

3D-Hadamard Coefficients Sequency Scan Order
for a Fast Embedded Color Video Codec

Vanessa Testoni and Max H. M. Costa

School of Electrical and Computer Engineering, State University of Campinas (UNICAMP), Campinas, SP, Brazil
{vtestoni, max}@decom.fee.unicamp.br

Abstract - This work presents a new 3D-transform coefficients
scan order based on the multiplication of the three dimensions
sequency numbers of each coefficient. This scan process is
developed to a fast embedded color video codec (also described in
this article) to be executed in a set-top box on a fiber optics
network. Due to its purpose, the codec is focused on reduced
execution time, not on high compression rates. Low computational
complexity and use of meager computational resources are also
required. The Hadamard transform is used in a three-dimensional
fashion, in order to avoid costly motion estimation and
compensation techniques. The proposed scan procedure allows
the coefficients reading in an idealistic “decreasing in the
average” order. After the scan procedure, the encoding of the bits
of the 3D-Hadamard coefficients is done, bit-plane-by-bit-plane,
with an efficient adaptive version of Golomb's run-length
encoder, which produces a fully embedded output bitstream. Even
with the use of these constrained techniques, good distortion
versus rate results were achieved.

Keywords - Embedded coding, Hadamard transform, color video
codec, three-dimensional transform, fast video codec, C#
language.

I. INTRODUCTION

The new coefficients sequency scan order proposed in this
article was created for a color video codec named Fast
Hadamard Video Codec (FHVC). This video codec was
developed in C# language to be executed in a set-top box
device futurely developed. The set-top box will be the interface
between a fiber optics network and its users. This device will
receive digital signals, extract video, audio and data
information and send that information to an output device.
Among other functions, as Internet accessibility and voice over
IP, the set-top box will be able to receive and send video
signals proceeding from, for instance, video on demand and
video conference applications. The codec will be inserted on
SIP (Session Initiation Protocol), which through the SDP
(Session Description Protocol) has mechanisms that allow the
insertion of new video codecs.

Research on video coding systems typically looks for
techniques that can reach the highest possible compression rate
while not exceeding a given level of distortion. This
compression rate increase is generally achieved by means of
increased coding complexity, which is supported by the
continuous increase in computational power. However, in
some video coding and transmission applications, the use of
high capacity processors is not possible or desirable. These
situations require video codecs focused on reduced execution
times and in few computational resources, just as the FHVC.

In order to reduce the codec execution time, the very simple
Hadamard transform is used instead of the traditional DCT
(Discrete Cosine Transform). The Hadamard transform was
chosen because, even though it doesn't provide the same
energy concentration advantages of the DCT, it is able to
reduce the correlation of the coefficients and its
implementation requires only additions and subtractions. To
reduce even more the execution time, the highly efficient, but
time-consuming, motion estimation and compensation
techniques are avoided and the Hadamard transform is
implemented in a three-dimensional fashion.

After Hadamard-transforming 3D blocks of pixels, the codec
reads and reorders each coefficients block. It was found that
the distribution of the dominant AC coefficients spreads along
the major axes of the 3D-Hadamard cube, just as found for 3D-
DCT cubes [1]. It was also found that the cube energy is
concentrated according to the coefficient sequency number in
the three dimensions. Based on this, a new scan order based on
the multiplication of the three sequency numbers of each
coefficient is developed to be adopted for the 3D-Hadamard
coefficients. Generally, a specific scan order is better than a
traditional three-dimensional zig-zag scan.

The codec encodes the resulting sequency reordered
coefficients in a bit-plane-by-bit-plane fashion, refining their
precision at each turn. This process renders a completely
embedded encoded video file bitstream. The encoding of each
bit plane of the 3D-Hadamard coefficients is accomplished
using an adaptive version of Golomb's RLE (Run-Length
Encoder) [2].

Due to cost restrictions, the set-top box device will be
designed with a low capacity processor and few computational
memory. Because of this, the entire video codec
implementation is designed to perform only fast mathematical
operations and to require small computational memory. All the
multiplications and divisions operations are done by powers of
two, so that they can be performed by variable binary shifts.
Moreover, the system is implemented exclusively with 16-bit
integer arithmetic, which also requires approximations. The
errors introduced by these approximations can be compensated
by the reduction of the compression rate. This reduction is
acceptable, once the video codec is focused on speed, not on
high compression performance.

