
A Continuous Speech Recognition Evaluation
Protocol for the AVICAR Database

Tristan Kleinschmidt, David Dean, Sridha Sridharan, Michael Mason
Speech and Audio Research Laboratory
Queensland University of Technology,

GPO Box 2434, Brisbane, Australia, 4001
{t.kleinschmidt, d.dean, s.sridharan, m.mason }@qut.edu.au

Abstract— The use of speech recognition in automotive en-
vironments has received increased attention in recent times.
Unfortunately, evaluations of algorithms designed to improve
recognition performance in this environment have been per-
formed on differing data collections, making results difficult to
compare. In recent years, the University of Illinois released a
large in-car audio and visual data collection known as AVICAR
(“audio-visual speech in a car”) [1]. The AVICAR database is
freely available, but to date no uniform evaluation protocol on
which to perform experiments has been reported. This paper
introduces a speaker-independent, continuous speech recognition
evaluation protocol for the audio data of the AVICAR database.
It is designed to allow for model adaptation, evaluation and
testing using native English speakers. Baseline recognition results
obtained using this protocol are also presented.

I. I NTRODUCTION

The key challenge of deploying speech recognition in real-
world environments is the stringent performance in the pres-
ence of high levels of noise. Since most speech recognition
systems are trained for use in controlled environments, they
fail to produce satisfactory performance under more adverse
conditions such as in automotive environments.

One of the major limitations in making speech recognition
systems more robust is the ability to collect sufficient amounts
of data on which to train models and perform meaningful
evaluations. The former task often requires hundreds of hours
of work in collecting data and transcribing it. As a result, train-
ing acoustic models for the intended operating environment is
often abandoned, and techniques such as model adaptation and
speech enhancement are introduced to improve overall system
performance.

Whilst considerable in-car speech recognition research has
been conducted, the data used for experimentation is often
collected solely for the individual evaluation. This typically
ensures only limited amounts of data are used in the eval-
uation. It also means that making performance comparisons
between proposed techniques is almost impossible unless all
techniques in question are evaluated on each data set – an
unnecessary and time-consuming process.

To alleviate this issue, the Aurora experimental framework
[2] was introduced. This framework uses a noisy version of a
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large database designed for speaker-independent isolated digit
recognition [3]. Noisy speech was created by artificially adding
various noise sources to clean speech at levels which satisfied
a range of signal-to-noise ratios (SNR). A baseline recognition
system was also documented to provide a common platform
for straightforward comparisons of results.

Although this database has been used extensively to report
and compare experimental results, there are two very important
limitations imposed by this particular framework. Firstly, in
scenarios where noise signals are synthetically added to clean
speech data (as is the case with Aurora), no alteration is made
to the speech waveform. Whilst this ensures various SNRs can
be achieved, it fails to reflect changes in speech production
which occur with increased ambient noise levels. This effect
is known as the Lombard effect and has been shown to be an
important factor in performance of noisy speech recognition
systems [4]. Whilst the presence of the Lombard effect in
modern-day vehicles has yet to be properly confirmed or
rejected, the only way to answer this question is to use speech
collected in a vehicle whilst it is being driven.

The second limitation is the availability of only single-
channel recordings. State-of-the-art speech enhancement tech-
niques (e.g. beamforming or adaptive noise cancellation) use
multiple microphones – therefore the Aurora framework is
unable to be used for evaluation of these techniques. This
makes comparison of algorithms even more difficult, particu-
larly when trying to show performance gains through use of
multiple microphones.

In order to overcome these limitations, a number of large
in-car speech databases have been collected [5], [6]. These
collections contain recorded speech from a large number
of speakers under an extensive range of noise conditions.
Unfortunately, these datasets have been used in few studies
because they are either very expensive to acquire or not
publicly available.

With the release of the AVICAR (“audio-visual speech in
a car”) database from the University of Illinois [1], there
is potential to create a uniform evaluation protocol for in-
car speech recognition using real in-car speech data. This
database is freely available so there is potential for widespread
use to study methods which further improve in-car speech
recognition. Another advantage of the AVICAR database is



TABLE I

AVICAR DATABASE IN-CAR NOISE CONDITIONS.

