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Abstract— Multiple antennas at transmitter and re-
ceiver can be used to improve communication efficiency by
canceling channel noises using the correlated information
among the signals transmitted from different antennas. In
this paper, a novel approach is proposed for this problem
for another interesting case where multiple symbols are
used to make the best use of the multiple antenna channel.
Such an issue cannot be converted into a convex optimiza-
tion problem. It can be considered as a generalization
of the vector optimization problem on Grassmannian
manifold to that one a complex Stiefel manifold, which has
not been well considered yet. The proposed algorithm is
based on the gradient search on a complex Stiefel manifold
of a non-convex problem to maximize the system signal
to noise ratio. With appropriately defined Riemannian
metric on this manifold, a neat formula has been developed
for the gradient function. It is proved that the proposed
algorithm converges to the global optimum. This algorithm
can also be implemented into recurrent neural network
to facilitate real-time computation. Its parallel structure
can be realized using analog circuits. Furthermore, a
modified gradient flow defined on the non-compact Stiefel
manifold is also developed, which is robust against any
initial condition error. The corresponding recurrent neural
network is also discussed. Simulation experiments are
included to demonstrate the advantages of the proposed
algorithms.

I. INTRODUCTION

Beamforming issues arise in many communica-
tion and signal processing areas such as radar, sonar,
seismology, microphone array speech processing,
etc. Please see [1] for some details and references
therein. It is a critic problem in multi-input multi-
output (MIMO) wireless communication channels.
See [1]-[8] for a partial list of articles discussing
such issues.

In particular, in MIMO channels multiple anten-
nas are used to transmit messages to the receiving
antenna array. The space difference among antennas
can be utilized to achieving higher communication
capacity than that in a single antenna channel. It
is known that, the signal-to-noise ratio (SNR) is
maximized in the principle eigenvector direction,
which corresponding to the largest eigenvalue, of
the channel gain matrix between transmitting an-
tennas and receiving antennas, in the case where
binary message is modulated using baseband signal
transmitted through multiple antennas. As such,
singular value decomposition method can be used
to solve the beamforming problem in this simplest
case where channel gain is completely known to
both the transmitter and receiver, the channel is flat-
fading, and signal to be transmitted is binary. For a
brief discussion, please see [2].

More sophisticated techniques are required to
take into account more practical considerations. In
one case, channel information is unknown or not
precisely known. The system needs to be adjusted
adaptively according to channel information updated
interactively between the transmitter and the re-
ceiver. For example, in [4] a simple algorithm is
developed to tune the beamforming vector based on
binary feedback from the receiver. In [1], [3], [5],
[6], several methods are proposed to quantize and to
adaptively adjust the beamforming vector based on
finite rate feedback from receiver. In those works,
the communication channel is not required to be
reciprocal. That is, channel state information may
not be observable at the transmitter and needs to be
passed from the receiver in finite rate.



In another case, different constraints are included
to reflect various restrictions in practical settings. In
the award winning paper [7], a unified framework
is proposed to minimize a cost function subject to
transmitting power constraints for multicarrier com-
munication. With UV decomposition of the beam-
forming vector, the original problem is converted
into a convex optimization problem. Hence it can
be readily solved.

Grassmannian manifold is used in [8] to represent
the decision beamforming vector subject to equality
norm constraint. The constrained optimization for
beamforming is converted into a unconstrained one
on this manifold. The advantages of this approach
are two-fold: first, an elegant gradient formula can
be obtained. Second, a clear insight of the optimal
solution can be obtained, in comparison the matrix
algebraic method such as SVD algorithm can only
provide a procedural algorithm to obtain the the
numerical solution. Based on that, line packing
problem is introduced for channel state information
quantization.

In this paper, multiple symbols for MIMO com-
munication are proposed to used. By this way,
not only the first principal eigenvector direction
but also other eigenvector direction are utilized for
beamforming to increase the capacity of this single
channel. It is naturally to require in the system
design that the interference between symbols are
zero and the power for each symbol is equal. This
incurs a nonlinear matrix equality constraints on the
beamforming vector. As the result, it becomes very
difficult, if it is still not impossible, to convert the
beamforming design issue into a convex optimiza-
tion problem. In fact, such group of constraints is
formulated into the complex Stiefel manifold, which
is the high dimensional extension of Grassmannian
manifold. A Riemannian metric induced from the
ambient Euclidean space is used to calculate the
gradient of the cost function. It is shown that, along
the trajectory of the gradient flow, the cost function
converges to its optimal and the decision vector con-
verges to a number of eigenvectors corresponding to
the largest singular values.