An overview of the codec stages is provided in Section 2.
The optimized 3D-Hadamard transform implementation is
presented in Section 2.2 and the new coefficients sequency
scan order is explained in Section 2.3. The results are
presented in Section 3.

II. VIDEO CODEC OVERVIEW

The FHVC block diagram is depicted in Fig. 1. The video
codec stages are described in this section in the order they
appear in the figure below.

A. Video Codec Color Spaces

The FHVC is able to read color video sequences stored in
tri-stimulus color space, such as RGB and YUV 4:2:0. Each
such color plane is encoded separately and the allowed pixel
bit-rate is divided among the color planes according to its
significance. So, for the RGB format, the pixel bit-rate is
equally divided, but in the YUV 4:2:0 format, the luminance
plane receives more bits than the chrominance planes (because
the U and V chrominance planes are one-fourth the size of the
luminance Y plane). In the FHVC, only approximately 10% of
the luminance rate is spent on the chrominance signal. This
simple weighted bit-rate division procedure allows achieving
higher compression rates.

In order to get the well-known advantages of the L-C
(Luminance - Chrominance) formats, it is possible to convert
an original RGB video sequence to a different internal color
space (such as YUV 4:2:0) before beginning the coding
process. Other color spaces are also supported by the FHVC
and the conversions among them [3] are also implemented.

B. Three-dimensional Hadamard Transform

The Hadamard transform was chosen for the FHVC because
of its base functions, composed by +1 and −1 elements. Thus,
the transform computations do not require multiplications [4].

Although the use of the 3D Hadamard presents no
innovation, this transform was chosen because it is simple (just
as the normalizations stages), it is identical to its inverse and it
is easy to extend results to 8x8x8 (or greater) transforms
(generally not true for other transforms).

The Hadamard transform matrices Hn are NxN matrices,
where N = 2n. These can be generated by the core matrix

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
11

11
2

1
1H (1)

and the Kronecker product recursion

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

⊗=⊗=

−−

−−

−−

11

11

1111

2

1
nn

nn

n
n

nnn

HH
HH

H

HHHHH
. (2)

As an example, for n = 3, the Hadamard matrix becomes

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−
−−−−

=

11111111
11111111
11111111
11111111

11111111
11111111
11111111

11111111

8
1

3H

 (3)

Fig. 1. Block diagram of the FHVC structure.

The basis vector of the Hadamard transform can also be

generated by sampling the class of functions called Walsh
functions shown in Fig. 2. These functions also take only the
binary values ±1 and form a complete orthonormal basis for
square integrable functions.

The number of zero crossings of a Walsh function or the
number of transitions in a basis vector of the Hadamard
transform is called its sequency (as well as the sinusoidal
signals frequency can be defined in terms of the zero
crossings).

In the Hadamard matrix generated through (2), the row
vectors are not sequency ordered, as shown in (3) by the
column named “Sequency”. The existing sequency order of
these vectors is called the Hadamard order because this is the
order used by the transform.

Some Hadamard transform fast calculation methods were
developed and the chosen one to be used by the FHVC is based
on the fact that the Hn matrix can be written as a product of N
sparse matrices H~ [4]. Each multiplication by H~ implies the
execution of log2 N additions or subtractions. As this
multiplication is repeated N times, the total number of
operations is N * log2 N. Without this method, N2 operations
would be realized. Therefore, besides being simple, the
Hadamard transform can also be fast.

The video sequence being encoded is partitioned into cubes
and the Hadamard transform is applied separately in each cube
and in each cube dimension (first in columns, then in lines and
finally in frames). That can be done because the three-
dimensional Hadamard transform is a separable transform. To
evaluate the cube size effect in the coding performance, the
FHVC can be executed with cubes of sizes 4x4x4 and 8x8x8.

 Number of zero

crossings
Number of zero

crossings

40

Fig. 2. Walsh functions sampled to Hadamard matrix generation.

0
Sequency

7

3

4

1

6

2

5

51

62

73

The Hadamard transform computation in each cube
dimension requires the division of the coefficients by N (as
shown in (3)). This division is done to preserve the signal
energy in the transform domain. Similarly, the divisions must
be performed in the decoder because the same transform is
used in the inverse operation, once the Hadamard transform is
real, symmetric and orthogonal.

