
Note on Remote Laboratory Access:
A Networking Perspective

Alexander A. Kist
Faculty of Engineering and Surveying

University of Southern Queensland
Toowoomba, Queensland 4350

Australia
Email: kist@ieee.org

Abstract—Remote Laboratory Access in education has become
a focus of Universities and other educators. This work addresses
issues of implementing a scalable remote-laboratory access sys-
tem. The main requirements which are considered include: to
developed generic solutions allowing access to many different
hosts via a common interface, straightforward student use, fast
experiment setup and minimal configuration requirements.

The particular focus of this paper is the networking aspect of
remote laboratory access. A general discussion of alternatives is
followed by specific implementation details of a prototype system.
The core component of this system is the Remote Access Gateway
which authenticates users and establishes end-to-end connections
between students and experiments.

I. INTRODUCTION

Remote Laboratory Access has been on the agenda of
Universities and other education providers for a while, mainly
to enhance distance education facilities and improve student
learning. Other drivers include: aiming to offer more flexibility
to students and to reduce operational costs of laboratory
classes.

A wealth of issues relate to the task of providing online
access to laboratory experiments. Broadly, these issues can
be divided into either educational or technical. Consequently,
many papers have been published in the area of remote access.
Work includes publications that investigate the educational
value of these activities such as [1] and [2]. Other publications
describe more specific implementations, often in robotics or
related fields (e.g. [3]). This paper also concludes that learn-
ing experiences for different offer-modes are similar. Many
applications use Java-based, custom interfaces. For example,
[4] introduces Java remote access framework.

The research reported in this paper takes a different angle;
it focuses on a systems view of the remote laboratory access
problem. More specifically, it addresses networking and access
control issues. Remote laboratory access provides admission
to experiments, authenticate and admit users and automate
laboratory tasks.

Currently, there is no turnkey solution available to pro-
vide remote laboratory access. The focus of our research
approaches the problem of providing remote laboratory access
from a networking angle. The aim is to provide a common

framework for many different remote laboratory experiments
that handles authentication, access control, scheduling and
queuing.

It also introduces a prototype implementation, using net-
work layer techniques to provide a scalable, common au-
thentication and remote laboratory access platform for many
experiments. One of the underlying design constraints is to
use existing methods, where possible.

This paper is organised as follows: Section II introduces the
underlying usage scenario and system requirements. Section
III discusses related networking research outlining alternative
access methods. The proposed system is discussed in Section
IV and operational issues are discussed in Section VI.

II. SCENARIO & REQUIREMENTS

The underlying usage scenario of this framework is depicted
in Figure 1. A number of experiments are available for
remote-access. These are connected to a corporate network
and depicted on the left hand side (Experiment 1-4). The
network is firewalled from the public Internet. Potential users
are shown on the left-hand side. They are directly connected
to the Internet (Client 2). Alternatively, the users can also be
located behind firewalls (Client 1) or access the Internet via
Network Address Translation (NAT) gateways or proxy servers
(Client 3). The two groups communicate via the Internet.
No specific infrastructure requirements, such as bandwidth or
latency, are assumed.

The aim of this work is to provide connectivity between
users and experiments; furthermore, authentication, access
control and management are provided.

Details of experiment automation are not in the scope
of this paper. However, it is assumed that many different
applications might be used, including remote Desktop soft-
ware, such as Virtual Network Computing (VNC) or Windows
Remote Desktop, web cams, java user interfaces, voice and
video, specialist software tools, custom applications etc. These
applications might have different requirements for Quality of
Service (QoS).

Experiments are managed by one host. These hosts are
dedicated and have specific IP addresses, but do not require



Campus Network

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Client 1

Firewall

Internet

Client 3

Client 2

NAT/Proxy

Private LAN

Fig. 1. Remote Access Laboratory Scenario

dedicated hardware. VMware [5] or other virtualisation soft-
ware can be used to host several virtual machines on one
physical computer. One guest operating systems manages one
experiment.

