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Abstract - This work presents a new 3D-transform coefficients 
scan order based on the multiplication of the three dimensions 
sequency numbers of each coefficient. This scan process is 
developed to a fast embedded color video codec (also described in 
this article) to be executed in a set-top box on a fiber optics 
network. Due to its purpose, the codec is focused on reduced 
execution time, not on high compression rates. Low computational 
complexity and use of meager computational resources are also 
required. The Hadamard transform is used in a three-dimensional 
fashion, in order to avoid costly motion estimation and 
compensation techniques. The proposed scan procedure allows 
the coefficients reading in an idealistic “decreasing in the 
average” order. After the scan procedure, the encoding of the bits 
of the 3D-Hadamard coefficients is done, bit-plane-by-bit-plane, 
with an efficient adaptive version of Golomb's run-length 
encoder, which produces a fully embedded output bitstream. Even 
with the use of these constrained techniques, good distortion 
versus rate results were achieved. 

Keywords - Embedded coding, Hadamard transform, color video 
codec, three-dimensional transform, fast video codec, C# 
language. 

 
I.  INTRODUCTION 

The new coefficients sequency scan order proposed in this 
article was created for a color video codec named Fast 
Hadamard Video Codec (FHVC). This video codec was 
developed in C# language to be executed in a set-top box 
device futurely developed. The set-top box will be the interface 
between a fiber optics network and its users. This device will 
receive digital signals, extract video, audio and data 
information and send that information to an output device. 
Among other functions, as Internet accessibility and voice over 
IP, the set-top box will be able to receive and send video 
signals proceeding from, for instance, video on demand and 
video conference applications. The codec will be inserted on 
SIP (Session Initiation Protocol), which through the SDP 
(Session Description Protocol) has mechanisms that allow the 
insertion of new video codecs. 

Research on video coding systems typically looks for 
techniques that can reach the highest possible compression rate 
while not exceeding a given level of distortion. This 
compression rate increase is generally achieved by means of 
increased coding complexity, which is supported by the 
continuous increase in computational power. However, in 
some video coding and transmission applications, the use of 
high capacity processors is not possible or desirable. These 
situations require video codecs focused on reduced execution 
times and in few computational resources, just as the FHVC. 

In order to reduce the codec execution time, the very simple 
Hadamard transform is used instead of the traditional DCT 
(Discrete Cosine Transform). The Hadamard transform was 
chosen because, even though it doesn't provide the same 
energy concentration advantages of the DCT, it is able to 
reduce the correlation of the coefficients and its 
implementation requires only additions and subtractions. To 
reduce even more the execution time, the highly efficient, but 
time-consuming, motion estimation and compensation 
techniques are avoided and the Hadamard transform is 
implemented in a three-dimensional fashion. 

After Hadamard-transforming 3D blocks of pixels, the codec 
reads and reorders each coefficients block. It was found that 
the distribution of the dominant AC coefficients spreads along 
the major axes of the 3D-Hadamard cube, just as found for 3D-
DCT cubes [1]. It was also found that the cube energy is 
concentrated according to the coefficient sequency number in 
the three dimensions. Based on this, a new scan order based on 
the multiplication of the three sequency numbers of each 
coefficient is developed to be adopted for the 3D-Hadamard 
coefficients. Generally, a specific scan order is better than a 
traditional three-dimensional zig-zag scan. 

The codec encodes the resulting sequency reordered 
coefficients in a bit-plane-by-bit-plane fashion, refining their 
precision at each turn. This process renders a completely 
embedded encoded video file bitstream. The encoding of each 
bit plane of the 3D-Hadamard coefficients is accomplished 
using an adaptive version of Golomb's RLE (Run-Length 
Encoder) [2]. 