Noise Description

IDL Engine running, car stopped, windows up
35U Car travelling at 35mph, windows up
35D Car travelling at 35mph, windows down
55U Car travelling at 55mph, windows up
55D Car travelling at 55mph, windows down

the ability to perform multi-channel experiments, making
it an attractive corpus for evaluating state-of-the-art speech
enhancement techniques. This paper proposes an evaluation
framework for the audio portion of the AVICAR database
which enables single- and multi-channel, speaker-independent,
continuous speech recognition (CSR) experiments.

The rest of this paper is organised as follows. Section II
presents important aspects of the AVICAR database. Section
III explains the development of the evaluation protocol. Sec-
tion IV outlines the baseline recogniser and the corresponding
recognition performance of this framework including model
adaptation results.

II. AVICAR D ATABASE

The AVICAR database is a large, publicly available in-
car speech corpus containing multi-channel audio and video
recordings. It was recorded by researchers at the University
of Illinois. The collection was designed to enable low-SNR
speech recognition through combining multi-channel audio
and visual speech recognition. Detailed information about the
recording setup can be found in [1].

The released portion of the AVICAR database contains less
data than documented in [1]. It includes audio for 87 speakers
and video for 86 subjects. Around 60% of the speakers are
native American English speakers, with the remainder of the
speakers being native to Latin America, Europe, East or South
Asia. All the recorded speech, however, is in English.

Four distinct tasks exist in this data collection – isolated
digits, isolated letters, phone numbers and TIMIT sentences.
These four different tasks can be used for a range of speech
recognition tests. The isolated digits task closely resembles
command-and-control applications, whilst the isolated letters
task mimics spelling which may be required in navigation
systems. The other two tasks constitute continuous speech
recognition tasks – phone numbers represent small-vocabulary
systems, whilst sentences match medium-vocabulary systems.
Further information about the utterance scripts used in the
collection can be found in [1].

Each recording session contains speech under five noise
conditions. This enables analysis of the affect on recognition
performance of different types of noise from common driving
scenarios. The noise conditions are detailed in Table I.

A standard framework for performing speech recognition
tests on isolated digits and letters is provided with the re-
lease of the database. The scripts utilise pre-trained models
(which come with the database) and the Hidden Markov
Model Toolkit (HTK) [7] to generate test results. Recognition

frameworks are only available for the two isolated word
tasks, therefore an evaluation protocol for the continuous
speech tasks (i.e. phone numbers and TIMIT sentences) is
required. A protocol meeting the requirements for speaker-
independent, continuous speech recognition has been devised
for the AVICAR database and is outlined in Section III.

III. E VALUATION PROTOCOL

A. Protocol Design

Having access to both microphones and cameras in pro-
duction vehicles is still a vision for the future. Currently,
most interest is in continuous speech recognition in the audio
space, particularly with multiple microphones. As such, only
the audio portion of the phone number and sentence tasks have
been considered in this protocol. Future work should be able
to extend this protocol to include the video data or the isolated
word tasks.

As stated in Section II, the two tasks used in this protocol
provide distinct test scenarios for the in-car environment.
Phone numbers enable testing of small-vocabulary CSR, and
sentences medium-vocabulary CSR. The sentences task is
related to command-and-control and navigation applications
which are both important tasks for in-car speech recognition.

To create a protocol which enables uniform adaptation and
testing of a range of single- and multi-microphone speech
enhancement techniques, a number of restrictions needed to
be put on the data.

1) An individual utterance must have all 7 microphones
in the array available with valid audio (i.e. the eighth
microphone connected to the camcorder is excluded).

2) A speaker must be a native English speaker (this in-
cludes British and American English)and have at least
one utterance satisfying criteria 1.

To ensure the first criteria is met, a list of discarded files
included with the database was consulted to remove unusable
utterances. The discard list details recordings which have some
(but not all) microphone audio missing or corrupted due to
hardware problems. Some utterances have no audio data at
all, but are not included in the discard list – therefore the list
was examined simultaneously with data that actually exists in
the database release.

The second criteria is met by analysing metadata. Grouping
available utterances by speaker confirmed that 55 speakers
were suitable for use in the evaluation protocol.

In order to be consistent with requirements for model
adaptation, as well as system tuning and testing, it was decided
to split the 55 speakers randomly into five groups of 11
speakers. To ensure some level of consistency amongst the
groups an effort was made to evenly balance male and female
speakers as well as an even distribution of the utterance scripts.
A sixth group (denoted Group VI) was created solely for non-
native English speakers using the same rules described above.
The resulting six speaker groups are listed in Table II.