System requirements can be summarised as follows:
• Minimal requirements for client hosts
• Simple configuration
• Experiments can be added easily and with no detailed

knowledge of the system
• Scalable, approximately 1000 users, 100 experiments
• Extendable, ie. number of experiments, multiple experi-

ments of the same type
• Additional functions, e.g. video can be added easily
• Secure, experiments can not be accessed by unauthorised

parties, including local and remote users
• The system handles authentication and authorization
• Scheduling and booking of experiments is provided by

the framework
• Several simultaneous connections 1

• No direct access to the Internet via experiment server
• No access from student to student computer
• All experiments appear on the same IP address
• Networking aspects are transparent to the user

III. BACKGROUND

The core aspects of this framework directly relate to access
problems, encountered in other networking areas. This section
summarises research that relates to remote access problems.
Two areas are discussed in detail: server farms and user IP
identification.

A. Server Farms

The problem of accessing multiple servers of the same
type, commonly occurs in the context of virtual servers or

1To support authentication, remote desktop applications, file transfers,
video others.

server farms. This is directly related to the issue of providing
network access for experiments. A number of solutions have
been suggested and are widely deployed. The current state
of the art, for methods in setting up a distributed web-server
systems under one administrative control, is discussed in [6].
The article focuses on architecture, routing and dispatching al-
gorithms. Dynamic load balancing is specifically discussed in
[7]. In the remote laboratory context, the following admission
methods can be adopted for remote laboratory access.

1) Unique Experiment Domain Names: One domain name
is allocated per experiment and the Domain Name System
(DNS) is used to map the corresponding name to an IP
address. This mapping is dynamic and takes the system online
status into account. DNS load balancing techniques are used,
if multiple experiments of the same type are available. This
approach provides very limited control and is not transparent
for users. Different domain names for different experiments
are required. Experiment allocation and access are not handled
via the same interface.

2) Network Address Translation (NAT): NAT has enabled
Internet growth beyond the address space limits of IPv4.
However, at the same time, NAT has been controversial in
the Internet community [8].

Network address translation and TCP/UDP port translation
are often used to map private addresses to one or more
public IP addresses. Another common use is Destination
NAT (DNAT) which makes local services on private networks
available to public Internet. This mechanism is also employed
to implement virtual server load balancing.

A server cluster is accessed via one public IP address. A
dispatcher, hosting the public IP address, receives requests
and assigns them to cluster servers by rewriting the destina-
tion address from the cluster address to the specific server
address. The dispatcher tracks connection-state to ensure that
all packets that belong to the same transaction are routed to
the same server. Arbitrary server assignment policies can be
used including round-robin, least load or random.

The Linux netfilter framework [9], used in the Linux
2.4.x/2..6.x kernel series, can be used to implement NAT. It
is a very powerful tool allowing arbitrary IP packet filtering
rules and packet mangling. It uses Kernel hooks with call-back
functions and a selection of tables that contain forwarding
rules. A user space program, iptables, is used to modify
these tables. Various, user-friendly interfaces are available,
implementing firewalls and other, similar software tools.

3) ONE-IP: The ONE-IP approach uses the Linux ifconfig
alias option to configure one interface with a second IP
address [10]. Several hosts, forming part of a cluster, have a
valid IP address, as well as an alias IP, common to all cluster
hosts. A dispatcher accessible from the Internet, has the only
public interface with the common IP address.

The dispatcher routes incoming requests to the cluster
servers, that use an arbitrary mapping to the cluster hosts pri-
mary IP address. All packets belonging to the same transaction



are sent to the same cluster server. The cluster servers respond
to the request, using the alias IP address. This method does
not rewrite IP addresses.

This section introduced a number of methods, commonly
used to distribute load to cluster members in server farms. To
apply these methods in a remote laboratory case, the server
assignment is not determined by a policy, but by an arbitration
server that grants access to particular users.

Because of the ease of configuration and reliability, option
three, Network Address Translation is being used by the
prototype. However, other options can easily be implemented.

B. Uniquely Identifying User IPs

The identification of users is an issue, encountered in many
contexts. Examples include, corporate network access, secure
web servers and Virtual Private Networking (VPN).