Due to cost restrictions, the set-top box device will be 
designed with a low capacity processor and few computational 
memory. Because of this, the entire video codec 
implementation is designed to perform only fast mathematical 
operations and to require small computational memory. All the 
multiplications and divisions operations are done by powers of 
two, so that they can be performed by variable binary shifts. 
Moreover, the system is implemented exclusively with 16-bit 
integer arithmetic, which also requires approximations. The 
errors introduced by these approximations can be compensated 
by the reduction of the compression rate. This reduction is 
acceptable, once the video codec is focused on speed, not on 
high compression performance. 

An overview of the codec stages is provided in Section 2. 
The optimized 3D-Hadamard transform implementation is 
presented in Section 2.2 and the new coefficients sequency 
scan order is explained in Section 2.3. The results are 
presented in Section 3. 

 



II.  VIDEO CODEC OVERVIEW 

The FHVC block diagram is depicted in Fig. 1. The video 
codec stages are described in this section in the order they 
appear in the figure below. 

 
A. Video Codec Color Spaces 

The FHVC is able to read color video sequences stored in 
tri-stimulus color space, such as RGB and YUV 4:2:0. Each 
such color plane is encoded separately and the allowed pixel 
bit-rate is divided among the color planes according to its 
significance. So, for the RGB format, the pixel bit-rate is 
equally divided, but in the YUV 4:2:0 format, the luminance 
plane receives more bits than the chrominance planes (because 
the U and V chrominance planes are one-fourth the size of the 
luminance Y plane). In the FHVC, only approximately 10% of 
the luminance rate is spent on the chrominance signal. This 
simple weighted bit-rate division procedure allows achieving 
higher compression rates. 

In order to get the well-known advantages of the L-C 
(Luminance - Chrominance) formats, it is possible to convert 
an original RGB video sequence to a different internal color 
space (such as YUV 4:2:0) before beginning the coding 
process. Other color spaces are also supported by the FHVC 
and the conversions among them [3] are also implemented. 

 
B. Three-dimensional Hadamard Transform 

The Hadamard transform was chosen for the FHVC because 
of its base functions, composed by +1 and −1 elements. Thus, 
the transform computations do not require multiplications [4]. 

Although the use of the 3D Hadamard presents no 
innovation, this transform was chosen because it is simple (just 
as the normalizations stages), it is identical to its inverse and it 
is easy to extend results to 8x8x8 (or greater) transforms 
(generally not true for other transforms). 

The Hadamard transform matrices Hn are NxN matrices, 
where N = 2n. These can be generated by the core matrix 
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and the Kronecker product recursion 
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As an example, for n = 3, the Hadamard matrix becomes 
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Fig. 1. Block diagram of the FHVC structure. 
 
The basis vector of the Hadamard transform can also be 

generated by sampling the class of functions called Walsh 
functions shown in Fig. 2. These functions also take only the 
binary values ±1 and form a complete orthonormal basis for 
square integrable functions. 

The number of zero crossings of a Walsh function or the 
number of transitions in a basis vector of the Hadamard 
transform is called its sequency (as well as the sinusoidal 
signals frequency can be defined in terms of the zero 
crossings). 

In the Hadamard matrix generated through (2), the row 
vectors are not sequency ordered, as shown in (3) by the 
column named “Sequency”. The existing sequency order of 
these vectors is called the Hadamard order because this is the 
order used by the transform. 

Some Hadamard transform fast calculation methods were 
developed and the chosen one to be used by the FHVC is based 
on the fact that the Hn matrix can be written as a product of N 
sparse matrices H~  [4]. Each multiplication by H~  implies the 
execution of log2 N additions or subtractions. As this 
multiplication is repeated N times, the total number of 
operations is N * log2 N. Without this method, N2 operations 
would be realized. Therefore, besides being simple, the 
Hadamard transform can also be fast. 

The video sequence being encoded is partitioned into cubes 
and the Hadamard transform is applied separately in each cube 
and in each cube dimension (first in columns, then in lines and 
finally in frames). That can be done because the three-
dimensional Hadamard transform is a separable transform. To 
evaluate the cube size effect in the coding performance, the 
FHVC can be executed with cubes of sizes 4x4x4 and 8x8x8. 
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Fig. 2. Walsh functions sampled to Hadamard matrix generation. 
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The Hadamard transform computation in each cube 
dimension requires the division of the coefficients by N  (as 
shown in (3)). This division is done to preserve the signal 
energy in the transform domain. Similarly, the divisions must 
be performed in the decoder because the same transform is 
used in the inverse operation, once the Hadamard transform is 
real, symmetric and orthogonal. 

