
A Modified LIMA Framework for Spectral
Subtraction Applied to In-Car Speech Recognition

Tristan Kleinschmidt, Sridha Sridharan, Michael Mason
Speech and Audio Research Laboratory
Queensland University of Technology,

GPO Box 2434, Brisbane, Australia, 4001
{t.kleinschmidt, s.sridharan, m.mason }@qut.edu.au

Abstract— In noisy environments, speech recognition accuracy
degrades significantly. Speech enhancement algorithms have been
designed to overcome this, however solutions to date have not
been optimal for speech recognition especially for non-stationary
noise like that in a car. Recently, a likelihood-maximising (LIMA)
criteria has been applied to speech enhancement techniques.
This paper analyses the suitability of spectral subtraction for
potential use under a modified version of this framework where
direct access to and manipulation of speech recognition models
is not available. Analysis shows spectral subtraction is suited to
this holistic LIMA approach by confirming the cost surface is
appropriate for gradient descent methods. It is also observed
that there are regions on the cost surface where performance
exceeds that achieved by parameter values traditionally selected
for spectral subtraction.

I. I NTRODUCTION

A key challenge of deploying speech recognition in real-
world environments is the requirement to perform well in the
presence of high levels of noise. Since most speech recognition
systems are trained for use in controlled environments, they
fail to produce satisfactory performance under more adverse
conditions.

Methods for robust speech recognition include model com-
pensation, use of robust features and recognition algorithms,
as well as speech enhancement. Enhancement is a popular
approach as little-or-no prior knowledge of the operating envi-
ronment is required for improvements in recognition accuracy.

Popular speech enhancement algorithms (e.g. filter-and-
sum beamforming or spectral subtraction) have been primar-
ily designed to improve intelligibility and/or quality of the
speech signal without consideration of what effect that may
have on other speech processing systems [1]. Optimisation
in these algorithms is focussed on signal-based measures
including maximising signal-to-noise ratio or minimisation
of the mean-squared signal error. Some of these techniques
produce improvements in word accuracy performance, but
these improvements are by-products, rather than the goals of
the enhancement techniques.

One possible solution to the problem is to use speech recog-
nition likelihoods as the optimisation criteria in the enhance-
ment algorithms. Promising results have been shown in recent
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studies using this approach [1], [2], [3], [4]. In their current
form these techniques require access to the underlying state
models and attempt to jointly optimise both state sequences
and enhancement parameters. This paper proposes a modified
approach in which the speech recogniser can be regarded as a
‘black-box’. This approach removes the need for access to
the recogniser’s acoustic models and a fully decoded state
sequence. The details of this approach and its applicability to
use with spectral subtraction is presented. Spectral subtraction
is chosen for its simplicity and common use in single-channel
speech enhancement applications.

The rest of this paper is presented as follows. Section II
provides background on spectral subtraction speech enhance-
ment. Section III looks at the likelihood-maximising (LIMA)
framework and its application to spectral subtraction. Prelimi-
nary experimental results and discussion of the importance of
these results is presented in Section IV.

II. SPECTRAL SUBTRACTION

In a noisy environment, speechs(n) is assumed to be cor-
rupted by additive background noised(n) to produce corrupted
speechy(n) as follows:

y(n) = s(n) + d(n) (1)

Equation (1) can be represented in frequency domain as:

Y (ω) = S(ω) + D(ω) (2)

Generally, an estimate of the magnitude (or power) spectra
of the noise signal̂D(ω) is subtracted from the corresponding
spectra of the noisy signalY (ω) to give an estimate of the
clean speech signal̂S(ω):

|Ŝ(ω)|γ = |Y (ω)|γ − |D̂(ω)|γ (3)

whereγ is the power exponent which equals 1 for magnitude
spectral subtraction or 2 for power spectral subtraction [5]. The
phase component of the noisy speech signal is left unaltered
and is kept for reconstruction into the time domain.

Should the subtraction in (3) give negative values (i.e. the
noise estimate|D̂(ω)|γ is greater than the signal|Y (ω)|γ)



a flooring factor is introduced. This leads to the following
formulation of spectral subtraction:

|Ŝ(k)|γ =

{
|Y (k)|γ − |D̂(k)|γ |D̂(k)|γ > |Y (k)|γ
β|D̂(k)|γ otherwise

(4)

whereβ is the noise floor factor, and0 < β ¿ 1 [5]. Common
values for this parameter range between 0.005 and 0.1 [5], [6].

