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Abstract

Conventional mutual information (MI)-based registra-
tion using pixel intensities is time-consuming and ignores
spatial information, which can lead to misalignment. We
propose a method to overcome these limitation by acquir-
ing initial estimates of transformation parameters. We in-
troduce the concept of ‘gradient intensity’ as a measure of
spatial strength of an image in a given direction. We deter-
mine the rotation parameter by maximizing the MI between
gradient intensity histograms. Calculation of the gradient
intensity MI function is extremely efficient. Our method is
designed to be invariant to scale and translation between
the images. We then obtain estimates of scale and trans-
lation parameters using methods based on the centroids of
gradient images. The estimated parameters are used to ini-
tialize an optimization algorithm which is designed to con-
verge more quickly than the standard Powell algorithm in
close proximity of the minimum. Experiments show that our
method significantly improves the performance of the reg-
istration task and reduces the overall computational com-
plexity by an order of magnitude.

1. Introduction
1.1. Background and Motivation

The aim of the registration process is to find the opti-
mal transformation, which best aligns two or more images
by minimizing some cost function. The images may have
been taken at different times, by different sensors, at dif-
ferent viewpoints or even contain local non-rigid deforma-
tions. One such cost function is the joint entropy of two ran-
dom variables representing intensity values in each image
or its more widely used utility function counterpart, mutual
information (MI).

A concept borrowed from the information theory, mu-
tual information measure in recent years has been success-
fully adopted for automatic registration of mono-modal,

multi-modal and multi-temporal images, with applications
in medical imaging [3, 8, 14] (refer to [11] for an exten-
sive survey), surveillance, remote sensing [2], environmen-
tal monitoring, and mapping [4].

Registration typically involves an optimization step,
where at each iteration of the optimization algorithm, the
moving (or floating) image M is transformed and the simi-
larity measure is calculated against the fixed (or reference)
image I'. The optimal transformation 7, is determined
by finding the transformation parameters that maximize the
similarity (e.g. MI) between the images

T,pt = argmax S(F; M(T)), (M
T

where, S is the similarity measure, 7 is the transformation
and M (T) ia the transformed moving image.

Image transformation and MI computation are both time
consuming. It is hence desirable to reduce the number of
iterations required by the optimization algorithm. Several
optimization algorithms have been applied or adapted to
improve the registration process [9]. Optimization algo-
rithms can be trapped by local extrema and result in mis-
registration [11].

In the Ml-based registration literature, pixel intensity
(PD) has conventionally been the feature of choice. How-
ever, PI-based methods do not explicitly take the correla-
tion of neighboring pixel intensities into account, which has
been a known source of mis-registration. Multi-resolution
methods that implicitly enter spatial information into cal-
culations improve efficiency and robustness of registration.
However, they may still introduce additional local minima
at lower resolutions. The lower resolutions have been re-
ported to be more sensitive to initial order of parameters
being optimized [8].

A natural choice for incorporating spatial information is
to compute MI over gradient of images. However, the util-
ity function obtained in this way is likely to have a narrow
attraction range and several ripples [10]. In [10] and [7],
authors show that the shape of PI-based MI function can be



improved by introducing a correction factor based on co-
occurrence of image gradients and MI of image gradients,
respectively. The improved robustness of the registration
task, as reported by these methods, comes at the cost of in-
creasing the computational complexity of the cost function
by introducing the image gradient calculation at each step.

1.2. Approach and Contribution

We propose an alternative method to improve robustness
and efficiency of the registration task by acquiring an ini-
tial estimate of the registration parameters. The parameter
estimation is decoupled in the sense that each parameter is
estimated independently or is based on previously estimated
parameters. The main contribution of the paper is the intro-
duction of gradient intensity (GI) and GI-based maximiza-
tion of MI to determine the rotation parameter between the
images invariant to scale and translation. GI is loosely de-
fined as the number of significant gradient vectors in a given
direction. We provide a formal definition of GI in section
2.4. Table 1 compares the concept of GI- and PI-based reg-
istration methods.

