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Abstract—Recently, a new timing synchronization 
method for optical wireless systems using asymmetrically 
clipped optical OFDM (ACO-OFDM) has been proposed. 
The synchronization method makes use of a novel training 
symbol and its autocorrelation properties for timing offset 
estimation via a timing metric. In this paper, we will 
discuss the effect of the length of cyclic prefix (CP) on the 
detection of the maximum and minimum of the timing 
metric. We show that the performance of the timing offset 
estimation scheme based on maximum detection is 
affected by the length of the CP while the scheme based on 
minimum detection of the metric is less sensitive to the CP 
length. Simulation results are presented to demonstrate 
the effect of the CP in both detection criteria.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has 
been used in many radio frequency (RF) based 
communication applications because of its high spectral 
efficiency and simple hardware implementation. OFDM has 
also been considered for optical systems as a candidate for
future short range high data rate communication systems [1, 
2] as optical wireless systems are low cost and have no 
spectrum restrictions.

The signals used in optical wireless links are intensity 
modulated (IM) and hence the transmitted signals must be 
non-negative. However, normal OFDM (RF-Based) signals 
are bipolar, and until recently all IM optical-OFDM systems
have used a DC bias to move bipolar signals to be all positive
[3]. DC biased optical OFDM (DCO-OFDM) requires a high 
optical power and is not suited to typical applications where
the transmitted optical power is limited by eye safety 
considerations. Recent work [1, 4] has led to the development 
of a new power efficient form of optical OFDM, called the 
asymmetrically clipped optical OFDM (ACO-OFDM) that 
clips particular classes of bipolar OFDM signals. ACO-
OFDM retains all of the other attractive properties of OFDM 
systems.

Due to the sensitivity of OFDM based systems to 
synchronization errors, ACO-OFDM needs effective 
synchronization techniques. This paper focuses on the issue of 

timing synchronization based on specially designed training 
symbols. The objective of timing synchronization methods is 
to find the start of transmitted OFDM symbols so that they 
can be demodulated with FFT at the receiver without any 
intersymbol interference (ISI). A large number of timing 
synchronization methods have been proposed in the literature
for RF-based OFDM systems, see [5-7] and references therein. 
However, these methods cannot be applied directly to ACO-
OFDM systems where signals have to satisfy a number of 
properties. These properties will be included in Section II. 
Recently, a synchronization method based on a novel training 
symbol has been proposed for ACO-OFDM [8]. In this paper, 
we will discuss the effect of the cyclic prefix (CP) length on 
the performance of this method. It will be shown that the 
performance of the synchronization method based on the 
detection of the maximum of the timing metric is affected by 
the choice of the CP length whereas that of minimum is not. 
Simulation results are included to show the performance of 
maximum and minimum detection schemes in ACO-OFDM 
systems.

The rest of the paper is organized as follows. In Section II 
an ACO-OFDM system is introduced. Section III describes 
the new synchronization method proposed in [8] for ACO-
OFDM systems. Section IV discusses the effect of CP length 
on two different detection schemes that can be used for timing 
offset estimation. Simulation results comparing the 
performance of different estimators in terms of the mean and 
variance are included in Section V. Finally some concluding 
remarks are made in Section VI.

II. AN ACO-OFDM SYSTEM

Fig. 1 shows the block diagram of an optical wireless 
communication system using ACO-OFDM. The data to be 
transmitted is first mapped onto complex numbers from the 
constellation being used, e.g. 4-QAM or 16-QAM. These 
complex numbers are then mapped onto ,S  where 