For the purpose of user authentication, it is necessary to
uniquely identify the host addresses of student computers. IP
addresses are unique; however, due to NATs and proxies, it
can not be ensured that a IP address belongs to one user. To
overcome this issue and to encrypt data, VPN solutions are
often used.

There are many flavours and implementations, however,
broadly two 2 alternatives can be identified: IP security (IPsec)
[11] and Secure Sockets Layer (SSL) [12] VPN solutions.
IPsec is an encrypted transport protocol. In the past there have
been issues with IPsec traffic and NATs, however, these are
being addressed by IPsec NAT Traversal (NAT-T) [13], [14].
IPsec NAT-T is widely available, i.e. supported by Windows
XP, since Service Pack 2.

SSL allows an encrypted connection between web-browsers
and remote host. OpenVPN [15] uses SSL to provide a full
VPN application. SSL-type techniques are more flexible in
overcoming firewall issues, however, they are not industry
standard-based and not seen as best practice techniques. They
offer greater flexibility, but have limited commercial support.
In principle, both techniques can be used for remote laboratory
access.

IV. SYSTEM DESIGN

The system is depicted in Figure 2. As in Figure 1,
experiment hosts as well as student hosts are depicted. The
core component of the system is shown in the centre, the
Remote Access Gateway (RAG). The connections symbolise
logical node attachments. Users connect to the experiment
farm via RAG. The gateway handles all incoming requests,
authenticates users and forwards the traffic to the appropriate
experiment hosts.

It is assumed that users reaching the RAG have IP addresses
that uniquely identify their host. As outlined in Section III-B,
this can be achieved with various VPN implementations.

2In the past the Point-to-Point Tunneling Protocol (PPTP) has often been
used to build VPNs.

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Client 1

Firewall

Client 3

Client 2

RAG

10.8.1.10

10.8.1.11

10.8.1.12

10.8.1.13

10.8.0.78

10.8.0.43

10.8.0.16

Private subnet 

either physically separated from the 

university network or overlay VPN

Private subnet 

VPN tunnels to RAS

10.8.1.1/24 subnet 10.8.0.1/24 subnet

Fig. 2. Remote Access Laboratory Scenario

At the same time, it is also assumed that the experiments
have unique, known IP addresses. Experiments are isolated
from the campus network, as well as the public Internet.
Therefore, they are located on a separate LAN, firewalled or
are connected via the experiment VPN. Experiments can be
co-located with the RAG or they are located in different sites.
Experiments are either physically or logically connected to
RAG.

The Remote Access Gateway handles all user requests and
traffic to and from the experiments. Figure 3 depicts the
main function blocks of the gateway. This includes database,
forwarding engine, user interface and core functions. The
system is designed in a modular way. Different roles are
handled by separate entities and can be implemented on co-
located systems. Therefore, the gateway does not necessarily
consist of a single server.

A. User Interface

The user interface is used to interact with students as well
as a configuration and administration interface. HTML pages
are generated using php scripts providing a web interface.
Authenticated users see a list of active experiments available
to them.

This laboratory hosts can instantly be accessed, if they are
not in use. Otherwise, they can be booked for future access. If
an experiment is selected, the forwarding engine is configured
to enable access.

Once a user is authenticated for an experiment, a status
page displays the remaining time for this authentication. It
also re-authenticates the experiment on an ongoing basis. If
the page is closed, the authentication expires and access rules
are removed. The experiment is no longer reachable.



Fig. 3. RAG Function Blocks

The user interface can be integrated with existing Course
Management Systems (CMS), such as moodle [16]. This also
allows the reuse of CMS functions, such as authentication and
student management.

B. Forwarding Engine

The forwarding engine uses network address translation or
port forwarding to enable access to various experiments.

It is important to ensure the IP address of the current user
remains for the whole experiment. Due to the widespread use
of proxy servers and network address translation, it cannot
be guaranteed that an IP address does not change between
requests (load balancing proxy) or that the IP belongs to a
single user (many users behind a NAT use the same public
IP address). Only within one administrative domain it can be
ensured that one IP matches one user, for example, within a
University subnet. To overcome this issue, VPN technology
is used. As outlined in Section III-B, IPsec or SSL VPNs are
available. The particular technology does not have an impact
on this proposal, as long as it ensures an unique IP address.