PI-Based Method GI-Based Method

Pixel Direction

Intensity of a pixel Number of gradient vectors

in a direction

Intensity of a pixel as-
sumed to be a random

Number of gradient vectors
in each direction assumed to

variable be a random variable

MI measures directional sim-
ilarity of gradient vectors

MI measures similarity

of pixel intensities

MI calculated over a 1 x d
data-set, where d is the num-
ber of directions (typically

MI calculated over an
m X n data-set, where
m, n are image height

and width, respectively 360)

Table 1. Comparison of pixel- and gradient-based concepts.

We consider the class of proper similarity transforma-
tions (proper rotation, translation and scale). Our method
determines the rotation parameter efficiently and is de-
signed to be invariant with respect to scale and translation.
Unlike PI-based methods, our method does not rotate the
moving image due to the fact that an ideal rotation does not
change the gradient content of an image except for a cir-
cular shift in all directions. As such, time-consuming gra-
dient calculation is not required for each change in the ro-
tation parameter. The MI utility function is efficiently cal-
culated for two vectors of length 360, which removes the
need for a conventional optimization step, at this stage. The

GI method reduces the dimensionality of rotational regis-
tration. For a 2D image the rotation parameter is found
by maximizing MI of 1D vectors. In section 6 we briefly
discuss that an extension of this method can reduce dimen-
sionality of 3D image registration to a 2D plane. Reduction
in dimensionality and applicability of our method to multi-
modal images, images with large intensity variances and in
the presence of isotropic scale, differentiates our work from
existing approaches such as the gradient field method in [6].

We obtain an independent estimate of scale parameter
using the average distance of significant gradients from the
centroid of the gradient image. Given the rotation and scale
parameters, the translation parameters can be derived from
the relative position of the centroids of gradient images.

Finally, we use estimated parameters to initialize a
guided optimization algorithm based on Powell’s direction
set optimization method. Our optimization algorithm op-
erates on a conventional PI-based MI utility function to
achieve sub-pixel accuracy. Our optimization algorithm is
specifically designed to converge quickly when initialized
in close proximity of the optimal alignment.

We show in section 4 that our method significantly im-
proves the robustness of the registration task, while reduc-
ing the overall computational complexity by an order of
magnitude. We use 2D aerial images and 3D multi-modal
MR images in our experiments. For 3D images we limit our
experiments to in-plane transformations. The experiments
with 3D images are only intended to demonstrate the appli-
cability of the method for multi-modal registration and to
motivate further extension for full 3D medical image regis-
tration as discussed in section 6.

2. Concepts
2.1. Entropy

Entropy of a random variable is a measure of the average
or expected information content of an event, whose distribu-
tion is determined by the marginal probability of the random
variable. One such measure was introduced by Shannon in
1948 [13], and is defined as

H(X) =) p(z) log ——, )

reX p(m)

where p(.) is the probability mass function (pmf) of the ran-
dom variable X. Shannon entropy measures the degree of
uncertainty of a random variable by scoring less likely out-
comes higher than the more likely ones. This is consistent
with the notion that knowledge of an outcome that can be
easily predicted is considered less valuable.

2.2. Mutual Information

Mutual information of two random variables is the
amount of information that each carries about the other and



is defined as
I(X;Y)=H(X)- HX|Y)

= H(X) + H(Y) -
=22 vl (n’o@)’ @

where H(X|Y') is the information content of random vari-
able X if Y is known, H(X,Y) is the joint entropy of the
two random variables and is a measure of combined in-
formation of the two random variables. [(X;Y") can be
thought of as the reduction in uncertainty of random vari-
able X as a result of knowing Y. The uncertainty is maxi-
mally reduced, when there is a one-to-one mapping between
the two random variables and is not reduced at all if the two
random variables are independent and do not provide any
information about one another.

H(X,Y), 3)

2.3. Image Gradients

Let I(2) be a 2D image or a slice of a 3D image and K,
and K, be differentiating kernels in = and y directions, the
gradient image is then calculated using (5)-(6).

Ga(2) =Kz @1(z),  Gy(2)

(z,y,2 \/gm (z,9,2)* + gy(7,9,2)%,  (6)

gy( x,Y, Z)
9z (@, y,2)’

=K, ®I(z), (&)

go(z,y, z) = arctan 7
where G, (z) and G, (z) are image gradient matrices in x
and y directions for the 2D image or each slice of the 3D
image, g,, and g, are the gradient magnitude and phase at
position (z,y, z), respectively and ® denotes convolution.