To avoid the fractional coefficients (generated by the N  
divisions) and to reduce the coefficients magnitude after the 
three Hadamard transform calculations (one in each cube 
dimension), a new implementation for the FHVC was 
developed. In this new approach, first, the Hadamard transform 
is applied in the cube’s columns and after in the cube’s lines. 
These two Hadamard transform calculations require two 
divisions of the coefficients by N . In order to remove the 
square root operation, these two divisions are grouped, 
generating only one division by N. It is possible to move and 
group the division terms because the Hadamard transform is a 
linear process. Since the supported values for N are powers of 
2, the division by N can be implemented through binary shifts. 
The consequence is that after the two Hadamard transform 
calculations, the coefficients suffer log2 N right binary shifts, 
instead of being divided twice by N . 

After the application of the Hadamard transform in the 
cube’s columns and in the cube’s lines, the transform must be 
applied in the cube’s frames. This application requires a new 
division of the coefficients by N . However, this is the last 
one Hadamard transform calculation done during the coding 
process. So, there is no other division term to be grouped with 
this division term in order to repeat the anterior procedure and 
remove the square root operation. The solution found, which is 
a new approach developed, was to bring the first transform 
division term of the decoding process to the end of the coding 
process. That can be done because, as presented before, the 
same Hadamard transform is performed in the decoder and the 
first decoding calculation was the coefficients division by N . 

In such case, the Hadamard transform is applied in the 
cube’s frames, its division term is grouped with the first 
decoder Hadamard transform division term and the coefficients 
suffer new log2 N right binary shifts. 

Two other simple ways to remove the square root operation 
of the Hadamard transform calculated in the cube’s frames are: 

 

- To group the log2 N right binary shifts with the previous 
one and perform all the binary shifts together before the 
transform calculation in the cube’s frames. 

 

- To group all the right binary shifts and perform them 
together after the transform calculation in the cube’s 
frames. 

 

The two options described above are simpler than the 
developed to the FHVC, but can’t be used because in the first 
one, the coefficients values became too small and lost 
significant precision. In the second one, the coefficients values 
became too large, which required more computational memory.  

So, the binary shifts inserted between the transform 
calculations, as described before, in addition to avoid fractional 
coefficients, provided final 3D-Hadamard coefficients with 
smaller values. This procedure improved the coding process 
through the reach of higher compression rates and allowed the 
complete implementation with a 16-bit integer arithmetic. 

In the decoding process, the Hadamard transform is 
calculated in the cube’s frames, then in the cube’s lines and 
finally in the cube’s columns. After all, the recovered pixels 
values suffer log2 N right binary shifts and the decoding is 
finished. 

In order to achieve a better understanding of the proposed 
method, the traditional coding and decoding 3D-Hadamard 
transforms are shown, respectively, by the left and right sides 
of (4), where PC means Pixels Cube, CC means Coefficients 
Cube and H' = N  * Hn. The same transforms implemented 
according to the method proposed specially for the FHVC are 
shown by (5). 
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As the Hadamard matrix is composed only by +1 and −1 

values, the one-dimensional transform has a dynamic range 
gain of N / N = N . If N = 8, for instance, the dynamic range 
gain is 8 . Considering that the transform is three-dimensional 
and that the first decoding division by N  is carried out at the 
encoder, the total dynamic range gain is  83 / ( 8 )4 = 8. Since 
log2 8 = 3, only 3 additional bits are necessary to store the 
transform coefficients than the necessary to store the pixels 
values, which ensures the requirement of using few 



computational memory. This analysis for N = 8 is enough and 
sufficient because the maximum supported cube size is 8x8x8. 
 