Following the seminal work of Hopfield and Tank
[9], recurrent neural networks have been success-
fully applied to solve many classes of optimization
problems in real time; see [10], [11] and references

cited therein for a few examples. Unlike the stan-
dard neural network that involving some parameters
to be tuned during the learning phase, the prin-
cipal idea of using recurrent neural network for
optimization is to appropriately construct a neural
network which represents the gradient direction of
a given cost function and the states of the neural
network represent decision variables, so that the
network states converge to the optimal solution. The
advantage of such networks are two-fold: first, it
has a parallel structure and hence renders distributed
computing; Second, it can be computed in real-time
if implemented using analogue circuit or fast multi-
processor computers.

Based on the analytic formula of gradient ob-
tained on Stiefel manifold, a recurrent neural net-
work can be designed. Its architectural is discussed.
Furthermore, an alternative problem defined on a
non-compact Stiefel manifold is proposed to accom-
modate the case where the initial Stiefel manifold.
The resultant recurrent neural network is more ro-
bust.

This paper is organized into several sections. In
the next section, the problem is introduced and
carefully defined. Based on that, the gradient is cal-
culated in the third section, where the convergence
of the positive gradient flow is also established.
The fourth section is dedicated to the discussion
of recurrent neural network architecture. In the
fifth section, an alternative problem formulation is
proposed, which is not depend on the Stiefel mani-
fold. Simulation experiment results are included in
the sixth section. A brief summary and discussion
on the proposed method is organized in the last
section to conclude this paper. Technical details for
theoretical results are arranged in the appendix.

II. PROBLEM FORMULATION

Consider a wireless system with multiple anten-
nas at the transmitter and receiver. Assume that the
communication channel information is completely
known to simplify the analysis. The objective of
beamforming is to choose appropriate transmitting
weight, while the objective of antenna combining is
to choose appropriate weight at receiver so that the
received signal SNR is maximized.

In this paper we only discuss the beamforming at
the transmitter. Such a channel can be illustrated
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Fig. 1. MIMO Wireless System

using the diagram in Figure 1. In order to take
the advantage of multiple antennas of the com-
munication channel, we consider that the transmit-
ter uses multisymbol instead of binary in source
code modulation. In this case, let the transmitting
weights (the beamforming matrix) be denoted B.
The channel transfer matrix is denoted as H. The
transmitted signal is s and the received signal is s.
The communication channel can be described as

5(t) = HBs + n, (1)

where n is the channel noise vectors. Without
loss of generality, it is assumed to be Gaussian
with zero mean and unit variance. s is a vector
that represents signal sources with symbol length
[ sent to m antennas. B is a m x [ beamforming
matrix. Assume the source signal is of unit power.
It is expected that the resultant signals is of equal
power and zero ISI before transmitting. Therefore,
B*B = I;, where the upper index % denotes the
complex conjudate transpose of the original matrix.
The following problem is formulated to maximize
the signal power so that the SNR at the receiver can

be maximized.
maximize: J = ||[HB|? 2)

subject to: B*B = I,
where the matrix norm is Frebenuous norm. Let
R = H*H, the maximal SNR problem given in (2)
can be further simplified as the following general-
ized Rayleigh quotient maximization problem:
maximize: J = tr(X*RX),
subject to: X € C™ and X*X = I,.
ITII. CALCULATION OF GRADIENT AND
PROPERTIES OF GRADIENT FLOWS

3)

Defined the complex Stiefel manifold as follows:
St(l,m,C) ={X e C™", X*X =1,}. 4)

It is known that the complex Stiefel manifold is a
compact manifold. See [12], [13] for some details.
Its tangent space at X can be calculated as

TxSt(l,m,C) ={V e C™ | V*X + X*V =0,}.

Consider C™*! as a 2ml dimensional real vec-
tor space. It is easy to check the tangent space
TxSt(l,m,C) is 2ml — I(l + 1) dimensional one,
noticing that the constraints consist of a group of
[(I + 1) independent linear equations on it real and
imaginary parts.

