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Abstract—In noisy environments, speech recognition accuracy studies using this approach [1], [2], [3], [4]. In their current
degrades significantly. Speech enhancement algorithms have beerform these techniques require access to the underlying state
designed to overcome this, however solutions to date have notodels and attempt to jointly optimise both state sequences

been optimal for speech recognition especially for non-stationary d enh t t Thi dified
noise like that in a car. Recently, a likelihood-maximising (LIMA) and enhancement parameters. This paper proposes a modife

criteria_has been applied to speech enhancement techniques.2Pproach in which the speech recogniser can be regarded as a
This paper analyses the suitability of spectral subtraction for ‘black-box’. This approach removes the need for access to

potential use under a modified version of this framework where the recogniser's acoustic models and a fully decoded state
direct access to and manipulation of speech recognition models sequence. The details of this approach and its applicability to

is not available. Analysis shows spectral subtraction is suited to . Lo .
this holistic LIMA approach by confirming the cost surface is US€ with spectral subtraction is presented. Spectral subtraction

appropriate for gradient descent methods. It is also observed IS chosen for its simplicity ?nd_common use in single-channel
that there are regions on the cost surface where performance speech enhancement applications.

fexceeds thlat at;:hievgd by parameter values traditionally selected The rest of this paper is presented as follows. Section Il
or spectral subtraction. provides background on spectral subtraction speech enhance-
|. INTRODUCTION ment. Section lll looks at the likelihood-maximising (LIMA)

A kev challenae of deploving speech recoanition in reaT[amework and its application to spectral subtraction. Prelimi-
yc ge ¢ ploying sp 9 . “hary experimental results and discussion of the importance of
world environments is the requirement to perform well in th

. . . .these results is presented in Section V.
presence of high levels of noise. Since most speech recognition

systems are trained for use in controlled environments, they
fail to produce satisfactory performance under more adverse

conditions. In a noisy environment, speectin) is assumed to be cor-

Methods for robust speech recognition include model corapted by additive background noigé») to produce corrupted
pensation, use of robust features and recognition algorithrggeechy(n) as follows:

as well as speech enhancement. Enhancement is a popular
approach as little-or-no prior knowledge of the operating envi- y(n) = s(n) +d(n) (1)
ronment is required for improvements in recognition accuracy.

Popular speech enhancement algorithms (e.g. filter-andEquation (1) can be represented in frequency domain as:
sum beamforming or spectral subtraction) have been primar-
ily designed to improve intelligibility and/or quality of the Y(w) = S(w) + D(w) 2
speech signal without consideration of what effect that may ) )
have on other speech processing systems [1]. Optimisatior>€nerally, an estimate of the magnitude (or power) spectra
in these algorithms is focussed on signal-based measuPbd1e noise signab(w) is subtracted from the corresponding
including maximising signal-to-noise ratio or minimisatiorP€Ctra of the noisy signaf (w) to give an estimate of the
of the mean-squared signal error. Some of these technigGi&@n speech signal(w):
produce improvements in word accuracy performance, but
these improvements are by-products, rather than the goals of

the enhancement techniques. _ where~ is the power exponent which equals 1 for magnitude
One possible solution to the problem is to use speech recge ra| subtraction or 2 for power spectral subtraction [5]. The

nition likelihoods as the optimisation criteria in the enhanceffnaSe component of the noisy speech signal is left unaltered
ment algorithms. Promising results have been shown in recgpl s kept for reconstruction into the time domain.

Parts of the work presented here were funded through the Cooperative_shOUId_the Sl{btractiqn in (3) give negative_ values (i.e. the
Research Centre for Advanced Automotive Technology (AutoCRC). noise estimatgD(w)|” is greater than the signdl”(w)|")

Il. SPECTRAL SUBTRACTION

1S@)I" =Y (@)[" = |D(w)] @)




a flooring factor is introduced. This leads to the followingompared to that of the previous iteration. The comparison
formulation of spectral subtraction: directs the correct direction to take.