A primary goal of speech enhancement research for in-
car speech recognition is to analyse speaker-independent per-
formance across different noise levels and conditions. With



TABLE II

AVICAR DATABASE PROTOCOL SPEAKER GROUPS.

Group Speakers

I AM4, BM4, CF5, DF1, EF4, EM1, FF2, GM4,
HF2, HM3, IF1

II AM3, BF5, BM1, CM1, DM2, EM4, FF5, GF2,
HF3, IM5, JM2

III AM2, BM3, CF1, DF4, EF1, EM2, FM2, GF1,
GM1, HF5, JF1

IV AM5, BF1, CF2, DF2, EF5, FM5, GF4, GM3,
HM1, IM4, JF4

V AF2, BF2, DF3, EF3, EM3, FM4, GF5, GM5,
HF1, HM4, JF5

VI AF3, BM2, CF4, CM3, DM3, FM3, GF3, HF4,
IF3, JF2, JM4

TABLE III

AVICAR PROTOCOL GROUPS FORk-FOLD LEAVE-ONE-OUT SPEECH

RECOGNITION EXPERIMENTS.

Fold Adaptation Evaluation Testing

1 I, II, III IV V
2 III, IV, V I II
3 I, II, V III IV
4 II, III, IV V I
5 I, IV, V II III
6 II, III, V IV I
7 I, III, IV V II
8 II, IV, V I III
9 I, III, V II IV
10 I, II, IV III V

this in mind, 160 utterances were randomly selected in each
noise condition for all speaker groups (giving a total of 800
utterances per group).

B. Protocol Use

It is required to split the five groups into an adaptation
set, a system tuning (i.e. evaluation) set, and a test set. In
order to extend the data set (since the number of utterances
in each group is limited),k-fold leave-one-out testing can be
performed using the 5 native English groups. Averaging results
over a number of folds will enable more indicative speaker-
independent recognition results since individual groups may
be affected by poor (or very good) performance for one or
two speakers.

To facilitate adaptation, tuning and testing, 3 groups (or
60% of the data) are made available for adaptation, 1 group for
tuning, with the fifth group used for testing. Ten combinations
of this segregation are shown in Table III. It is intended that
these experiment groupings be used in the order stated in
the table. Individual studies can dictate the number of folds
required.

Group VI is to be used solely as a test set since there is
insufficient non-native English data to make adaptation useful,
while the variation of nationalities is large enough to make
system tuning problematic. The purpose of the group is to
characterise the expected decrease in recognition performance
when non-native English speakers use the speech recognition
system under evaluation.

For all recordings, single microphone experiments are to
use microphone 4 as it is centrally located in the array. Multi-
microphone experiments are free to use whichever micro-
phones are required for the particular technique.

To ensure the list of files used in each investigation is
uniform, a copy of the file lists can be obtained by emailing
the primary author of this paper.

IV. RECOGNITION EXPERIMENTS

In order to provide a common reference to facilitate sim-
ple comparison of results, a number of speech recognition
experiments have been performed. The baseline recognition
system is defined, as well as the methods for adapting clean
speech models to better reflect in-car conditions. Results for
all experimental folds described in Section III-B are reported
in the following sections for both clean speech and adapted
models.

A. Baseline Recogniser

Context-dependent 3-state triphone hidden Markov models
(HMM) were trained using the Wall Street Journal 1 corpus to
enable speaker-independent speech recognition. The acoustic
models were trained using 39-dimensional Mel-Frequency
Cepstral Coefficient (MFCC) vectors – 13 MFCC (including
C0) plus delta and acceleration coefficients. Each HMM state
was represented using a 16-component Gaussian Mixture
Model.

In order to reflect command-and-control applications in the
car environment, task grammars are chosen to be uncon-
strained word loops. This task grammar effectively provides
the potential worst-case recognition results. For the phone
number and sentences tasks, the number of words in the
grammar are 11 and 773 respectively therefore constituting the
small- and medium-vocabulary tasks as previously described.

All speech recognition results quoted in this paper are word
accuracies (in %). Word accuracies are calculated as:

PercentAccuracy =
N −D − S − I

N
∗ 100% (1)

where N represents the total number of words in the
experiment,D the number of deletions,S the number of
substitutions andI the number of insertions [7].