Define the following Riemannian metric on
TxSt(l,m,C) as:

< W, Vo> tr(ViVa + ViWVh)

(VaVy +ViVs). (6
Such metric is induced from C™*!. With this Rie-
mannian metric, the gradient of the cost function in
(3) can be calculated.

Lemma 1: The normal vector space of the tan-
gent space at X of the Stiefel manifold is given by

TgSt(l,m,C) = {XA|A=A"eC*}. ()

Let the gradient of the cost function J on the
complex Stiefel manifold be denoted as G(X).
Then,

. < G(X),V >=
TXSt(l,m,(C).
. G(X) € TxSt(l,m,C).

The following results list the gradient formula and
the convergence property of the gradient flow.
Theorem 1: Consider the cost function .J given in
(3) defined on the complex Stiefel manifold given
by (4). With respect to the induced Riemannian
metric in (6), the gradient can be calculated as

dJ |x (V), W €

gradJ(X) = (I, — XX")RX. (8)

Furthermore, the trajectory of the positive gradient
flow defined by the following equation

X = gradJ(X), )]

converges to the global maximum of the cost func-
tion.

(&)
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Fig. 2. The architecture of the proposed recurrent neural network.

IV. THE PROPOSED RECURRENT NEURAL
NETWORKS

A recurrent neural network can be designed based
on the gradient flow given by (9). Its architecture
can be illustrated in the following diagram:

In Figure 2, the state of the recurrent neural
network is a complex matrix. The operators are
matrix operators to simplify the diagram. The star
symbol ”*” represents the complex conjugate trans-
pose operator. In practical implementation, complex
numbers can either be separated into real and imag-
inary part, or simply be the state of the electronic
circuits. In this paper, detailed circuit design for
neural networks is not discussed. Interested reader
may refer to [14] for more details.

V. ROBUST RECURRENT NEURAL NETWORK

In this section, sensitivity of the optimal solution
is considered for the cases where there are initial
condition error or the channel transfer matrix error.
Because any intermediate state of a neural network
can be considered as an initial state for time after-
wards, this consideration can also take into account
the deviation of state from the precise trajectory due
to small hardware or computing precision errors.

For the proposed recurrent neural network rep-
resenting the gradient flow of the cost function,
the state matrix remains on the Stiefel manifold
if it starts from an initial state on that manifold.
However, if the initial state is not on the Stiefel
manifold, more specifically, its column vectors are
not orthonormal to each other, the state of the pro-
posed recurrent neural network is not guaranteed to
converge to this manifold. A simulation experiment
is included in the next section to demonstrate this
sensitivity. As such, the recurrent neural network

proposed in Section IV is not ready to use yet.
To remedy this, the following modified problem is
proposed.

maximize: J = tr{X*RX(X*X)"'}, 10

subject to: X € C™! and rank(X*X) = [. (10)
Since the maximal solution to the problem given
in (3) is an admissible solution to the problem
defined in (10), the maximum of the cost function
in (10) is not less than that of (3). On the other
hand, if the maximal solution to (10) is X, the
matrix X (X*X)~'/2 is also an admissible solution
to the problem defined in (3). As such, the original
optimization problem given by (3) and the modified
problem in (10) is equivalent. However, the admis-
sible set of (10) is an open set.

Define the non-compact complex Stiefel manifold

as

ST(l,m,C) = {X € C™ | rankX =1}, (11)

and define the Riemannian metric on this manifold
as

<UV>»: = tr (UXX)'V'+V(X*'X)'U"),
YU,V € TxST(l,m,C).
It can be computed that
DJx(V)
= tr {V'RX(X*X)"' + X*RV(X*X)™*
—X*RX(X*X) V' X + X*V|(X*X)™'}
= < (I -X(X*X)"'X*)RX,V > . (13)

As such, the positive gradient flow can be defined
as

X = (I -X(X*X)"'X*)RX. (14)

It can be observed that this gradient flow coincide
with the one defined in (9) if X is on the complex
Stiefel manifold. Furthermore, direct computation

shows that

d

(X)) =0, (15)

along the gradient flow given in (14). Therefore,
any initial matrix on the complex Stiefel manifold
remains on it along the trajectory of the gradient
flow. Hence this gradient flow is robust with respect
to the initial condition error.