   0 1S S N S   is the vector of length N  which is input 

to the inverse fast Fourier transform (IFFT). S has Hermitian 
symmetry so that data, (0) ( 1)s s N s  , at the output of 

the IFFT is real. At the IFFT output, the CP is then inserted 
and the data is parallel-to-serial converted. The resulting 



signal is clipped at zero to give unipolar samples ( )x n which 

are converted to analog, filtered and used to intensity 
modulate the optical source. The optical signal that is 
transmitted is ( )x t . In the form of ACO-OFDM which is 

considered here, only odd frequency subcarriers are used to 
carry data, i.e.   0S k   for k  even. The Hermitian 

constraint and the use of only odd subcarriers to carry data 
mean that there are only 4N  independent complex inputs to 

the IFFT in each ACO-OFDM symbol. This would be 
extremely inefficient in an RF-OFDM system. However,
ACO-OFDM has been shown to be a very efficient optical 
modulation technique given the unipolar constraint on the 
transmitted signal and the fact that optical power depends on 

 ( )E x n  rather than 2 ( )E x n    in intensity modulated 

systems [10]. The ACO-OFDM signal is then transmitted via
an optical channel and received by a photodetector. The rest 
of the receiver structure for ACO-OFDM is similar to that of 
a conventional RF-OFDM system [4, 5].

The received serial baseband samples ( )r n  are given by [9]

                      ( ) ( ) ( ) ( )r n x n h n w n                      (1)

where “  ” denotes convolution, ( )h n  is the sampled 

impulse response of the optical channel, ( )w n is additive 

white Gaussian noise (AWGN).

   
Fig. 1 Block diagram of an ACO-OFDM system.

III. TIMING SYNCHRONIZATION IN ACO-OFDM

Most existing timing synchronization techniques are based 
on the autocorrelation properties of special training symbols 
which are embedded in the OFDM signals; and the aim of the 
timing synchronization methods is to find the start position of 
the training symbol [5-7], as shown in Fig. 2,

Fig. 2 Time domain OFDM symbol.

where d  is a time index and 0d   represents the start point 
of the training symbol. The start of the training symbol is then 
used to find the start of OFDM symbol frames so that FFT 
window can be applied across them.

The existing methods give satisfactory timing performance 
in RF-OFDM. However, they cannot be used directly in 
ACO-OFDM, because the training symbols they require are 
bipolar and complex; in addition, some of these methods use
only the even subcarriers and some use both even and odd 
subcarriers to build training symbols. Such training symbols 
do not satisfy the constraints of the ACO-OFDM symbols. 
Therefore, a training symbol and timing metric which are
tailored to ACO-OFDM have been proposed in [8] and are 
summarized below. Moreover, in this section, two detection 
schemes, Maximum and Minimum Detection are considered 
for the purpose of timing offset estimation; and the effect of 
the length of the CP on the performance of these schemes is 
discussed.

A. Training Symbol

The training symbol (before clipping) has the form

0 / 4 1 / 4 1 0 / 4 1 / 4 1s 0 0mirror mirror
N N N Ns C C s C C           (2)

where / 4 1NC   is a real-valued sequence of length 4 1N   and

/ 4 1
mirror
NC   is the mirror image of / 4 1NC  . This training symbol 

has three important properties: it is real, it has Hermitian 
symmetry and    2s n N s n   . To generate a time 

domain symbol with each of these three properties using an 
IFFT, the frequency domain vector S  at the IFFT input must 

have Hermitian symmetry; it must be real and   0S k   for 

k  even. In this paper we consider the case where S  is a real 
binary sequence; in other words the training symbol uses 
BPSK modulation. There is no constraint on the constellations 
for data symbols for example 4-QAM or 16-QAM could be 
used. 

The training symbol is the IFFT output of a BPSK PN 
sequence. To simplify the analysis, we assume 0 0s  . The 

training symbol after clipping is given by

     0 0 0 0mirror mirror
train clip clipclip clip

C C C C     
x   (3)

where, for simplicity the subscript 4 1N   has been omitted 

and where clipC is the sequence which is the result of clipping 

/ 4 1NC   to zero. Note that  clip clip
C C   . It should also be 

noted that the training symbol is a special format of an ACO-
OFDM data symbol and hence can also be used for channel 
estimation and be generated using the same hardware as the 
ACO-OFDM data symbols.