To avoid the fractional coefficients (generated by the N
divisions) and to reduce the coefficients magnitude after the
three Hadamard transform calculations (one in each cube
dimension), a new implementation for the FHVC was
developed. In this new approach, first, the Hadamard transform
is applied in the cube’s columns and after in the cube’s lines.
These two Hadamard transform calculations require two
divisions of the coefficients by N . In order to remove the
square root operation, these two divisions are grouped,
generating only one division by N. It is possible to move and
group the division terms because the Hadamard transform is a
linear process. Since the supported values for N are powers of
2, the division by N can be implemented through binary shifts.
The consequence is that after the two Hadamard transform
calculations, the coefficients suffer log2 N right binary shifts,
instead of being divided twice by N .

After the application of the Hadamard transform in the
cube’s columns and in the cube’s lines, the transform must be
applied in the cube’s frames. This application requires a new
division of the coefficients by N . However, this is the last
one Hadamard transform calculation done during the coding
process. So, there is no other division term to be grouped with
this division term in order to repeat the anterior procedure and
remove the square root operation. The solution found, which is
a new approach developed, was to bring the first transform
division term of the decoding process to the end of the coding
process. That can be done because, as presented before, the
same Hadamard transform is performed in the decoder and the
first decoding calculation was the coefficients division by N .

In such case, the Hadamard transform is applied in the
cube’s frames, its division term is grouped with the first
decoder Hadamard transform division term and the coefficients
suffer new log2 N right binary shifts.

Two other simple ways to remove the square root operation
of the Hadamard transform calculated in the cube’s frames are:

- To group the log2 N right binary shifts with the previous
one and perform all the binary shifts together before the
transform calculation in the cube’s frames.

- To group all the right binary shifts and perform them
together after the transform calculation in the cube’s
frames.

The two options described above are simpler than the
developed to the FHVC, but can’t be used because in the first
one, the coefficients values became too small and lost
significant precision. In the second one, the coefficients values
became too large, which required more computational memory.

So, the binary shifts inserted between the transform
calculations, as described before, in addition to avoid fractional
coefficients, provided final 3D-Hadamard coefficients with
smaller values. This procedure improved the coding process
through the reach of higher compression rates and allowed the
complete implementation with a 16-bit integer arithmetic.

In the decoding process, the Hadamard transform is
calculated in the cube’s frames, then in the cube’s lines and
finally in the cube’s columns. After all, the recovered pixels
values suffer log2 N right binary shifts and the decoding is
finished.

In order to achieve a better understanding of the proposed
method, the traditional coding and decoding 3D-Hadamard
transforms are shown, respectively, by the left and right sides
of (4), where PC means Pixels Cube, CC means Coefficients
Cube and H' = N * Hn. The same transforms implemented
according to the method proposed specially for the FHVC are
shown by (5).

()()

()()

4444444 34444444 21
4444 34444 21

44 344 21

4444444 34444444 21
4444 34444 21
44 344 21

columns

lines

frames

frames

lines

columns

CCH
N

H
N

H
N

PCH
N

H
N

H
N

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⇔

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

'''

'''

111

111

 (4)

()

()

44444 344444 21
444 3444 21
4434421
43421

44444444 344444444 21
44444 344444 21
4444 34444 21
4434421
43421

shifts

columns

lines

frames

shifts

frames

shifts

lines

columns

CCHHH
NN

PCHH
NN

H
NN

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∗

⇔

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∗∗

'''

'''

11

1111

(5)

As the Hadamard matrix is composed only by +1 and −1

values, the one-dimensional transform has a dynamic range
gain of N / N = N . If N = 8, for instance, the dynamic range
gain is 8 . Considering that the transform is three-dimensional
and that the first decoding division by N is carried out at the
encoder, the total dynamic range gain is 83 / (8)4 = 8. Since
log2 8 = 3, only 3 additional bits are necessary to store the
transform coefficients than the necessary to store the pixels
values, which ensures the requirement of using few

computational memory. This analysis for N = 8 is enough and
sufficient because the maximum supported cube size is 8x8x8.

C. Coefficients Sequency Scan Order

With the energy compaction achieved by the 3D-Hadamard
transform, the cube's energy is not any more disperse among its
values and becomes concentrated in some coefficients of the
cube. The reading of these coefficients in a decreasing, or
“decreasing in the average”, order is important because
increases the entropy coding efficiency (which is the next stage
in the coding process).