2.4. Gradient Intensity

Gradient intensity is a measure of directional strength of
an image and is loosely defined as the number of significant
gradient vectors in a given direction. To calculate gradi-
ent intensity we first derive a gradient map G for the image
using (5)-(6) defined as the set of vectors whose gradient
magnitude is not less than a given threshold

G={x £ (7, y, 2)|gm(x) > t(2)} (®)

where (z) is the threshold, calculated for each slice of the
gradient image and is used to remove gradient vectors that
do not contribute to image shape or are more sensitive to
noise. We use the root mean square (RMS) criterion as the
gradient magnitude threshold

#(z) = Zzgm,,fj’; : )

y=1z=1

where m and n are the number of gradient matrix rows and
columns, respectively.

Let r be the angular resolution, gradient intensity I is
then defined at the center of each direction bin ¢; as

Z 11— ¢’L
xeG
bi =1 < gp(x) < @i+ (10)

Equation (10) bi-linearly distributes each gradient vector
between the adjacent directions. In order to be able to com-
pare gradient intensity of different images we use a normal-
ized version of (10)

_ T
max; r ((bj) ’
Fig. 1 shows a number of images and corresponding gra-
dient intensities encoded on a unit disk. Brighter colors in-
dicate higher gradient intensities in a given direction. As
can be seen, the gradient intensity disks clearly identify the
rotation between the images. However, a one-to-one rela-
tionship between the GI maps does not exist. For example
a strong response is observed at %“ directions due to inher-
ent bias of rectangular gradient kernels to these directions.
In the case of Fig. 1(g) and Fig. 1(h), the effect of multi-
modal nature of the images can be seen in GI maps, where
the gradient intensities cannot be linearly related. These ob-
servations indicate that a statistical similarity measure such
as MI that does not assume a linear relationship between
gradient intensities will be more suitable for our purposes.

T(¢:) = (11)

2.5. Entropy and Mutual Information of Gradient
Intensity

Entropy of gradient intensity is a measure of directional
information content of an image. The more directionally
versatile an image, the higher the entropy. For example,
in polygons, the entropy of gradient intensity is higher for
higher order polygons with the maximum entropy observed
for a circle and the minimum for a line.

Mutual information of gradient intensity of two images
is a measure of directional similarity of images regardless
of their relative size (scale) and position (translation) and is
maximum, where images are rotationally aligned.

Fig. 2 shows the MI utility function for the Gl-based al-
gorithm and the PI-based algorithm calculated for Fig. 1(c)
and Fig. 1(d). Both methods determine the rotation parame-
ter that aligns the moving image onto the fixed image to be
10°. The utility function of the PI-based method is smooth,
as expected, and yields well to an optimization algorithm.
The utility function for the GI-based method has several lo-
cal maxima, but a clear global maximum and since the MI
calculation takes less than 1 millisecond on a standard PC,
we can quickly find the global maximum and are not con-
cerned with the shape of the MI function.
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Figure 2. Sample MI functions for (a) GI-based method and (b)
PI-based method; GI function is not as smooth, but this does not
affect our algorithm, as we find the global maximum by searching
on a small 1D space and are not affected by the MI function shape.

3. Method

We determine the rotation parameter of the optimal rigid
transformation in (1) by maximizing the MI between gradi-
ent intensities of the images. We then use a centroid-based
method to estimate the scale parameter. The translation pa-
rameters are derived using estimated scale and rotation and
from the displacement of the gradient centroids. We finally
use a guided optimization algorithm on a conventional PI-
based MI function to achieve sub-pixel accuracy.

3.1. Calculation of Image Gradients

The gradient calculations are done only once for each
image using (5)-(6) and as such, we can use a more accu-
rate filter with wider support without affecting the overall
efficiency of the algorithm. A 7 x 7 derivative of a Gaus-
sian filter (which has the desired effect of differentiating the
smoothed image [5]) with standard deviation ¢ = 1.5 is
used in our experiments.

(€3] (h)

Figure 1. (a,b) Satellite images of Sydney Opera House, misaligned by —26.3°. (c,d) MR-T1 and MR-T2 images of brain, misaligned by
a transversal rotation of 10° (e-h) Corresponding gradient intensities mapped on a unit disk.