B. Experimental Results

1) Baseline Results:Baseline results were generated using
the original clean acoustic models trained as per Section IV-
A. The results for the phone numbers and sentences tasks are
shown in Tables IV and V respectively. Results are collated
by noise condition, with the average results shown in the last
column of each table being the combined accuracy over all
noise conditions for a particular speaker group. The average
for folds 1-5 is also shown in these tables, as are results for
the non-native English speakers (i.e. Group VI). It should be
noted that the results for folds 6-10 will match the results for
the corresponding test group in folds 1-5. For example, fold 6
baseline results match those for fold 4 since both use speaker
group I as the test set.



TABLE IV

BASELINE RESULTS FOR THEPHONE NUMBERS TASK OF THEAVICAR DATABASE.

Word Accuracy (%)
Fold IDL 35U 35D 55U 55D Average

1 75.44 48.69 39.12 50.19 26.56 48.00
2 73.25 51.12 36.94 42.56 28.00 46.38
3 61.94 44.56 30.69 36.56 17.00 38.15
4 68.88 42.81 32.50 34.38 24.69 40.65
5 78.50 60.62 46.62 51.00 27.25 52.80

Aver. 1-5 71.60 49.56 37.18 42.94 24.70 45.20

Non-native 67.31 47.75 21.81 40.06 14.69 38.33

TABLE V

BASELINE RESULTS FOR THESENTENCES TASK OF THEAVICAR DATABASE.

Word Accuracy (%)
Fold IDL 35U 35D 55U 55D Average

1 34.74 8.10 5.93 8.04 1.15 11.58
2 28.89 14.57 8.62 7.25 2.94 12.47
3 25.95 7.71 1.86 5.18 2.13 8.48
4 22.68 8.63 5.57 7.24 2.98 9.38
5 38.69 12.33 6.81 6.54 2.14 13.29

Aver. 1-5 30.23 10.25 5.75 6.85 2.26 11.04

Non-native 14.38 5.41 0.60 2.65 1.18 4.87

Analysing the results contained in these tables, a number
of observations can be made. The most important of these are
related to the in-car noise conditions. Comparing the results for
both speeds with windows up, it can be seen that an increase in
speed causes degradation in the recognition accuracy in most
cases. The average decrease in performance is 7%. A similar
trend is shown for the two speeds under the windows down
condition.

Having the windows open appears to have more affect on
the recognition accuracy than simply increasing the vehicle
speed. This is demonstrated through recognition accuracies in
both tasks showing better performance for the car travelling
at 55mph with windows up (55U) compared to 35mph with
windows down (35D). This result is in accordance with the
findings of Zhang and Hansen [8] who determined that road
and wind noise dominate the noise field when the windows
are open. With windows open, greater decreases in accuracy
occur as the speed increases (compared to windows up). This
is due to increases in road and wind friction as vehicle speed
increases.

The sentence task exhibits very poor performance with most
conditions failing to reach an average of 10% word accuracy.
The small-vocabulary task on the other hand performs much
better with all noise conditions averaging above 22% accuracy.
This shows considerable improvement is required to achieve
both small- and medium-vocabulary speech recognition in the
car environment.

A range of performance can be seen between the different
speaker groups. This is particularly true when comparing folds

3 and 5 – the two folds differ by an average of approximately
15% for the phone numbers task. This observation further em-
phasises the need for circular experiments in order to average
out the recognition accuracies to provide better indication of
true speaker-independent recognition performance.

It can also be seen that the non-native speakers (group
VI) perform worse than the native English speakers under all
noise conditions. The performance difference is particularly
noticeable when the windows are open for the phone numbers
task, and under all conditions for the sentences task. This
shows potential for group VI to provide the low-accuracy
bound for any recognition system.

2) Adaptation Results:To test the effectiveness of the data
contained in the AVICAR database for adapting clean speech
models, maximuma posteriori adaptation (MAP) [9] was
chosen. The pre-trained triphone models described in Section
IV-A were assumed to give a good initial indication of the
parameter distribution required by MAP adaptation. Various
combinations of mean and variance adaptation were tested,
as well as the amount of influence placed on the prior model
(governed by the factorτ ). The larger the value ofτ the greater
the influence placed on the model (e.g. a value ofτ = 16
means the prior model has 16 times more influence than the
adaptation data).