To determine a fast and fixed reading order (independent of
the information content in each cube), an analysis was
developed with some video sequences and an approximately
common spreading energy pattern was identified. In fact, the
energy became concentrated in DC coefficient (correspondent
to the sequency 0 row in (3)) and in AC low frequency
coefficients (correspondent to the sequency 1, 2, 3 and 4 rows
in (3)). The other AC coefficients are associated with higher
frequencies and have smaller energy values. So, to assure that
the coefficients with the higher energy values will be initially
scanned, it is necessary to take in account the three sequency
numbers of each coefficient (one sequency number in each
dimension of the cube).

The new method developed for the appropriate
consideration of the three sequency numbers of each
coefficient performs the multiplication of them. Once each
sequency number can vary from 0 to 7, the multiplication
result value can vary from 0 to 343 (which corresponds to
7*7*7). This value is the one that will be used to order all
coefficients of each cube. In order to do this, each
multiplication value will be associated with all the three
sequency numbers possible combinations that produce the
value. For instance, the multiplication value 8 will be
associated with the triples: (1, 2, 4), (1, 4, 2), (2, 1, 2), (2, 2, 2),
(2, 4, 1), (4, 1, 2) and (4, 2, 1), where the triples are composed
by (frame sequency number, line sequency number, column
sequency number).

Once the multiplication value 0 could have almost two
thousand associated triples (because would embrace all the
triples with the sequency number 0 in any position), all the
sequency numbers were added with the value 1 before the
multiplication operations. Because of this, the final
multiplication result can vary from 1 to 512 (which
corresponds to 8*8*8).

Not only all the three sequency numbers possible triples
must be associated with the correspondent multiplication value,
but also these triples must be ordered for each multiplication
value according, initially, by the frame sequency number, then
by the line sequency number and finally by the column
sequency number. That must be done because the cube’s
energy is concentrated first in the low frame sequency
numbers, then in the low line sequency numbers followed by
the low column sequency numbers. In the example shown
before for the multiplication value 8, the triples are already
organized through this order.

The last coefficients scan order procedure stage is to
translate the sequency numbers to the real cube coordinates.
This translation is shown in Fig. 3 and it is necessary because
of the transform Hadamard order explained in Section 2.2.

0 → 0
Sequency → Coordinate

1 → 4

2 → 6

3 → 2

4 → 3

5 → 7

6 → 5

Fig. 3. Translation of the sequency numbers to the real cube coordinates.

In order to illustrate the coefficients cube sequency reading

order implemented in the FHVC, the "Hall Monitor" QCIF
video sequence in YUV 4:2:0 format is used with a cube size
of 8x8x8.

Fig. 4(a) shows the sequence correspondent to the AC
coefficients of the cube 7x8 belonging to the #264-#271
luminance frames block read by a column-line-frame scan
order. This reading order generates high energy periodic peaks
at each 64 coefficients approximately and low energy periodic
peaks spaced each 8 coefficients.

Each higher energy peak in Fig. 4(a) corresponds to the
coefficient read in sequency number 0 line and sequency
number 0 column of each frame in the coefficients cube. The
eight coefficients in this position are in the transverse axis in
Fig. 3. The periodicity reading for these coefficients is 64
because all 63 coefficients from the previous frames are read
first.

For the lower energy peaks in Fig. 4(a), the periodicity is 8
because the reading is line by line. Besides, the energy of the
peaks in the sequency number 0 column is higher than the
energy of the coefficients located in the other columns.

(a)

(b)

Fig. 4. AC coefficients of the "Hall Monitor" cube 7x8 belonging to the
#264-#271 luminance frames block read by (a) column-line-frame scan order;

(b) FHVC sequency scan order.

With the analysis of the graph in Fig. 4(a) it was possible to
identify the spreading energy pattern of the Hadamard
coefficients cube and to develop the new sequency scan order
approach presented. The Fig. 4(b) shows the same coefficients
of the Fig. 4(a), but read according to this new scan order. One
can see that the coefficients are in a “decreasing in the
average” order, which increases the efficiency of the next stage
in the coding process (the entropy coding stage).