. . This method may be seen to be more restrictive than the

1S(k)|Y = {Y(f“)v — D) |D(k)|7_ > [Y(E)[ 4) original framework as it may require a series of enhancement

BID (k)Y otherwise and recognition steps in order to determine a valid direction

h is th ise floor f al c of optimisation. This is not the case in the existing work as
wheref is the noise floor factor, aniil < 5 <1 [5]. Common the optimisation takes place directly on the state sequence.

values for this parameter range between 0.005 and 0.1 [5], [0 The modified framework does however ensure no internal
Although common values fory and § are those noted information about the recogniser is required. It may also

above, there is actually no limitation on the_ values that the Emove some of the reliance on the initial state sequence which
parameters can take. These values are typically used for thglg downfall of the existing framework

conceptual meanings as opposed to performance. Alterin
these two parameters can make considerable difference to d
speech recognition performance of spectral subtraction, as W
be demonstrated in Section 4.

It should also be noted here that in order to derive the £s = [, B (5)
two common rules denoted in (3) two conflicting assumptions
are made. If the clean speech and noise signals are assuméi investigation into the affect of altering this parameter
to be uncorrelated, the power spectral subtraction rule (i%€t is presented in Section IV.
~ = 2) results. Alternatively, if the two signals are assumed
to be co-linear, the equation reduces to the magnitude spectral
subtraction rule. In practice, neither of these assumptions isTo evaluate the suitability of the modified LIMA framework,
valid all the time. This leads to the possibility of optimisingwo experiments were designed using spectral subtraction as
these parameters to best fit the instantaneous relationsfhi® enhancement method of interest. The first experiment

9n order to apply the modified (or original) framework to
Ectral subtraction the two parameters referred to in Section
onstitute the full parameter set. We denote this set by:

IV. EXPERIMENTAL RESULTS

between clean speech and noise signals. investigated the existence of enhancement parameters which
provided superior performance to traditionally selected values
1. LIMA S PECTRAL SUBTRACTION of v and 3 in spectral subtraction. The second experiment ex-

As mentioned in Section I, in recent studies the likelihoodends the initial experiment by examining whether a gradient-
based criterion has been used to replace traditional sign@@scent method would still be appropriate for optimising the
level criteria in speech enhancement algorithms with the affmhancement parameter set when only full utterance scores
to improve speech recognition accuracies. This was se#fre available.
to minimise distortion in theeffective auditory signal for ~ Both experiments use speaker-independent, context-
recognition purposes instead of the distortion of the speedfpendent 3-state triphone Hidden Markov Models (HMM)
waveform [3]. Techniques which maximise the likelihood ifrained using the Wall Street Journal 1 corpus. The models
the speech recogniser are referred to as LIMA enhancem@f@re trained using 39-dimensional Mel-Frequency Cepstral
techniques. Coefficient (MFCC) vectors - 13 MFCC (includingp) plus

The LIMA framework first generates an initial state sedelta and acceleration coefficients. Each HMM state was
quence using the speech recogniser. This sequence is u&fdesented using a 16-component Gaussian Mixture Model.
to optimise the parameters using a gradient-descent algorithnExperimental data came from the phone numbers task of the
— ensuring an optimal set of parameters for the propos@dICAR database collected by the University of Illinois [7].
state sequence. The utterance is decoded again using This database contains real speech recordings under 5 different
new parameters to generate a new state sequence. This jdiiving conditions: idle (IDL), 35mph with windows up (35U)
optimisation of both the array parameters and state sequefdgd down (35D), and 55mph with windows up (55U) and
continues until the recognition likelihood converges. down (55D). In this way, performance under specific noise

Formulated in this manner, it is required to obtain botgonditions is of interest as opposed to different signal-to-
frame-by-frame state sequences and access to the modehgége ratios. Microphone number 4 of the 8-channel recordings
in order to perform optimisation in LIMA techniques. Thiswas utilised. The first experiment included utterances from 61
paper proposes a modification to the LIMA framework aimedistinct speakers (30 male, 31 females) and the second used
at removing the need for access to state modeld state utterances from 20 speakers (14 male, 6 female).
sequence information — information rarely available when .
endeavouring to integrate third party recognition engines fh EXPeriment 1
practical applications. Here, we assume that only access tdn order to demonstrate that varying the values of the two
full utterance likelihoods and word sequences is available. parameters in (5) alters speech recognition accuracy, a number

Using these two pieces of information, a "blind” gradientef recognition experiments were conducted. A selection of
descent approach can be applied whereby a new set of 8040 phone number utterances from the test database were
hancement parameters are tried and the resulting likelihoasked.