For the actual implementation of the forwarding rules, this
proposal uses the iptables interface. An alternative implemen-
tation could use One-IP techniques to avoid packet mangling
discussed in Section III-A3. Due to the modular setup, this
can be implemented in the future, if necessary.

All experiments are located on the same IP address, im-
plying that the domain name is also the same. This avoids
any configuration issues on the student site. All client soft-
ware tools are configured with the same IP address for all
experiments. For discussion, it is assumed that experiments are
located at 10.10.10.10 3. As outlined above, every experiment
as well as every authenticated user has an unique IP address.

Table IV-B depicts an example of forwarding rules, for
three users with the IP addresses of 10.8.0.78, 10.8.0.43
and 10.8.0.16, respectively. They are authenticated for three
experiments, located at 10.8.1.10, 10.8.1.11 and 10.8.1.12,
respectively. Note, experiments are located on a different
subnet from the users. If a packet is received that matches

3If a VPN is used, a route to this IP can be advertised. It has to point to
the local gateway. An additional route is required from the VPN gateway to
the RAG.

source destination source to destination to
10.8.0.78 10.10.10.10 10.8.0.78 10.8.1.10
10.8.0.43 10.10.10.10 10.8.0.43 10.8.1.11
10.8.0.16 10.10.10.10 10.8.0.16 10.8.1.12

TABLE I
EXAMPLE FORWARDING RULES

the source and destination address, the destination address is
rewritten from 10.10.10.10 to the new destination address and
the packet is forwarded to the experiment host. Packets, in the
reverse direction, are translated back accordingly.

If a packet arrives with a destination of 10.10.10.10 and
a source that is not included in the table, the packet is not
routable. If users are authenticated, entries are added to this
table, if users lose authentication entries are removed from
the table. The experiment can no longer be accessed4.

C. Database

The database is used to store user information, system
state and all relevant experiment data, including user and
experiment IPs. The current implementation uses a standard
mysql database.

D. Core Functions

The core functions interact with the different modules. They
are implemented using php for general function and bash
scripts for operation system related function and to interact
with iptables.

V. OPERATION

This section outlines the RAG operation in more detail.
Figure 4 depicts the steps that are necessary to access exper-
iments:

1) Before student access is possible, experiments have to
be registered with RAG. This establishes connectivity
between RAG and the host.

2) A user logs on to the remote laboratory webpage.
3) The interface employs core functions to access the

database.
4) User access rights are verified and experiments are

offered via the web interface.
5) On selection of an experiment, the database is updated

and the forwarding rules are configured.
6) The user is able to access the experiment.
7) End-to-end connections from the experiment-client to

the experiment-server can be established.

More details on specific functions are provided in the
subsections below.

4In practise, a additional firewall entry is required to terminate all active
connections to the experiment on lose of authentication.



Web Client
User 

Interface

Forwarding 

Engine

Core

User

Experiment 

Client

Experiment 

N

Experiment 

1
Database

Remote Access Getway

2 3
4

5

6

1

7

Fig. 4. RAG Operation

A. Authentication

Currently, simple http authentication is used. In the future,
this can be replaced by authentication API functions, provided
by student management systems or other databases. As out-
lined above, this function can also be offered by a course
management system. During authentication, the student IP
address is detected and stored. This information is used to
configure access rules by the forwarding engine.

B. Experiment Registration

Experiment servers host software that drives the laboratory
trials. They are added once to the database and connected
to the RAG on a separate VPN subnet. During operation, it
is automatically detected if systems are online, by evaluating
connected VPN information.

VI. DISCUSSION

This implementation can serve as a framework for pro-
viding flexible, unified access to experiments in an online
learning environment.

A. System Requirements

In Section II a number of system requirements were out-
lined. All of these have been addressed by the RAG system.
The only issue, not discussed in great detail, is scheduling
and experiment booking. These functions can be implemented
using php/mysql and can be directly integrated in the user
interface.