The first frame of the #264-#271 frames block is shown in
Fig. 5 with the cube 7x8 used in Fig. 4 detached. It can be
visually realized that the detached cube has a uniform content.
So, the AC coefficients values are low, which agree with the
low energy values shown by the lower AC coefficients
numbers of the Fig. 4(a). In fact, these initial coefficients are
proceeding from the frame with sequency number 7, which is
the highest frequency of the cube.

Once the scan order for one cube of the block was
developed, it was necessary to develop a scan order to read all
the cubes of the block. If the cube size is 8x8x8 and the video
sequence is in QCIF format, there are 22 * 18 = 396 cubes in
each 8 frames block.

To explore the correlation between coefficients located in
the same position of adjacent cubes, the coefficients of all the
cubes are read according to a spiral curve, beginning with the
coefficient of the superior left cube and finishing with the
coefficient of the central cube. Initially, the DC coefficient of
the superior left cube is read, then the DC coefficient of the
right neighbor cube is read and so on until the DC coefficient
of the central cube. Following, each AC coefficient (in the scan
order described before) is read similarly for all the cubes.

The graph in Fig. 6(a) corresponds to the AC coefficients of
the #264-#271 luminance frames block read by a column-line-
frame scan order. Comparing this sequence with the one shown
in Fig. 6(b), which corresponds to the FHVC sequency scan
order, it is possible to verify that a better grouping of AC
coefficients with similar values is achieved in fact.

D. Adaptive Entropy Coding with Golomb's RLE

Entropy coding is performed in the FHVC by an adaptive
version of Golomb's RLE described in [2]. This entropy coding
technique uses concepts extracted from well-known wavelets
transforms methods, such as EZW (Embedded Zerotree
Wavelet) [5] and SPIHT (Set Partitioning in Hierarchical
Trees) [6].

Most video codecs perform quantization of the coefficient
values before the entropy coding stage. The FHVC doesn't
perform this explicit quantization and so, it can be used in a
lossless manner. In fact, the FHVC performs an implicit
coefficient quantization because the encoding is applied to bit
planes (beginning with the most significant bit plane), which
generates an embedded encoded bitstream. Thus, the decoding
can be done aiming a specific desired rate. Another possibility
is to control the bit-rate during encoding generating the coded
bitstream at the desired rate.

III. RESULTS

In order to achieve a multi-platform code, the codec
computational system is implemented in C# language, in the
Microsoft Visual C# . NET environment. The encoding and the

Fig. 5. Detached cube 7x8 belonging to the #264 frame of the "Hall Monitor"
sequence whose AC coefficients of the luminance plane are shown in Fig. 4.

(a)

(b)

Fig. 6. AC coefficients of the "Hall Monitor" #264-#271 luminance frames
block read by (a) column-line-frame scan order;

(b) FHVC sequency scan order.

decoding processes, as well as all other supported operations
Microsoft Visual C# .NET environment. The encoding and
decoding processes, as well as all other supported operations
(e. g. parameters settings and optimized coded video file bit-
rate reduction), are controlled by the user through graphical
interfaces.

With the FHVC, it is possible to perform the video sequence
encoding and decoding separately or in sequence. Fig. 7
presents the screen for the last one option, where the video
sequence decoding begins immediately after the end of the
coding process. Through this interface, the user can inform the
original video file path, format, resolution and quantity of
frames. The desired coded file bit-rate can also be chosen. Bit-
rates lower than the available in the interface are obtained
through other graphical interface of the FHVC. This interface
enables a fast reduction of the coded video file bit-rate to the
bit-rate desired by the user. All the encoding and decoding
operations can be followed by the user through the messages
shown in the “Coding and Decoding Status” area. The
messages shown in Fig. 7 correspond to the end of a successful
video sequence coding and decoding process.

Fig. 7. FHVC graphical interface showing the successful result of a video sequence coding and decoding process.

In order to evaluate the FHVC computational efficiency, the
encoding and decoding times of given video sequences were
measured. All execution times were obtained with a Pentium-4
3.20 GHz processor and 3GB of memory, running exclusively
the codec.

For comparisons, we used the H.264/AVC official reference
software obtained in [7]. The techniques used in this pattern
are very different from the used on FHVC. Nevertheless, the
comparison with the H.264/AVC is considered interesting
because it is the video codec with the best performance
nowadays.

