
as demonstrated in Fig. 4. We can improve the robustness
of the estimation by looking at the similarity functions of
other lines, which provide combined estimates of tx and ty
(ρt(φ) = ty cos φ− ty sinφ).

Let us treat the MI function as the probability distribu-
tion of the random variable ρt. For each line φ = α we
have

Pr (ρt(α)) ∝ MI(Γ′(ρ, α); Γ(ρ + ρt(α), α + γ̂)). (16)



Equation (16) may be thought of as a projection of the prob-
ability distribution Pr(ρt) in the direction determined by
φ = α. Our aim is to find the best (most probable) estimate
of the translation parameters tx and ty given a number of
projections of Pr(ρt) in different directions. This can be
achieved by a process of back-projection analogous to that
used in computing the inverse Radon transform. We back-
project Pr(ρt) for a number of lines, and find the estimate
of translation parameters where the back-projected proba-
bility density function achieves its maximum, as shown in
Fig. 4. In practice no more than 10 lines were required for
achieving robust results.

3.4. Final Optimization

As the final step, we switch back to the intensity domain
to obtain more accurate results. We use a multi-resolution
Gaussian pyramid which is optimized using the Simplex
[11] method. The multi-resolution optimization is initial-
ized with the estimated parameters. The λ parameter which
determines the volume of the initial simplex is set to a small
value (10 pixels along the translation axis and 10◦ along the
rotation axis) to allow the optimization to converge quickly.

4. Experiments

We tested our method on aerial images from Google
Earth [1]. We used 20 images in our experiments selected
from four categories: landmark, urban, rural and natural.
Landmark images include a prominent man-made structure,
urban images are taken from city centers and mostly contain
rectilinear structures, rural images contain few buildings
and are otherwise occupied by natural scenery, and natural
images contain no artificial structures or roads. One sample
registration per category is shown in Fig. 5.

In total, we performed 8000 registrations in two sets of
experiments by generating 200 random transformations for
each image within the angular dynamic range of (−π, π].
The translational dynamic range was set to [−100, 100] pix-
els for the first experiment and increased to [−150, 150] for
the second experiment. The original images were 1024 ×
1024, we cropped them to 512 × 512 around the center to
ensure that non-overlapping areas are occupied by real data
from the original images. The minimum overlap between
the images was 50% and the average overlap was 75% for
the entire set.

We compared our method with the conventional multi-
resolution method in the pixel intensity domain. We used
MI as the similarity measure and optimized the cost func-
tion using the Simplex method.

The registration errors were calculated by selecting
10, 000 control points uniformly distributed across the im-
age and computing the average distance between the trans-

formed control points under the calculated transformation
and the actual transformation.

5. Discussion

5.1. Accuracy and Performance of the Reg-
istrations

The success rate of our method was 99% for the first ex-
periment and 95% for the second experiment. Whereas the
performance of the conventional multi-resolution method
was 24% and 15%, respectively. The performance of our
method decreases as we increase the translation dynamic
range, this is due to the reduction in overlap between the
images and deterioration of the rotation estimate. The poor
performance of the conventional method is due to its in-
ability to cope with the large capture range of the exper-
iments. Our method performed very well for overlaps as
low as 50%, for all groups of images. The landmark group
continued to perform well below 50% overlap. Apparently,
the combination of natural scenery and a few distinct ar-
tificial structures provides good conditions for registration
with our method. Other groups showed only a slightly lower
performance. We also tested our method with images taken
with a handheld camera and without a tripod. The images
taken in this way contain non-rigid deformations, however
our method is able to find a close rigid approximation as
shown in Fig. 5(e) and Fig. 5(f).

Both Hough-based and intensity-based methods regis-
tered images very accurately, whenever they were initial-
ized within the capture range of their respective cost func-
tions. The average registration error was 0.42 pixels for our
method. This was expected, since MI-based cost functions
are known to be accurate [4].

5.2. Capture Range of the Hough Method

Cost functions based on Hough gradient functions
exhibit larger translational capture range compared to
intensity-based cost functions. The capture range is typi-
cally more than twice, as shown in Fig. 7.

The larger capture range can be attributed to the spa-
tially relaxed formulation of the gradient function Γ. The
gradients can be freely displaced along the line that passes
through them without affecting the gradient function. For
example, in Fig. 2, placing g1 anywhere on L1 does not
change Γ.

5.3. Similarity Registration

It is possible to use our Hough registration method for
similarity registration. The translation and scale can be es-
timated using a method similar to that described in Section
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Figure 4. Robustness of estimating translation parameters improves by adding more lines. (a) With
2 lines, ty is estimated incorrectly. (b) With 4 lines both parameters are correctly estimated but there
are other high peaks. (c) With 8 lines, a single dominant peak is formed at the correct alignment.
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Figure 7. Hough method has a larger transla-
tional capture range, due to the spatially re-
laxed formulation of the cost function.

3.3 for estimation of the translation parameters, however
this time an exhaustive 2D search needs to be performed.
Alternatively, one can optimize for two translations and the
scale parameter, once the rotation is resolved, using a local
optimization algorithm such as Simplex:

[btx,bty, bs] = argmin
tx,ty,s

−MI(Γ′(ρ, φ); Γ(ρ′, φ′)), (17)

ρ′ = sρ + ty cos(φ + bγ)− tx sin(φ + bγ), (18)

φ′ = φ + bγ. (19)

We performed some preliminary experiments with both
methods. In our experience, the second method which uses
local optimization is less computationally expensive and
performs better.
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(a) Landmark - Sydney Opera House (b) Urban - Los Angeles (c) Rural - Farm

(d) Natural - Coral Sea (e) House by the Lake (f) Café

Figure 5. (a-d) Examples of registered images in each category. (e-f) Pictures taken manually with a
handheld camera. There are some affine and perspective distortions between the images, however
our method can find a close rigid approximation.

(a) Experiment 1 (b) Experiment 2

Figure 6. Superior performance of our registration method compared to the conventional multi-
resolution approach.