B. Timing Metric

Given the training symbol of (3), the timing metric used to 
detect the start of the training symbol is defined as

   
4 11

0 1

1
( ) 4 2 4 2

N

l m

M d r d N l N m r d N l N m
K



 

          
(4)

where K is a normalization factor related to the length of CP, 
( )r d  is the received signal. Fig. 3 shows this timing metric as 

a function of timing offset for the case of no additive white 
Gaussian noise (AWGN) and no multipath distortion. We 
consider 1024N   and no CP. The graph is the result of an 
average over 50 randomly selected training symbols. These 
parameters are also used in Fig. 4. The graph shows two 
maximum values at / 4d N   and a minimum at 0d  .

To calculate the average, minimum and maximum values of 
the timing metric shown in Fig. 3, we assume that the average 

transmitted optical power is unity, i.e.    1E x n  . Since 

 x n  has a ‘clipped Gaussian’ distribution: it is zero with 

probability 0.5 and otherwise has a positive half Gaussian 

distribution. So   2E x n  [10]. For no noise and no 

multipath distortion, the received signal is equal to the 
transmitted signal and the timing metric in (4) becomes

   
4 11

0 1

1
( ) 4 2 4 2

N

l m

M d x d N l N m x d N l N m
K



 

          
(5)

Equation (5) has the form of an inner summation of 
4 1N   products of signal sample pairs and an outer 

summation over two values. The value of the metric depends 
on the total value of these summations which in turn depend 
on whether all, or a part of, the training symbol falls within 
the timing window. The maximum and minimum values of 
the timing metric as well as its average value are calculated in 
Appendix I. The normalized results are summarized below
(given 0CP  )
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              (6)

Fig. 3 Proposed timing metric with no AWGN and no multipath conditions 
(1024 subcarriers and zero CP length).

C. Impact of CP

One effect of the CP is to make two values of the timing 
metric at 4d N  unequal. Another effect is to cause an 

extra maximum at 3 4d N  . To explain these effects,

consider the case where the CP length is 4N  , the time 

domain training symbol vector '
trainx  is now given by

   ' 0 ( ) 0 0 0 0 ( )mirror mirror mirror
train clip clip clipclipclip

C C C C C     
x

(7)

Since 0d   is the start point of the useful training symbol

given in (3), 4d N   is the start point of '
trainx . The 

maximum timing metric value at 4d N  includes 

0 ( ) 0mirror
clip clipC C   and    0 0mirror

clipclip
C C    

. Because 

the length of the correlated area is doubled, the maximum 
value is also increased. However, the correlated area does not 
change at 4d N  and the timing metric value is therefore 

smaller than that at 4d N  .

Fig. 4 Proposed timing metric (a) with N/8 CP lengh; and (b) with N/4 CP 
lengh (no AWGN and no multipath).



Fig. 4 (a) and (b) show the values of the timing metric,
( )M d with CP 8N  and 4N . The peak at 4d N  is 

larger than that at 4d N . The longer the CP, the greater 

the difference between these two peaks becomes. Fig. 4 also 
shows another maximum at 3 4d N  . However, the length 

of the CP does not affect the positions of minimum values.

D. Two Detection Schemes

Using the timing metric shown in Fig. 4, the start of the 
training symbol can be located by either detecting the position 
of the minimum of the timing metric value located at 0d 
(Minimum Detection) or by detecting the position of the 
maximum value at 4d N   and then delaying it by 4N

samples (Maximum Detection). Both detection methods 
would suffer the interference from other sub-peaks. In [8], a 
combination of peaks has been used to find the timing offset.

IV. SIMULATION RESULTS AND DISCUSSION

An OFDM system with 1024 subcarriers was simulated.
Two channel models were used: line-of-sight (LOS) and a 
diffuse shadowed channel from [11]. It is assumed that there 
is one path in the LOS and three paths in the diffuse 
shadowed channel. The values of the taps

ih  are given by

1

0

i

i L
i

i

e
h

e











                                   (8)

In all cases, 50,000 monte carlo runs with the same training 
symbol were carried out to obtained the average of the mean 
and variance.