Although common values forγ and β are those noted
above, there is actually no limitation on the values that these
parameters can take. These values are typically used for their
conceptual meanings as opposed to performance. Altering
these two parameters can make considerable difference to the
speech recognition performance of spectral subtraction, as will
be demonstrated in Section 4.

It should also be noted here that in order to derive the
two common rules denoted in (3) two conflicting assumptions
are made. If the clean speech and noise signals are assumed
to be uncorrelated, the power spectral subtraction rule (i.e.
γ = 2) results. Alternatively, if the two signals are assumed
to be co-linear, the equation reduces to the magnitude spectral
subtraction rule. In practice, neither of these assumptions is
valid all the time. This leads to the possibility of optimising
these parameters to best fit the instantaneous relationship
between clean speech and noise signals.

III. LIMA S PECTRAL SUBTRACTION

As mentioned in Section I, in recent studies the likelihood-
based criterion has been used to replace traditional signal-
level criteria in speech enhancement algorithms with the aim
to improve speech recognition accuracies. This was seen
to minimise distortion in theeffective auditory signal for
recognition purposes instead of the distortion of the speech
waveform [3]. Techniques which maximise the likelihood in
the speech recogniser are referred to as LIMA enhancement
techniques.

The LIMA framework first generates an initial state se-
quence using the speech recogniser. This sequence is used
to optimise the parameters using a gradient-descent algorithm
– ensuring an optimal set of parameters for the proposed
state sequence. The utterance is decoded again using the
new parameters to generate a new state sequence. This joint
optimisation of both the array parameters and state sequence
continues until the recognition likelihood converges.

Formulated in this manner, it is required to obtain both
frame-by-frame state sequences and access to the model set
in order to perform optimisation in LIMA techniques. This
paper proposes a modification to the LIMA framework aimed
at removing the need for access to state modelsand state
sequence information – information rarely available when
endeavouring to integrate third party recognition engines in
practical applications. Here, we assume that only access to
full utterance likelihoods and word sequences is available.

Using these two pieces of information, a ”blind” gradient-
descent approach can be applied whereby a new set of en-
hancement parameters are tried and the resulting likelihood

compared to that of the previous iteration. The comparison
directs the correct direction to take.

This method may be seen to be more restrictive than the
original framework as it may require a series of enhancement
and recognition steps in order to determine a valid direction
of optimisation. This is not the case in the existing work as
the optimisation takes place directly on the state sequence.

The modified framework does however ensure no internal
information about the recogniser is required. It may also
remove some of the reliance on the initial state sequence which
is a downfall of the existing framework.

In order to apply the modified (or original) framework to
spectral subtraction the two parameters referred to in Section
II constitute the full parameter set. We denote this set by:

ξss = [γ, β] (5)

An investigation into the affect of altering this parameter
set is presented in Section IV.

IV. EXPERIMENTAL RESULTS

To evaluate the suitability of the modified LIMA framework,
two experiments were designed using spectral subtraction as
the enhancement method of interest. The first experiment
investigated the existence of enhancement parameters which
provided superior performance to traditionally selected values
of γ andβ in spectral subtraction. The second experiment ex-
tends the initial experiment by examining whether a gradient-
descent method would still be appropriate for optimising the
enhancement parameter set when only full utterance scores
were available.

Both experiments use speaker-independent, context-
dependent 3-state triphone Hidden Markov Models (HMM)
trained using the Wall Street Journal 1 corpus. The models
were trained using 39-dimensional Mel-Frequency Cepstral
Coefficient (MFCC) vectors - 13 MFCC (includingC0) plus
delta and acceleration coefficients. Each HMM state was
represented using a 16-component Gaussian Mixture Model.

Experimental data came from the phone numbers task of the
AVICAR database collected by the University of Illinois [7].
This database contains real speech recordings under 5 different
driving conditions: idle (IDL), 35mph with windows up (35U)
and down (35D), and 55mph with windows up (55U) and
down (55D). In this way, performance under specific noise
conditions is of interest as opposed to different signal-to-
noise ratios. Microphone number 4 of the 8-channel recordings
was utilised. The first experiment included utterances from 61
distinct speakers (30 male, 31 females) and the second used
utterances from 20 speakers (14 male, 6 female).