It's very important to emphasize that there are H.264/AVC
optimized implementations much faster than the official
reference software. Even thus, we chose compare FHVC
performance with the official reference software performance
because this is a non-proprietary implementation and is always
enabled complete, without restrictions. So, coding and
decoding times of any other codec can also be compared with
the H.264/AVC official reference software and then, be
indirectly compared to the performance obtained with the
FHVC.

Besides that, FHVC implementation is also not optimized
for the hardware where it is being executed, once that C#
(which is the programming language used in FHVC) is
interpreted and a compiled code version was not generated.

Most H.264/AVC configuration parameters were set as
"default", according to the software official manual developed
by the Joint Video Team (JVT). The parameters not set as
"default" in the configuration file are: Main profile, level 2.0,
GOP of size 15 given by I-B-B-P-B-B-P-B-B-P-B-B-P-B-B, 5
reference frames and CABAC (Context-based Adaptive Binary
Arithmetic Coding) entropy coding.

Fig. 8 presents the results obtained with the H.264/AVC and
the FHVC for the "Hall Monitor" QCIF sequence in the YUV
4:2:0 format considering 8 frames per cube. Other sequences in
QCIF and CIF formats were also tested with similar results.

Fig. 8. PSNR versus bit-rate curves for the luminance and chrominance

components of the “Hall Monitor” sequence.

The choice of using 8 frames per cube for coding the "Hall
Monitor" sequence was done because this sequence has
reduced motion and fixed background. Other sequences with
high motion contents and rich detailed frames would be better
coded with 4 frames per cube.

It is possible to verify in Fig. 8 that the H.264/AVC codec
always achieves superior results in terms of peak signal to
noise ratio (PSNR) versus bit-rate and that the difference in the
codecs performance is less significant in the chrominance
components.
According to Fig. 8, the FHVC uses approximately 3 times the
bit-rate of H.264. This rate-distortion result is justified in
applications where high capacity is available (e. g. optical
links) but computational resources (complexity) at the end
nodes are limited. In fact, this is the case for FHVC, once it
was developed to be executed by a set-top box on a fiber optics
network.

The visual quality comparison is presented in Fig. 9, where
Fig. 9(a) is the original frame. Fig. 9(b) and Fig. 9(c) present
this frame reconstructed after being encoded at 0.12 bit/pixel
by H.264 and FHVC, respectively. It can be verified in Fig.
9(c), that the FHVC visual performance is satisfactory at a bit-
rate of 0.12 bit/pixel (which implies a good compression by a
factor of 100).

The good FHVC result at Fig. 9(d) was already expected,
since at the rate of 0.33 bit/pixel, the FHVC achieves a
reasonable PSNR value of 38 dB for the luminance
component, as shown in Fig. 8.

The encoding and decoding times obtained with the FHVC
and the H.264/AVC codec (measured at the same bit-rates) are
shown in Table 1. As the FHVC is a symmetric codec, the
encoding and decoding times are almost the same, unlike
H.264/AVC, where the decoding is 23 times faster, in average,
than the encoding.

Based on Table 1, we can verify that the FHVC is
consistently faster than the H.264/AVC official reference
software, being approximately 200 times faster in encoding
and 11 times faster in decoding.

As the FHVC is always superior to H.264/AVC in terms of
execution time, but always inferior in terms of PSNR versus
bit-rate, we looked for at which bit-rate the FHVC could
achieve a sequence with similar visual quality to that achieved
by H.264/AVC. This analysis showed that at the rate of 0.33
bit/pixel, the FHVC produces the frame shown in Fig. 9(d),
which has visual quality comparable to the H.264/AVC frame,
shown in Fig. 9(b).

TABLE 1. ENCODING AND DECODING TIMES

FOR THE "HALL MONITOR" SEQUENCE.

(a)

(b)

(c)

(d)

Fig. 9. "Hall Monitor" frame #264 (a) original; (b), (c) and (d) reconstructed

after being encoded respectively by H.264 (0.12 bit/pixel), FHVC (0.12
bit/pixel), and FHVC (0.3 bit/pixel).