Table VI shows averaged results on the first 5 folds of the
protocol for the adaptation experiments.

This table shows the advantage of performing both mean
and variance adaptation, with all values ofτ showing 1-2%
improvement across all noise conditions. This improvement



TABLE VI

WORD ACCURACIES FOR DIFFERENT COMBINATIONS OFτ AND STATISTICS ADAPTED.

Word Accuracy (%)
Mean Variance τ IDL 35U 35D 55U 55D Average
Yes No 4 81.00 75.76 67.11 72.99 54.38 70.25
Yes Yes 4 81.34 75.54 67.08 74.13 57.60 71.14
Yes No 8 81.14 75.81 67.58 73.60 55.05 70.64
Yes Yes 8 81.95 76.04 68.00 74.78 58.05 71.76
Yes No 16 81.78 75.96 67.63 73.93 55.56 70.97
Yes Yes 16 82.44 76.79 68.85 75.76 59.06 72.58

is particularly noticeable in the 55mph with windows down
condition where improvements range from 2-3%. It appears
that modifying Gaussian mixture shapes through variance
adaptation is important to successfully adapt clean speech
models to in-car conditions.

Placing higher weighting on the prior model (i.e. larger
values of τ ) also makes considerable difference to the ef-
fectiveness of the adaptation. The clean speech models were
trained with data from a very large number of speakers to avoid
any speaker-dependency. The adaptation set has considerably
less speakers (33 speakers per fold), therefore placing more
emphasis on the prior model ensures the models don’t become
reliant on the new speakers.

Using the results from Table VI, mean and variance adap-
tation was performed usingτ = 16 for all 10 folds of the
protocol. Results for each fold can be found in Tables VII and
VIII for the phone number and sentence tasks respectively.
Average results have been collated for folds 1-5 and 6-10.
The results shown for non-native speakers are averaged using
all the adapted model sets from the first 5 folds.

The adaptation results show uniform improvements in word
accuracy over the baseline results in Tables IV and V for all
native English speakers. The results for the non-native English
speakers are not as large since examples of such speakers are
not included in the adaptation sets. For both tasks, however,
there are still gains in word accuracy.

Word accuracy for the small-vocabulary (i.e. phone num-
bers) task shows greater improvement over the baseline results
than the medium-vocabulary task. In most cases there are
examples of the same speaking script in the adaptation and test
sets therefore percentage model coverage for both tasks should
be approximately equal. The difference is a greater number of
instances of each triphone model used in the phone numbers
task which can be accredited to the nature of the task – there
are only 11 words, and there are 10 words per utterance. This
means that models to be adapted are found more frequently
than those in the sentence task. The effect is greater adaptation
of the original clean speech models, resulting in better test
results.

Comparing the averaged results of folds 1-5 and 6-10 for
both tasks shows very minor variations in recognition accu-
racy. The largest variation in recognition performance between
any two averages is only 0.70%. These minor variations in

accuracy show reliable performance can be obtained using
the leave-one-out experiment design proposed in this paper,
making it suitable as a common experimental framework.

V. CONCLUSION

A continuous, speaker-independent speech recognition pro-
tocol has been proposed for the AVICAR database which
enables separate investigations to make simple comparisons of
in-car speech recognition results. Under this protocol, single-
and multi-microphone speech enhancement techniques can be
applied to the same data set. The framework also includes both
small- and medium-vocabulary speech recognition.

A number of speaker groups were designed to test in-car
speech recognition performance of native and non-native En-
glish speakers. To facilitate adaptation, evaluation and testing
amongst these groups, a leave-one-out experiment was defined.

Baseline recognition experiments under a range of noise lev-
els and conditions have shown general recognition rate trends
which agree with previous research. In particular, opening a
window in the front of the vehicle causes greater degradation
in performance than simply increasing vehicle speed.

Maximuma posterioriadaptation using the proposed frame-
work showed consistent accuracy improvement over baseline
results for all evaluations. More importantly, using identical
test data on models adapted with different data showed varia-
tions in recognition rates which were not excessive.

The observations made in this paper show that the division
of speaker groups into ak-fold evaluation scheme provides
reliable performance indicators for in-car speech recognition.
The protocol is therefore suitable to be used as a common
platform upon which various research efforts can be compared.
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