3.2. Calculation of Rotation Parameter
3.2.1 Gradient Intensity Histogram

The gradient phase matrix is converted into a histogram at
a desired angular resolution using (10). The histogram is
then normalized by the most frequent sample to create the
gradient intensity vector as in (11). For 3D images, the 2D
gradient of each slice is calculated separately and then all
the samples are combined into a single gradient intensity
vector. So regardless of the size of an image or its dimen-
sionality, we always calculate MI for two 1 X d vectors: a
fixed vector and a moving vector, where d is the number
of directions. We use the angular resolution of 1°, which
limits the gradient intensity to a vector of size 1 x 360.

3.2.2 Computational Advantage of GI Method

The MI utility function is computed by iterating over the
rotational range. At each step, a circular shift is applied
to the moving GI vector and the MI between the resulting
vector and the fixed vector is calculated using (4). This has
a huge computational advantage over the PI method, where
at each step one would require to rotate the moving image
itself and calculate MI for the entire image. On a standard
PC, MI was calculated under 1 ms for the GI method.
Once the MI utility function for the entire rotational
range is calculated, the optimal rotation parameter is found,
where the utility function assumes its global maximum.

6 = argmax I(Ve; Vo)) (12)
0

where Vs (9)(¢) = Var(¢ — 0), and Vr and Vi are the GI
vectors for fixed and moving images, respectively.



3.2.3 Effect of Number of Bins

Increasing the number of bins used for estimating marginal
and joint pmfs reduces the average number of samples per
bin. For small data-sets, this results in a less accurate esti-
mation of the pmfs of random variables. The total number
of samples for the GI histograms is indeed very small and
as such, we use 10 bins for pmf estimations. For PI method,
where the number of samples is much larger, we use 100
bins.

3.3. Estimation of Scale and Translation

2D rigid transformation of a vector x can be written as
x =sRx +t, (13)

where x’ is the transformed vector, s is the scale factor,
t is the translation vector, and R is the rotation matrix.
The distance between two points x; and x5 is defined as
d(x1,x2) = ||x1 — X2||,, where ||.||, is the Euclidean ¢,
norm. It can be easily shown that

d(x'1,x'5) = s||R(x1 — X2)|ly = sd(x1,%x2).  (14)

We need two points and their transformed locations to de-
termine s. However since we only have the centroid and its
transformed location, we estimate the scale parameter from
the average distance of centroids x. and x’. from all other
points in the corresponding gradient map

reqr d /a lc
§:ZXEG (X X ) (15)

erG d(X’ XC) '

where § is the estimated scale parameter and G and G’ are
the gradient maps of fixed and moving images, respectively.

Given the rotation and scale parameters, the translation
can be found from (13) by replacing x and x’ with the cen-
troid of the fixed and moving images, respectively

t =x'. — sRx.. (16)

3.4. Optimization

Powell’s multi-dimensional direction set algorithm finds
the minimum' of the cost function by iteratively minimizing
the function along a set of N directions, where N is the
number of independent parameters of the cost function. In
the absence of any direction, the parameter space’s origin is
commonly used as the starting position for the optimization
algorithm. We refer to this conventional approach as ’blind
optimization’.

One problem with the Powell algorithm is that from an
observer’s point of view who knows where the minimum is

'In line with the optimization literature, we refer to finding minimum
even though for MI we will actually maximize the function.

located, it appears to spend a lot of time, aimlessly iterating
on and around the minimum. Obviously, the only way the
optimization algorithm can satisfy itself that it has found
the actual minimum is to spend enough time to check the
surroundings. Our implementation resembles the method
described in [12] with one major difference that it takes ad-
vantage of the fact that it has been initialized not far from
the minimum and as such, can quickly converge by refrain-
ing from checking the perimeter excessively. We call this
method ’guided optimization’. We define a minimum dis-
tance or resolution for the cost function. The cost function
keeps track of each point in the N-dimensional space that it
evaluates and will only evaluate a new point if falls outside
all previously evaluated points by the specified minimum
distance. The cost function quickly returns a previously
calculated value for points inside the minimum distance of
a previously evaluated point, which limits the resolution of
the cost function. Obviously, this method is not suitable as
a general purpose optimization tactic, and can only be used
when the optimization algorithm can be properly initiated.