TABLE |
WORD RECOGNITION ACCURACIES(%) FOR VARYING VALUES OF SPECTRAL SUBTRACTION PARAMETERS

| [1IDL [ 35U [ 35D | 55U [ 55D |
[ Baseline || 75.24] 49.95] 36.18] 41.00] 22.35
7=1.08=0.1 [ 80.70] 47.34] 37.42] 39.62] 27.82
4=155=0.1 | 81.37| 51.77| 41.16| 44.65| 29.12
4=2.08=0.1 | 81.15| 53.92 | 42.01| 46.24 | 28.66
7=155=0.1] 81.37] 51.77] 41.16] 44.65] 29.12
7=155=0.3 | 81.94| 57.21| 43.84| 50.11| 29.63
~=1.53=0.5 || 80.37| 56.86 | 42.62| 48.93| 27.59

Values fory and 3 were varied in linear increments through The results presented indicate that in order for the proposed
the ranges [1.0, 2.0] and [0.1, 0.5] respectively. Word recogrodified LIMA framework to perform optimisation, it is
nition accuracies for increments ofby 0.5 ands by 0.2 and important that the region of correct transcriptions is able to be
are shown in Table I. identified. Whilst this may appear to be hidden information, we

It can be seen from the table that altering the spectraile aware of several voice control applications where utterance
subtraction parameter values leads to changes in speech recogfirmation is a well established mechanism. Therefore by
nition performance and that it is possible to locate values efllecting user confirmations and associating them with the
3 and~ which provide better word recognition performanceitterances of interest, there is sufficient information to perform
than those commonly proposed in literature - the accuracythe likelihood maximisation for the benefit of future utterances.
8 = 0.3 andy = 1.5 exceeds that achieved wheh< 0.1
and~ = lor 2. These findings show the potential for spectral

subtraction parameter optimisation under a LIMA framework, From the results of the second experiment, we believe that
the modified LIMA framework, which attempts to optimise

enhancement parameters based on whole utterance scores anc

without access to state sequences or models, is capable of
Evaluation of the potential for the modified LIMA frame-being applied to a system using spectral subtraction. This

work to find optimal spectral subtraction parameters usim@nclusion is supported through the observation of a smooth

gradient-descent methods was performed using a selectiorco$t surface suitable for gradient based optimisation.

250 of the phone number utterances used in experiment 1. Th&he first experiment demonstrated that in addition to the

values fory and 8 were varied in linear increments throughproposed framework being able to blindly optimise spectral

the ranges [1.0, 5.0] and [0.1, 3.0] respectively. subtraction parameters using only utterance level scores, that
Fig. 1 shows a typical surface of recognition likelihoodhere was also the potential to achieve better performance

scores versus variations i and 3. The general shape ofwhen the values ofs and v are not constrained to their

the surface was observed to be common to all utterandegditionally used values.

tested, suggesting that it is utterance, speaker and noise-

independent. We observe that increases in eitheor g

within the ranges specified above leads to an increase in tHeM. Seltzer, B. Raj, and R. Stern, “Likelihood-maximizing beamforming

likelihood score of the utterance. It can also be seen that for robu;t hands-frge speech recognitioEEE Transactions on Speech

and Audio Processingvol. 12, no. 5, pp. 489-498, 2004.
whilst the likelihood surface flattens out considerably, it iR] A. Sankar and C.-H. Lee, “A maximum-likelihood approach to stochastic
still marginally increasing. From this figure, it is believed that matching for robust speech recognitiof2EE Transactions on Speech

P . . . . and Audio Processingvol. 4, no. 3, pp. 190-202, 1996.
the likelihood surface may be monotonically increasing, Wh"‘{'&] M. Seltzer and R. Stern, “Subband likelihood-maximizing beamforming

V. CONCLUSION

B. Experiment 2
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Fig. 1. Visualisation of the likelihood surface for varyirfyand v. Region 1 is a region of high distortion; Region 2 is the region of 100% accuracy; Region
3 exhibits insufficient speech enhancement to recover in speech recognition.
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Fig. 2. An example of correct utterance region decreasing as noise levels increase. Noise levels in the figures are (a) -40.8dB, (b) -35.0dB, (c) -33.1dB, :
(d) -23.6dB.