C. Coefficients Sequency Scan Order 

With the energy compaction achieved by the 3D-Hadamard 
transform, the cube's energy is not any more disperse among its 
values and becomes concentrated in some coefficients of the 
cube. The reading of these coefficients in a decreasing, or 
“decreasing in the average”, order is important because 
increases the entropy coding efficiency (which is the next stage 
in the coding process). 

To determine a fast and fixed reading order (independent of 
the information content in each cube), an analysis was 
developed with some video sequences and an approximately 
common spreading energy pattern was identified. In fact, the 
energy became concentrated in DC coefficient (correspondent 
to the sequency 0 row in (3)) and in AC low frequency 
coefficients (correspondent to the sequency 1, 2, 3 and 4 rows 
in (3)). The other AC coefficients are associated with higher 
frequencies and have smaller energy values. So, to assure that 
the coefficients with the higher energy values will be initially 
scanned, it is necessary to take in account the three sequency 
numbers of each coefficient (one sequency number in each 
dimension of the cube). 

The new method developed for the appropriate 
consideration of the three sequency numbers of each 
coefficient performs the multiplication of them. Once each 
sequency number can vary from 0 to 7, the multiplication 
result value can vary from 0 to 343 (which corresponds to 
7*7*7). This value is the one that will be used to order all 
coefficients of each cube. In order to do this, each 
multiplication value will be associated with all the three 
sequency numbers possible combinations that produce the 
value. For instance, the multiplication value 8 will be 
associated with the triples: (1, 2, 4), (1, 4, 2), (2, 1, 2), (2, 2, 2), 
(2, 4, 1), (4, 1, 2) and (4, 2, 1), where the triples are composed 
by (frame sequency number, line sequency number, column 
sequency number). 

Once the multiplication value 0 could have almost two 
thousand associated triples (because would embrace all the 
triples with the sequency number 0 in any position), all the 
sequency numbers were added with the value 1 before the 
multiplication operations. Because of this, the final 
multiplication result can vary from 1 to 512 (which 
corresponds to 8*8*8). 

Not only all the three sequency numbers possible triples 
must be associated with the correspondent multiplication value, 
but also these triples must be ordered for each multiplication 
value according, initially, by the frame sequency number, then 
by the line sequency number and finally by the column 
sequency number. That must be done because the cube’s 
energy is concentrated first in the low frame sequency 
numbers, then in the low line sequency numbers followed by 
the low column sequency numbers. In the example shown 
before for the multiplication value 8, the triples are already 
organized through this order. 

The last coefficients scan order procedure stage is to 
translate the sequency numbers to the real cube coordinates. 
This translation is shown in Fig. 3 and it is necessary because 
of the transform Hadamard order explained in Section 2.2. 

 

0 → 0 
Sequency → Coordinate 

1 → 4 

2 → 6 

3 → 2 

4 → 3 

5 → 7 

6 → 5 

 
Fig. 3. Translation of the sequency numbers to the real cube coordinates. 

 
In order to illustrate the coefficients cube sequency reading 

order implemented in the FHVC, the "Hall Monitor" QCIF 
video sequence in YUV 4:2:0 format is used with a cube size 
of 8x8x8. 

Fig. 4(a) shows the sequence correspondent to the AC 
coefficients of the cube 7x8 belonging to the #264-#271 
luminance frames block read by a column-line-frame scan 
order. This reading order generates high energy periodic peaks 
at each 64 coefficients approximately and low energy periodic 
peaks spaced each 8 coefficients. 

Each higher energy peak in Fig. 4(a) corresponds to the 
coefficient read in sequency number 0 line and sequency 
number 0 column of each frame in the coefficients cube. The 
eight coefficients in this position are in the transverse axis in 
Fig. 3. The periodicity reading for these coefficients is 64 
because all 63 coefficients from the previous frames are read 
first.  