The architecture of the corresponding recurrent
neural network can be illustrated using the diagram
in Figure 3.

(12)
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Fig. 3. The architecture of the robust recurrent neural network.

VI. SIMULATION EXPERIMENTS

In this section, some experiments data are shown
to illustrate the proposed recurrent neural networks.
For the sake of cost, the experiments have been
conducted using Matlab and Simulink. However,
they can represent the state of the neural networks
developed in this paper precise enough by adjusting
the numerical precision of the simulation tool.

Consider a simple case where the beamforming
matrix is 3 x 2. Even though this is very small
in size, the simulation outcomes can already show
these convergence properties of the recurrent neural
network discussed in previous sections. The initial
beamforming matrix is generated using a random
number generator. The channel transfer matrix is
also randomly generated. In our test, they are given
by the following matrices.

0.9342 0.8729
0.2644 0.2379 | ,
0.1603 0.6458

Xo =

5.8836 3.9969 2.7023
3.9969 5.0093 1.5566
2.7023 1.5566 1.3495

R =

To this initial matrix, the constraint X*X = I, is
not satisfied. The following Figures 4, and 5 show
the lognorm of the gradient and the cost function
along the trajectory of the proposed recurrent neural
network given in (9). In particular, it can be seen
that the cost function is not monotonically increas-
ing, which is not what we expect for a gradient
flow. This is due to the violation of the constraint
XX =1I.

In Figures 6 and 7, the same initial condition
and the the channel transfer matrix are applied to
the modified recurrent network depicted in Figure
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Fig. 4. The cost function along the trajectory of the proposed
recurrent neural network.

3. The results demonstrate a good convergence
property. Not only the gradient converges to zero,
but also the cost function increases monotonically
toward the global maximum.

However, if the orthonormal constraint X*X =
I on initial state is satisfied, the proposed recurrent
neural network can still demonstrate a very good
convergence property. To this end, let the initial
state be Xo(X;Xo) /2. It can be easily checked
that this initial state is orthonormal. Simulate the
proposed recurrent neural network given in Figure 2
with this initial state and the channel transfer matrix
R generated before. The resultant cost function
increasing monotonically. See Figures 8 and 9 for
the curve of cost function and the log norm of
the gradient. Even though the norm of gradient is
not monotonically decreasing, it converges to zero
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Fig. 5. The log norm function of the gradient along the trajectory
of the proposed recurrent neural network.

quickly.

VII. CONCLUSION

In this paper, two novel recurrent neural networks
are developed based on the positive gradient flows
of the generalized Rayleigh quotient on a complex
Stiefel manifold or on a non-compact complex
Stiefel manifold. The advantage of such networks
are two-fold: first, it has a parallel structure and
hence renders distributed computing; Second, it can
be computed in real-time if implemented using
analogue circuit or fast multi-processor computers.
It is shown the gradient flow on the complex
Stiefel manifold will converge to the global optimal
solution of the formulated multi-symbol MIMO
beamforming problem. The generalized Rayleigh
quotient on a non-compact Stiefel manifold is equiv-
alent to that defined on the complex Stiefel manifold

Cost function of along the trajectory of Modified RNN state
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Fig. 6. The cost function along the trajectory of the modified
recurrent neural network.

with a simple state transformation. However, the
orthonormal constraint in such case is removed.
Both technical analysis and simulation experiments
are included to demonstrate the advantages of the
proposed approach.
APPENDIX: TECHNICAL ANALYSIS

Proof of Lemma 1. This is because for any V' &€
TxSt(l,m,C), there holds

<V, XA> = tr(V'XA+AX*V)

= tr{A[V*X + X*V]} =0.
Which show that
{XA| A=A eC™} CTySt(l,m,C).

On the other hand, the dimension of the set
{XA|A=A* e C*} can be calculated as 2ml —
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Fig. 7. The log norm function of the gradient along the trajectory
of the modified recurrent neural network.

dim T'x St(l, m, C), which is exactly the same as the
dimension of T'xSt(l,m, C). As such, two complex
vector sets (but considered as real vector spaces) are
identical. [

Proof of Theorem 1. From the first condition
of the gradient we know that G(X) — RX €
T St(l,m,C). As such, the gradient must be in the
form of RX + X A. On the other hand, the second
condition leads to

A=—-X"RX.
Therefore,
gradJ(X) = ([, — XX")RX.