B. Scalability

The RAS can be operated as a server cluster if a single
system reaches it’s limit. The framework is scalable to a
large number of systems. Using address translation for the
experiment access allows several, identical experiments to be
operated transparently from the user perspective.

C. Quality of Service

The iptables-based implementation has the additional ad-
vantage that QoS measures can be included and bandwidth
guarantees can be enforced.

For one experiment, for example, 30% of the bandwidth,
consumed by the experiment, is reserved for video transmis-
sions and 40% are reserved for other real-time applications,
etc. Furthermore, bandwidth consumption of experiments
overall can also be limited, i.e. all experiments use fair
bandwidth share.

VII. CONCLUSION

This paper discussed network-related aspects of remote
laboratory access. Specifically, alternative server management
methods were outlined. In the second part a specific im-
plementation was introduced. The prototype demonstrates a
system that addresses the networking related requirements for
a flexible and scalable remote laboratory access. The modular
design allows for the exchange of function blocks by alter-
native implementations. The main component, the Remote
Access Gateway, is implemented on a Gentoo Linux system.
The current design uses standard php mysql to generate the
user interface web pages. Experiment access employs the
netfilter framework. The remote access gateway provides user-
transparent, flexible access to offside students.

REFERENCES

[1] B. Moulton, V. Lasky, and S. Murray, “The development of a remote
laboratory: educational issues,” World Transactions on Engineering and
Technology Education, no. 1, pp. 19–22, 2004.

[2] J. Bourne, D. Harris, and F. Mayadas, “Online engineering education:
Learning anywhere, anytime,” Journal of Engineering Education, no. 1,
pp. 131–146, January 2005.

[3] C. Tzafestas, N. Palaiologou, and M. Alifragis, “Virtual and remote
robotic laboratory: Comparative experimental evaluation,” IEEE Trans-
actions on Education, pp. 360–369, August 2006.

[4] C. Röhrig and A. Jochheim, “Java-based framework for remote access
to laboratory experiments,” In IFAC/IEEE. Symp. Advances in Control
Education Gold Coast, Australia, 2000.

[5] (2007) Vmware. VMware Inc. [Online]. Available:
http://www.vmware.com/

[6] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu, “The state of
the art in locally distributed web-server systems,” ACM Comput. Surv.,
vol. 34, no. 2, pp. 263–311, 2002.

[7] V. Cardellini, M. Colajanni, and P. Yu, “Dynamic load balancing on
web-server systems,” IEEE Internet Computing, no. 3, pp. 28–39,
May/Jun 1999.

[8] P.Francis, “Is the Internet going NUTSS?” IEEE Internet Computing,
pp. 94 – 96, Nov.-Dec. 2003.

[9] (2007) Netfilter project. [Online]. Available: http://netfilter.org
[10] O. Damani, P. Chung, Y. Huang, C. Kintala, and Y.-M. Wang, “One-ip:

Techniques for hosting a service on a cluster of machines,” J. Computer
Networks and ISDN Systems, Elsevier Science, Amsterdam, Netherlands,
p. 10191027, September 1997.

[11] S. Kent and K. Seo, Security Architecture for the Internet Protocol,
IETF, December 2005, RFC 4301.

[12] W. Chou, “Inside ssl: the secure sockets layer protocol,” IEEE IT
Professional, no. 4, pp. 47– 52, Jul/Aug 2002.

[13] T. Kivinen, B. Swander, A. Huttunen, and V. Volpe, Negotiation of
NAT-Traversal in the IKE, IETF, January 2005, RFC 3947.

[14] A. Huttunen, B. Swander, V. Volpe, L. DiBurro, and M. Stenberg, UDP
Encapsulation of IPsec ESP Packets, IETF, January 2005, RFC 3948.

[15] (2007) Openvpn. OpenVPN Solutions LLC. [Online]. Available:
http://www.openvpn.net/

[16] (2007) Moodle course management system. [Online]. Available:
http://www.moodle.org/