4. Experiments

We tested our method on 2D aerial images and 3D simu-
lated MR images of brain generated by Brain Web [1]. The
experiments on MR images were to demonstrate the per-
formance of our method for the more difficult problem of
registering multi-modal images and to motivate further ex-
tension of the method to support full 3D registration. We
calculated the registration error for 2D images by selecting
10, 000 control points uniformly distributed across the im-
age and calculating the average distance between the trans-
formed control points under the calculated transformation
and the actual transformation. For 3D images we located
the centroid of the brain volume and calculated the distance
between the transformed centroids under calculated and ac-
tual transformations.

4.1. Registration of 2D Images

We compared GI method with the conventional PI
method by conducting two sets of experiments on aerial im-
ages. For each run we randomly created 500 transformation
matrices within the dynamic range of the parameter space.
The reference image was transformed by each matrix and
GI and PI registration was performed on the reference and
the transformed images. A smaller dynamic range was used
for the first set of experiments and the dynamic range was
increased for the second round as shown in Table 2. The GI
method was run with three resolutions high, medium and
low (0.001, 0.01 and 0.1 pixels). The results are shown in
Fig. 3 (darker colors are associated with the first experiment
and lighter colors with the second experiment).

The robustness and performance of registration signifi-



Round One Tests | Round Two Tests
Translations [-25 25] [—-50 50]
Rotation [—25° 25°] [—180° 180°]
Scale [0.75 1.25] [0.5 1.30]

Table 2. Dynamic range of parameters used in the experiments

cantly improved under the GI method as shown in Fig. 3.
We declared a registration failed if the average pixel align-
ment error was more than two pixels. As shown in Fig. 3(a),
the PI method performance is reasonable in the first ex-
periment but as we increase the dynamic range in the sec-
ond experiment the performance drops below 20% since the
chance of being trapped by local minima increases. The
GI method, on the other hand, performs very well in both
case with performance levels more than 99% and 95% for
experiment one and two, respectively. Also notable is the
success rate of GI method at medium resolution which suc-
cessfully registered all images in the first experiment and
486 out 500 in the second experiment. This is due to the
good initial estimates of transformation parameters under
the GI method. Throughout our experiments estimation of
rotation and scale parameters were very close to the actual
alignment with a mean error of 0.54° and 0.1% for rota-
tion and scale, respectively. However, the translation esti-
mations which are mainly based on centroids are less accu-
rate with an average error of 4.1 pixels and deteriorate under
heavy clipping of the images (centroid calculation is sensi-
tive to partial overlap). This explains the slight performance
drop in GI method in the second experiment.

In addition to improved performance, GI-method im-
proves efficiency by allowing the optimization step to con-
verge more quickly as shown in Fig.3(b). Obviously the
efficiency can be improved by reducing the resolution of
the algorithm. Based on experiments a medium choice of
resolution seems to provide a good balance between the ac-
curacy and efficiency.

Fig.4 shows the result of registration of aerial images
of Sydney Opera House previously shown in Fig. 1(a) and
Fig. 1(b) using the GI method. The GI method detected the
correct transformation in 43 iterations while for the same
experiment the PI method failed to register the images.

4.2. Registration of Multi-Modal Images

We experimented with several combinations of multi-
modal MR images of brain to determine the applicability
of our method in the presence of non-linear intensity varia-
tions. Fig. 6 shows a sample of T1, T2 and PD modalities
used in our experiments [1]. The transformation were ap-
plied to the entire volume, however the misalignment be-
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(a) Registration success rate for each method. Conventional PI method
performance drops below 20% for larger dynamic ranges, while GI method
sustains more than 95% success rate.
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Figure 3. Improved performance and efficiency of the GI method.

(a) GI method registers images successfully avoiding local minima

Figure 4. GI-based registration of 2D aerial images. Checkerboard
overlays of images are displayed for visual comparison.

tween the images were limited to in-plane transformations.

Fig.5 demonstrates that our optimization method im-
proves performance and efficiency of the registration task
for multi-modal images by giving an example for registra-
tion of T1 to T2 images. In this experiment, T2 was trans-
lated by (—20,20) mm and scaled by 0.9, the rotation pa-
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(b) The registration error for our method remains nearly constant and is
well below the voxel size; the conventional method fails for rotations out-
side £-40°.