For the lower energy peaks in Fig. 4(a), the periodicity is 8 
because the reading is line by line. Besides, the energy of the 
peaks in the sequency number 0 column is higher than the 
energy of the coefficients located in the other columns. 

 

 

(a) 

 

(b) 

Fig. 4. AC coefficients of the "Hall Monitor" cube 7x8 belonging to the                  
#264-#271 luminance frames block read by (a) column-line-frame scan order;                    

(b) FHVC sequency scan order. 



With the analysis of the graph in Fig. 4(a) it was possible to 
identify the spreading energy pattern of the Hadamard 
coefficients cube and to develop the new sequency scan order 
approach presented. The Fig. 4(b) shows the same coefficients 
of the Fig. 4(a), but read according to this new scan order. One 
can see that the coefficients are in a “decreasing in the 
average” order, which increases the efficiency of the next stage 
in the coding process (the entropy coding stage). 

The first frame of the #264-#271 frames block is shown in 
Fig. 5 with the cube 7x8 used in Fig. 4 detached. It can be 
visually realized that the detached cube has a uniform content. 
So, the AC coefficients values are low, which agree with the 
low energy values shown by the lower AC coefficients 
numbers of the Fig. 4(a). In fact, these initial coefficients are 
proceeding from the frame with sequency number 7, which is 
the highest frequency of the cube. 

Once the scan order for one cube of the block was 
developed, it was necessary to develop a scan order to read all 
the cubes of the block. If the cube size is 8x8x8 and the video 
sequence is in QCIF format, there are 22 * 18 = 396 cubes in 
each 8 frames block. 

To explore the correlation between coefficients located in 
the same position of adjacent cubes, the coefficients of all the 
cubes are read according to a spiral curve, beginning with the 
coefficient of the superior left cube and finishing with the 
coefficient of the central cube. Initially, the DC coefficient of 
the superior left cube is read, then the DC coefficient of the 
right neighbor cube is read and so on until the DC coefficient 
of the central cube. Following, each AC coefficient (in the scan 
order described before) is read similarly for all the cubes. 

The graph in Fig. 6(a) corresponds to the AC coefficients of 
the #264-#271 luminance frames block read by a column-line-
frame scan order. Comparing this sequence with the one shown 
in Fig. 6(b), which corresponds to the FHVC sequency scan 
order, it is possible to verify that a better grouping of AC 
coefficients with similar values is achieved in fact. 
 
 

D. Adaptive Entropy Coding with Golomb's RLE 

Entropy coding is performed in the FHVC by an adaptive 
version of Golomb's RLE described in [2]. This entropy coding 
technique uses concepts extracted from well-known wavelets 
transforms methods, such as EZW (Embedded Zerotree 
Wavelet) [5] and SPIHT (Set Partitioning in Hierarchical 
Trees) [6]. 

Most video codecs perform quantization of the coefficient 
values before the entropy coding stage. The FHVC doesn't 
perform this explicit quantization and so, it can be used in a 
lossless manner. In fact, the FHVC performs an implicit 
coefficient quantization because the encoding is applied to bit 
planes (beginning with the most significant bit plane), which 
generates an embedded encoded bitstream. Thus, the decoding 
can be done aiming a specific desired rate. Another possibility 
is to control the bit-rate during encoding generating the coded 
bitstream at the desired rate. 
 

III.  RESULTS 

In order to achieve a multi-platform code, the codec 
computational system is implemented in C# language, in the 
Microsoft Visual C# . NET environment. The encoding and the 

 
 

Fig. 5. Detached cube 7x8 belonging to the #264 frame of the "Hall Monitor" 
sequence whose AC coefficients of the luminance plane are shown in Fig. 4. 

 
 

 

(a) 

 

(b) 

Fig. 6. AC coefficients of the "Hall Monitor" #264-#271 luminance frames 
block read by (a) column-line-frame scan order;  

(b) FHVC sequency scan order. 
 
decoding processes, as well as all other supported operations 
Microsoft Visual C# .NET environment. The encoding and 
decoding processes, as well as all other supported operations 
(e. g. parameters settings and optimized coded video file bit-
rate reduction), are controlled by the user through graphical 
interfaces. 