Fig. 5 Mean and variance of timing offset with different detection methods
and different CP length in LOS channel.

Fig. 5 shows plots of the mean and variance of the timing 
offset for Maximum and Minimum Detection, with the length 

of the CP 8N  and 4N , for LOS channel against signal-

to-noise ratio (SNR). As the SNR increases, the mean of the 
timing offset in each case approaches the optimum value, and
the variance decreases. The Maximum Detection with 
CP 8N has the worst performance. As the CP length 

increases to 4N , both the mean and variance improve 

significantly, attaining the best performance over all SNRs. 
For Minimum Detection, changing the length of the CP does 
not influence the results of mean and variance. When the CP 
is short, the Minimum Detection outperforms the Maximum 
Detection in terms of mean and variance of the timing offset. 
However, the performance of the Maximum Detection is 
better when a longer CP is used.

Fig. 6 shows the mean and variance of the Maximum and 
Minimum Detection in a diffuse shadowed channel. Again, 
Minimum Detection gives smaller mean and variance for 
when CP 8N . The variance of the Minimum Detection is 

smaller than that of the Maximum Detection for SNRs higher 
than 5dB. However when CP 4N , the performance of the 

Maximum detection improves significantly. The plots also 
show that, the change of the length of the CP has very small 
impact on the mean and the variance of the Minimum 
Detection. 

Fig. 6 Mean and variance of timing offset with different detection methods
and different CP length in diffuse shadowed channel.

V. CONCLUSIONS

In this paper, we discuss the effect of CP length on the 
performance of a new synchronization method proposed for 
the ACO-OFDM systems. In particular, the effect of the CP 
on two detection criteria, Maximum and Minimum Detection, 
has been discussed. Simulation results were presented for 
these detection criteria in both a LOS and diffuse channel. It 
has been shown that timing offset estimation based on the 
Minimum Detection is less sensitive to the length of the CP 
employed than the one based on the Maximum Detection.
While the timing offset detection scheme based on the 



Maximum Detection with a longer CP gives a better 
performance, the system transmission efficiency will be 
decreased due to the longer length of the CP
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APPENDIX I

In this section, values of the timing metric given in (4) are 
calculated for different timing offset.

First the expected value when the training symbol is outside 
the timing window is calculated. In this case there is no 
correlation between the samples in the products in the inner 
summations and 

      
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(9)

The metric also has this value when the training symbol is 
within the timing window, but neither summation is centered 
about 4N , 2N  or 3 4N . That is

   2 4 1
( )     for 0, 4 , 2

N
E M d d N N

K


       (10)

For 0d  , the timing metric is zero. This is can be proved 
by substituting 0d   in (5) and expanding the outer 
summation gives 

       
4 1 4 1

1 1

1
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N N

m m
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(11)
To simplify this further it is necessary to use the properties 

of the training symbol trainx . The first summation in (17) is 

over the first half of the training symbol which has the 

structure  0 0 mirror
clip clip

C C   
. Since  mirror

clip
C  is first 

negated and mirrored image of C  before being clipped below 

zero, either  4 0x N m   or  4 0x N m  . Thus each 

term in the first summation is zero.  Using an identical 
argument this can also be shown to be true for the second 
summation in (11), so

 0 0M                                     (12)

Using a similar approach the values of the timing metric at 
4d N   can be calculated. Consider the case for 

4d N  . Then
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In this case the metric is the sum of two terms, one between 
the first quarter of the training symbol and the uncorrelated 
data which belongs to the last quarter of the preceding symbol 
and one over the center part of the training symbol which has 

structure    0 0mirror

clipclip
C C    

. Again, using the 

properties of mirroring and clipping, it can be shown that 

   2 2x N m x N m      and that   0x m   with 

probability 0.5 and that     2
0 2E x m x m   . Thus
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(14)
This is consistent with Fig. 3 which shows a maxima at 

4d N  . Let    1 4 1K N   , the average level is 

 2 1  . It can be derived similarly that the values at 

2d N   are  1 1  .