According to Table 1, the H.264/AVC codec requires

2,855.75 ms per frame for encoding at 0.12 bit/pixel. The
FHVC requires 15.923 ms per frame for encoding at 0.33
bit/pixel, which produces similar visual quality frames for this
sequence. It can be concluded that, at the cost of reducing the
H.264/AVC compression rate by a factor of 2.75, an encoding
180 times faster can be achieved with the FHVC. Another
important observation is that the encoding time of 15.923 ms
per frame makes it possible to have real time video sequences
encoding at 30 fps.

IV. CONCLUSIONS

A new 3D-Hadamard transform coefficients scan order
based on the multiplication of the coefficients sequency
numbers was presented. This scan order enabled the reading of
the cubes coefficients in a decreasing, or “decreasing in the
average”, order (which increases the entropy coding
efficiency).

The scan order presented was created for a fast embedded
3D-Hadamard color video codec named FHVC, which was
developed to be executed by a set-top box device on a
broadband network.

With the modifications implemented in the normalizing
factors (especially the groupings and the displacement of the
normalizing factors from the decoder to the encoder) it was
possible to adjust the dynamic range of the data to the available
fixed point 16-bit representation. Besides, doing the
normalization in pairs allows for implementation by simple bit
shifts.

The codec behaves well for general video applications. For
high bit rates applications (around 0.9 bpp), the PSNR
degradation with respect to H.264 is less pronounced (around 3
dB) than what happens in the low bit rate scenario (around 0.1
bpp), where this degradation may be in excess of 6 dB.

The applicability of this codec is best directed to systems
with complexity and storage limitations, possibly using fixed
point processes, but enjoying high bit rates network
connections (low cost codec but making use of high
performance links). An added advantage is the exception of
intellectual fees.

Performance results for one particular video sequence were
shown. Results with other video sequences led to similar
conclusions and indicated that, at the cost of a reduction in
H.264/AVC compression rate by a factor of 2 up to 4, it is
possible to get encoding times that are significantly (around
200 times) smaller with the FHVC.

V. REFERENCES

[1] R. K. W. Chan and M. C. Lee, "3D-DCT Quantization as a Compression
Technique for Video Sequences". International Conference On Virtual
Systems And Multimedia, Geneva, Switzerland, p. 188-196, 1997.

[2] F. C. Oliveira and M. H. M. Costa, "Embedded DCT Image Encoding",
IEEE-SBrT International Telecommunications Symposium – ITS-2002,
Natal, RN, Brazil, Sept. 2002.

[3] G. Sullivan and S. Estrop, "Video Rendering with 8-bit YUV Formats".
Redmond, WA, USA: Microsoft Digital Media Division, 2003.

[4] A. K. Jain, Fundamentals of Digital Image Processing. Prentice Hall,
Englewood Cliffs, NJ, USA, 1989.

[5] J. M. Shapiro, “Embedded Image Coding Using Zerotrees of Wavelet
Coefficients”. Proceedings of the International Conference on Acoustics,
Speech and Signal Processing, 1993, v. 41, n. 12, p. 3445 - 3462.

[6] A. Said and W. A. Pearlman, “A New Fast and Efficient Image Coded
Based on Set Partitioning in Hierarchical Trees”. Proceedings of the IEEE
Transactions on Circuits and Systems for Video Technology, 1996, v. 6, p.
243 – 250.

[7] H.264/AVC reference software version JM 11.0,
http://iphome.hhi.de/suehring/tml/. Obtained in Dec. 2006.

[8] R. K. W. Chan and M. C. Lee, "Quantization of 3D-DCT Coefficients and
Scan Order for Video Compression”, Journal of Visual Communication
and Image Representation, v. 8, n. 4, p. 405-422, 1997.

[9] V. Testoni and M. H. M. Costa, "Fast Embedded 3D-Hadamard
Color Video Codec", XXV Simpósio Brasileiro de
Telecomunicações - SBrT'2007, Recife, PE, Brazil, Sept. 2007.

	II. VIDEO CODEC OVERVIEW
	A. Video Codec Color Spaces
	B. Three-dimensional Hadamard Transform
	C. Coefficients Sequency Scan Order
	D. Adaptive Entropy Coding with Golomb's RLE

	III. RESULTS
	IV. CONCLUSIONS
	V. REFERENCES
	1.1 PAPER No: 054

	2. Evaluation
	2.1.1 Weak
	7.1 PAPER No: 075

	8. Evaluation
	8.1.1 Weak
	13.1 PAPER No: 075

	14. Evaluation
	14.1.1 Weak