With the FHVC, it is possible to perform the video sequence 
encoding and decoding separately or in sequence. Fig. 7 
presents the screen for the last one option, where the video 
sequence decoding begins immediately after the end of the 
coding process. Through this interface, the user can inform the 
original video file path, format, resolution and quantity of 
frames. The desired coded file bit-rate can also be chosen. Bit-
rates lower than the available in the interface are obtained 
through other graphical interface of the FHVC. This interface 
enables a fast reduction of the coded video file bit-rate to the 
bit-rate desired by the user. All the encoding and decoding 
operations can be followed by the user through the messages 
shown in the “Coding and Decoding Status” area. The 
messages shown in Fig. 7 correspond to the end of a successful 
video sequence coding and decoding process. 



 
Fig. 7. FHVC graphical interface showing the successful result of a video sequence coding and decoding process.

 

In order to evaluate the FHVC computational efficiency, the 
encoding and decoding times of given video sequences were 
measured. All execution times were obtained with a Pentium-4 
3.20 GHz processor and 3GB of memory, running exclusively 
the codec. 

 

For comparisons, we used the H.264/AVC official reference 
software obtained in [7]. The techniques used in this pattern 
are very different from the used on FHVC. Nevertheless, the 
comparison with the H.264/AVC is considered interesting 
because it is the video codec with the best performance 
nowadays.  

 

It's very important to emphasize that there are H.264/AVC 
optimized implementations much faster than the official 
reference software. Even thus, we chose compare FHVC 
performance with the official reference software performance 
because this is a non-proprietary implementation and is always 
enabled complete, without restrictions. So, coding and 
decoding times of any other codec can also be compared with 
the H.264/AVC official reference software and then, be 
indirectly compared to the performance obtained with the 
FHVC. 

Besides that, FHVC implementation is also not optimized 
for the hardware where it is being executed, once that C# 
(which is the programming language used in FHVC) is 
interpreted and a compiled code version was not generated. 

 
 

 

Most H.264/AVC configuration parameters were set as 
"default", according to the software official manual developed 
by the Joint Video Team (JVT). The parameters not set as 
"default" in the configuration file are: Main profile, level 2.0, 
GOP of size 15 given by I-B-B-P-B-B-P-B-B-P-B-B-P-B-B, 5 
reference frames and CABAC (Context-based Adaptive Binary 
Arithmetic Coding) entropy coding. 

Fig. 8 presents the results obtained with the H.264/AVC and 
the FHVC for the "Hall Monitor" QCIF sequence in the YUV 
4:2:0 format considering 8 frames per cube. Other sequences in 
QCIF and CIF formats were also tested with similar results. 

 
Fig. 8. PSNR versus bit-rate curves for the luminance and chrominance 

components of the “Hall Monitor” sequence. 



The choice of using 8 frames per cube for coding the "Hall 
Monitor" sequence was done because this sequence has 
reduced motion and fixed background. Other sequences with 
high motion contents and rich detailed frames would be better 
coded with 4 frames per cube. 

It is possible to verify in Fig. 8 that the H.264/AVC codec 
always achieves superior results in terms of peak signal to 
noise ratio (PSNR) versus bit-rate and that the difference in the 
codecs performance is less significant in the chrominance 
components. 
According to Fig. 8, the FHVC uses approximately 3 times the 
bit-rate of H.264. This rate-distortion result is justified in 
applications where high capacity is available (e. g. optical 
links) but computational resources (complexity) at the end 
nodes are limited. In fact, this is the case for FHVC, once it 
was developed to be executed by a set-top box on a fiber optics 
network. 

The visual quality comparison is presented in Fig. 9, where 
Fig. 9(a) is the original frame. Fig. 9(b) and Fig. 9(c) present 
this frame reconstructed after being encoded at 0.12 bit/pixel 
by H.264 and FHVC, respectively. It can be verified in Fig. 
9(c), that the FHVC visual performance is satisfactory at a bit-
rate of 0.12 bit/pixel (which implies a good compression by a 
factor of 100). 