Furthermore, consider the second order derivative

D2Jx(V,V) = 2tr(V*RV).

Cost function of along the trajectory of RNN with orthonomal initial state
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Fig. 8. The cost function along the trajectory of the proposed
recurrent neural network with orthonormal initial state.

Since R is positive semi-definite, D?Jx(V,V) =0
leads to RV = 0. as such, the Hessian of the
cost function is zero can only be possible where
the gradient of the cost is also zero. Hence, the
cost function is a Morse-Bott function. From the
convergence property of a Morse-Bott function, see
[15], it is guaranteed that the gradient flow given by

(16)

X =gradJx = (I, - XX")RX.

defines a trajectory convergent to the global optimal
solution. [}

REFERENCES

[1] S. Shahbazpanahi, A. B. Gershman, Z.-Q. Luo, and K. M.
Wong, “Robust adaptive beamforming for general-rank signal
models,” IEEE Transactions on Signal Processing, vol. 51,
no. 9, pp. 2257-2269, 2003.

[2] S. Haykin and M. Moher, Modern Wireless Communications.
U. S. A.: Pearson Prentice Hall, 2005.



log norm gradient in RNN for beamforming with orthonomal initial state
25 T T T T T T T

Fig. 9. The log norm function of the gradient along the trajectory of
the proposed recurrent neural network with orthonormal initial state.

(3]

(4]

(3]

(6]

(7]

(8]

B. Mondal and R. W. J. Health, “Channel adaptive quantization
for limited feedback mimo beamforming systems,” /EEE Trans-
actions on Signal Processing, vol. 54, pp. 4717-4729, 2006.
B. C. Banister and R. Z. James, “A simple gradient sign algo-
rithm for transmit antenna weight adaptation with feedback,”
IEEE Transactions on Signal Processing, vol. 51, pp. 1156—
1171, 2003.

K. K. Mukkavilli, A. Sabharwal, E. Erkip, and B. Aazhang,
“On beamforming with finite rate feedback in multiple-antenna
systems,” IEEE Transactions on information theory, vol. 49,
pp. 2562-2579, 2003.

R. B. D. Roh, June Chul, “Transmit beamforming in multiple-
antenna systems with finite rate feedback: a vq-based ap-
proach,” IEEE Transactions on Information Theory, vol. 52,
pp. 1101-1112, 2006.

D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint tx-rx
beamforming design for multicarrier mimo channels: a unified
framework for convex optimization,” IEEE Transactions on
signal processing, vol. 51, pp. 2381-2401, 2003.

D. J. LOve, R. W. J. Heath, and T. Strohmer, “Grassmannian
beamforming for multiple-input multiple-output wireless sys-
tems,” IEEE Transactions on Information Theory, vol. 49, pp.
2735-2747, 2003.

(9]

(10]

(11]

[12]

(13]

(14]

[15]

D. W. T. . J. J. Hopfield, “Simple neural optimization networks:
An a/d converter, signal decision circuit, and a linear program-
ming circuit,” IEEE Trans. Circuits and Systems, vol. 33, no. 5,
pp. 533-541, 1986.

D. Jiang and J. Wang, “A recurrent neural network for real-
time semidefinte programming,” IEEE Transactions on Neural
Networks, vol. 10, pp. 81-93, 1999.

——, “Augmented gradient flows for on-line robust pole as-
signment via state and output feedback,” Automatica, vol. 38,
pp. 279-286, 2002.

J. H. Manton, “Optimization algorithms exploiting unitary
constraints,” IEEE Transactions on Signal Processing, vol. 50,
pp. 635-650, 2002.

S. Fiori, “Non-linear complex-valued extensions of hebbian
learning: An essay,” Neural Computation, vol. 17, pp. 779-838,
2005.

C. A. Mead, Analog VLSI and Neural Systems.
of America: Addison-Wesley, 1989.

U. Helmke and J. B. Moore, Optimization and Dynamical
Systems, 2nd ed. London: Springer-Verlag, 1996.

United States