A. Experiment 1

In order to demonstrate that varying the values of the two
parameters in (5) alters speech recognition accuracy, a number
of recognition experiments were conducted. A selection of
3140 phone number utterances from the test database were
used.



TABLE I

WORD RECOGNITION ACCURACIES(%) FOR VARYING VALUES OF SPECTRAL SUBTRACTION PARAMETERS.

IDL 35U 35D 55U 55D

Baseline 75.24 49.95 36.18 41.00 22.35

γ=1.0,β=0.1 80.70 47.34 37.42 39.62 27.82
γ=1.5,β=0.1 81.37 51.77 41.16 44.65 29.12
γ=2.0,β=0.1 81.15 53.92 42.01 46.24 28.66

γ=1.5,β=0.1 81.37 51.77 41.16 44.65 29.12
γ=1.5,β=0.3 81.94 57.21 43.84 50.11 29.63
γ=1.5,β=0.5 80.37 56.86 42.62 48.93 27.59

Values forγ andβ were varied in linear increments through
the ranges [1.0, 2.0] and [0.1, 0.5] respectively. Word recog-
nition accuracies for increments ofγ by 0.5 andβ by 0.2 and
are shown in Table I.

It can be seen from the table that altering the spectral
subtraction parameter values leads to changes in speech recog-
nition performance and that it is possible to locate values of
β and γ which provide better word recognition performance
than those commonly proposed in literature - the accuracy at
β = 0.3 and γ = 1.5 exceeds that achieved whenβ ≤ 0.1
andγ = 1 or 2. These findings show the potential for spectral
subtraction parameter optimisation under a LIMA framework.

B. Experiment 2

Evaluation of the potential for the modified LIMA frame-
work to find optimal spectral subtraction parameters using
gradient-descent methods was performed using a selection of
250 of the phone number utterances used in experiment 1. The
values forγ and β were varied in linear increments through
the ranges [1.0, 5.0] and [0.1, 3.0] respectively.

Fig. 1 shows a typical surface of recognition likelihood
scores versus variations inγ and β. The general shape of
the surface was observed to be common to all utterances
tested, suggesting that it is utterance, speaker and noise-
independent. We observe that increases in eitherγ or β
within the ranges specified above leads to an increase in the
likelihood score of the utterance. It can also be seen that
whilst the likelihood surface flattens out considerably, it is
still marginally increasing. From this figure, it is believed that
the likelihood surface may be monotonically increasing, which
is very problematic for gradient-descent optimisation.

To avoid this problematic feature of the cost surface, it is
important to identify which likelihood scores are associated
with correct transcriptions. Region 2 in Fig. 1 depicts the
typical location and shape of the region associated with
correct transcriptions. This region was observed to vary in size
depending on speaker, utterance and noise level. Examples of
the variations associated with noise level are depicted in Fig.
2. As the noise level increases (a-d) the size of the correct
surface diminishes considerably, and changes shape slightly.
This is expected as the increased levels of noise hamper the
speech recogniser.

The results presented indicate that in order for the proposed
modified LIMA framework to perform optimisation, it is
important that the region of correct transcriptions is able to be
identified. Whilst this may appear to be hidden information, we
are aware of several voice control applications where utterance
confirmation is a well established mechanism. Therefore by
collecting user confirmations and associating them with the
utterances of interest, there is sufficient information to perform
the likelihood maximisation for the benefit of future utterances.

V. CONCLUSION

From the results of the second experiment, we believe that
the modified LIMA framework, which attempts to optimise
enhancement parameters based on whole utterance scores and
without access to state sequences or models, is capable of
being applied to a system using spectral subtraction. This
conclusion is supported through the observation of a smooth
cost surface suitable for gradient based optimisation.

The first experiment demonstrated that in addition to the
proposed framework being able to blindly optimise spectral
subtraction parameters using only utterance level scores, that
there was also the potential to achieve better performance
when the values ofβ and γ are not constrained to their
traditionally used values.
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Fig. 1. Visualisation of the likelihood surface for varyingβ andγ. Region 1 is a region of high distortion; Region 2 is the region of 100% accuracy; Region
3 exhibits insufficient speech enhancement to recover in speech recognition.
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Fig. 2. An example of correct utterance region decreasing as noise levels increase. Noise levels in the figures are (a) -40.8dB, (b) -35.0dB, (c) -33.1dB, and
(d) -23.6dB.