The good FHVC result at Fig. 9(d) was already expected, 
since at the rate of 0.33 bit/pixel, the FHVC achieves a 
reasonable PSNR value of 38 dB for the luminance 
component, as shown in Fig. 8. 

The encoding and decoding times obtained with the FHVC 
and the H.264/AVC codec (measured at the same bit-rates) are 
shown in Table 1. As the FHVC is a symmetric codec, the 
encoding and decoding times are almost the same, unlike 
H.264/AVC, where the decoding is 23 times faster, in average, 
than the encoding. 

Based on Table 1, we can verify that the FHVC is 
consistently faster than the H.264/AVC official reference 
software, being approximately 200 times faster in encoding 
and 11 times faster in decoding. 

As the FHVC is always superior to H.264/AVC in terms of 
execution time, but always inferior in terms of PSNR versus 
bit-rate, we looked for at which bit-rate the FHVC could 
achieve a sequence with similar visual quality to that achieved 
by H.264/AVC. This analysis showed that at the rate of 0.33 
bit/pixel, the FHVC produces the frame shown in Fig. 9(d), 
which has visual quality comparable to the H.264/AVC frame, 
shown in Fig. 9(b). 

 
TABLE 1. ENCODING AND DECODING TIMES  

FOR THE "HALL MONITOR" SEQUENCE. 
 

 

 

(a)

 

(b)

 

(c)

 

(d)

 
Fig. 9. "Hall Monitor" frame #264 (a) original; (b), (c) and (d) reconstructed 

after being encoded respectively by H.264 (0.12 bit/pixel), FHVC (0.12 
bit/pixel), and FHVC (0.3 bit/pixel). 

 
According to Table 1, the H.264/AVC codec requires 

2,855.75 ms per frame for encoding at 0.12 bit/pixel. The 
FHVC requires 15.923 ms per frame for encoding at 0.33 
bit/pixel, which produces similar visual quality frames for this 
sequence. It can be concluded that, at the cost of reducing the 
H.264/AVC compression rate by a factor of 2.75, an encoding 
180 times faster can be achieved with the FHVC. Another 
important observation is that the encoding time of 15.923 ms 
per frame makes it possible to have real time video sequences 
encoding at 30 fps. 



IV.  CONCLUSIONS 

A new 3D-Hadamard transform coefficients scan order 
based on the multiplication of the coefficients sequency 
numbers was presented. This scan order enabled the reading of 
the cubes coefficients in a decreasing, or “decreasing in the 
average”, order (which increases the entropy coding 
efficiency). 

The scan order presented was created for a fast embedded 
3D-Hadamard color video codec named FHVC, which was 
developed to be executed by a set-top box device on a 
broadband network. 

With the modifications implemented in the normalizing 
factors (especially the groupings and the displacement of the 
normalizing factors from the decoder to the encoder) it was 
possible to adjust the dynamic range of the data to the available 
fixed point 16-bit representation. Besides, doing the 
normalization in pairs allows for implementation by simple bit 
shifts. 

The codec behaves well for general video applications. For  
high bit rates applications (around 0.9 bpp), the PSNR 
degradation with respect to H.264 is less pronounced (around 3 
dB) than what happens in the low bit rate scenario (around 0.1 
bpp), where this degradation may be in excess of 6 dB. 

The applicability of this codec is best directed to systems 
with complexity and storage limitations, possibly using fixed 
point processes, but enjoying high bit rates network 
connections (low cost codec but making use of high 
performance links). An added advantage is the exception of 
intellectual fees. 

Performance results for one particular video sequence were 
shown. Results with other video sequences led to similar 
conclusions and indicated that, at the cost of a reduction in 
H.264/AVC compression rate by a factor of 2 up to 4, it is 
possible to get encoding times that are significantly (around 
200 times) smaller with the FHVC. 
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