Figure 5. Superior robustness and improved efficiency of our
method compared to the conventional method.

rameter was varied from —50° to 50° in 10° increments.
The efficiency of the registration improved on average by a
factor of 12. The GI method was able to achieve accuracy
well below the voxel size of 1 mm with an average error
of 0.18 mm. The results shown in Fig. 5 are indicative and
consistent with several other experiments, which we have
not included due to space limitations. We experimented by
gradually increasing other transformation parameters and
tested our method on other combinations of image modali-
ties (T1 to PD and T2 to PD).

S. Discussion
5.1. Accuracy of Estimating Rotation

Average error in estimating the rotation parameter for 2D
experiments was 0.54° and for 3D experiments was below
1° (refer to Fig.7), which is within the angular resolution
of our experiments. This demonstrates that mutual informa-
tion of gradient intensity is a strong measure of directional
similarity, irrespective of translation and scaling between
the images.

(a) MRI-T1. (b) MRI-T2.

(¢) MRI-PD.

Figure 6. A sample set of synthetic MR images of brain used in
our experiments with voxel size of 1 mm?.
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(b) Estimated rotations for various misalignments vs. translation

Figure 7. Estimation of rotation parameter using GI method
demonstrating invariance to scale and translation. The legend
shows ground truth for each experiment.

5.2. Invariance to Translation and Scaling

When fixed and moving images are scaled by a factor
within a reasonable range or translated, their shape remains
unchanged. As such, one would expect that the directional
content of image gradients be relatively maintained.

Fig. 7 underlines the invariance of the GI method to scale
and translation. Fig.7(a) shows a number of experiments,
where an MRI-T2 is scaled from 0.8 to 1.25 while being ro-
tated between 0° to 30°. The transformed image is then reg-
istered to a reference MRI-T1. The experiments show that
GI method estimates the rotation parameter with an aver-
age error of 0.6°. Fig. 7(b) shows a number of experiments,
where an MRI-T2 is translated from (—40, 40) to (40, 40)
while being rotated between 0° to 30°. The transformed
image is then registered to a reference MRI-T1. The exper-



iments show that GI-based method estimates the rotation
parameter with an average error of 0.9°.

5.3. Robustness with Respect to Partial Overlap

In some of our experiments clipping of the transformed
images has removed a significant number of important gra-
dient vectors on the outer boundary of the image (e.g.
Fig. 6(c)), however a close estimate of the rotation param-
eter can still be found, which demonstrates the robustness
of the gradient intensity method for partially overlapping
images.

5.4. Guided Optimization vs Blind Optimization

The guided optimization outperforms blind optimization
both in terms of efficiency and accuracy. The registration
error for the guided optimization remains almost constant
(e.g. Fig. 5(b)). While the average registration error is lower
for the guided optimization, the minimum registration error
can be higher for guided optimization at lower misalign-
ments, unless a sufficiently high resolution is used. The
choice of resolution for the guided optimization is deter-
mined by minimum accuracy required by the application.
For example for most medical application sub-voxel accu-
racy is required which in our experiments could be achieved
by a medium choice of resolution.

6. Future Work

We are currently investigating full 3D extension of the GI
method for registration of medical images with out-of-plane
transformations. The rotation parameters around x, y and z
axes are being derived by maximizing the MI of spherical
angles of 3D gradients, mapped on a unit sphere. This al-
lows us to derive three rotational parameters by optimizing
MI function on a 2D plane which reduces the dimensional-
ity of the problem and significantly improves the efficiency
of registration with respect to rotational parameters. The
translation and scale parameters are estimated using meth-
ods similar to those presented in this paper. The results are
then used to initialize a guided optimization algorithm.

7. Conclusion

Distribution of gradient vectors, as a measure of direc-
tional strength of an image, captured by the gradient inten-
sity, is a robust measure of similarity between the images
regardless of their relative size or location. Mutual infor-
mation of gradient intensity assumes its maximum, where
the images are rotationally aligned without requiring the im-
ages to be optimized with respect to scale or translation. In
our experiments the MI utility function of gradient inten-
sity could be calculated in less than 1 ms for the entire ro-
tation range. Decoupled estimates of scale and translation,

together with rotation were used to initialize an optimiza-
tion algorithm to achieve sub-pixel accuracy. We showed
that our method improves robustness of the optimization al-
gorithm and reduces the overall computational complexity
of the registration task by an order of magnitude.
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