Fair Resource Scheduling for QoS Aware
Collaborative Services on the Internet

Fariza Sabrina
Networking Research Lab
ICT Centre, Commonwealth Scientific and Industrial Reseangdadsation (CSIRO)
Sydney, Australia
Email: Fariza.Sabrina@csiro.au

Abstract— The popularity and availability of Internet connec- guarantee of network capacity or packet delivery, is a engk
tion have accelarated the emergence of new idea for network- for the real time interaction required for most of these atoll
centric collaborative works. Contending traffic flows in this orative services. Efficient resource allocation in suchsiesy

collaborative scenario share different kinds of resources such . . -
as network links, buffers, and router CPU. The goal should 'S @n important and fundamentally complicated problem. In

hence be overall faimess in the allocation of multiple resources order to satisfy QoS requirements of various applicatidres t
rather than a specific resource. Moreover, conventional resage node must control the use of network and processing reseurce

scheduling algorithms depend strongly upon the assumption py properly scheduling them. The system must ensure that
of prior knowledge of network parameters and cannot handle 5| the flows receive their reserved resources while QoS is

variations or lack of information about these parameters. In S . .
this paper, firstly, we present a novel QoS-aware resource also maintained. To ensure this, there must be mechanisms

scheduling algorithm called Weighted Composite Bandwidth and t0 give guaranteed bandwidth and computational resoutces t
CPU Scheduler (WCBCS)which jointly allocates the fair share incoming flows. However, allocation of bandwidth and CPU
of the link bandwidth as well as processing resource to all resources are interdependent and maintaining fairnesaen o
competing flows. WCBCS also uses a simple and adaptive online o5 rce allocation does not necessarily entail fairmesshier
prediction scheme for reliably estimating the processing times . .

of the incoming data packets.Secondly we present complexity resource allocation. Therefore, fqr better mamtenar_m@coﬁ
analysis, extensive NS-2 simulation works, and experimental guarantees and overall fairness in resource allocatianthéo

results from our implementation on Intel IXP2400 network contending flows, the processor and bandwidth scheduling
processor. The simulation and implementation results show that schemes should be integrated.

our low complexity scheduling algorithm can efficiently maximise A significant amount of work has been done in band-

gSaﬁgUo?gin?g 1\8'33 ?g:'i?é%niwgic?d?;'?ga ing guaranteed width resource sch('edullir}g for traditional network. Padkait
Queueing (PFQ) disciplines such as WFQ and?@F [3]
|. INTRODUCTION provide perfect fairness among contending network flows.

The popularity and availability of Internet connection haslowever, WFQ and WK cannot readily be used for pro-
opened up the opportunity for network-centric collabeti cessor scheduling because they require precise knowledge o
work that was impossible a few years ago. Different nethe execution times for the incoming packets at time of their
work centric entertainment applications such as networkadival in the node. Moreover, the work complexity of these
online games, multimedia streaming (video and audio) &dgorithms are)(N), whereN is the number of flows sharing
heterogenous system in collaborative environment, Nd&wothe link. Another PFQ algorithm for bandwidth scheduling
centric Music Performance or NMP where Internet is used &s Start-Time Fair Queueing (SFQ) [4], which does not
rehearsal room by a number participants [1] etc. are beapmiunse packet lengths for updating virtual time, and therefore
very popular. Recent development of Internet technology hseems suitable for scheduling computational resourcasgsi
opened up new opportunities for enterprises too. Dynaniic cd would not need prior knowledge of the execution times
laboration service in virtual enterprise scenario wherdtipla of packets) [4]. However, the worst-case delay under SFQ
participants join in a secured audio/video conferencirsgiem increases with the number of flows and it tends to favor
and record and store the whole session for future referencdldows that have a higher average ratio of processing time per
one example of collorative work in Enterprise scenario. packet to reserved processing rate [5]. One algorithm atalle

Provisioning smart, efficient, dynamic collaborative segv deficit round robin (DRR) achieves fair scheduling witti1)
has drawn huge interest from industries and as a result fasnplexity. But it is used only for link bandwidth schedujin
become a challenging research issue. Many of these applicaA large amount of work has also been done on CPU
tions in collaborative environment need processing thégtac scheduling [6], [7], but most of them are on CPU scheduling
upon arrival, before transmitting it to the clients ([1],)[2 for end systems and work on task level (not on packet level).
Many applications have strict delay bound where as others &oreover, the execution times of various applications atkpa
intolerable of packet loss [2]. The best effort Internetthwio ets are not known in advance, thus constraining efficient and

Resource Manager

fair processor scheduling algorithms, which in turn linthe [EERH
applicability of well-known bandwidth scheduling algéwins LTI | sl |
and also makes explicit or implicit admission control at the * CrD—-Cn—
flow level more difficult. i e —

Pappu et al. [5] presented a processor scheduling algo- fown
rithm for programmable routers called Estimation-baseid Fa
Queueing (EFQ) that estimated the execution times of variou Fig. 1. System Model for WCBCS Scheduler.
applications on packets of given lengths off-line and then

scheduled the processing resources based on the estimation
Fixed values of the estimation parameters measured ef-liflation set-up and analyses the performance of the schedule

may not always produce good estimations due to variatidprough simulation.'Section v pre'sents some experimental
in server load and operating system scheduling. Galtier "&8ults and conclusions are drawn in Section VI.

al. [8] proposed e_x_:scheme to predlpt the CPU requwements.qf_ WCBCS - WEIGHTED COMPOSITEBANDWIDTH AND
executing a specific code on a variety of platforms. Doulamis CPU SHEDULER

et. al. [9] used least square algorithm to predict task work)] o
load and used this information for resource scheduling id gr This section describes the WCBCS scheduler and prediction

computing. However, all these schemes seem too complicatg@hnique used to estimate the packet processing duration.
to be implemented in routers. ; .
All the scheduling schemes discussed above are desig#éd?nllne Prediction F’rocess . .
to schedule only a single resource, i.e., either bandwidth o Since the processing requirement of each packet is not
processing resource. Although the determination of ei@eut known apriori, the WCBCS scheduler needs to estimate the
times for packets in advance on a programmable or active ndj@cessing duration for each arriving packet. We have in-
has been identified as a major obstacle in managing progessfgstigated several smoothing methods and their suitpbilit
resources [8], [5], none of the previous studies providedf%r predicting the processing requirements of the packets.
generalized online solution to the problem. A detailed analysis, investigations and a comparativeoperf
Unlike all the previous works, our work takes an inteMance analysis of the alternatives are discussed in [11]. Ou
grated approach and provides a composite scheduler for biestigations show that the Single Exponential Smoothing
bandwidth and CPU scheduling in order to provide bettéPES) technique is well-suited to estimate the executioesi
QoS guarantees to the contending data flows. In our previff¢he packets. SES is computationally simple and an aiteact
work [10], [11], we presented a composite bandwidth arigethod of forecastln_g. SES uses the following equation to
processor scheduler calleomposite Bandwidth and cpucalculate a new predicted value.
Scheduler (C.BCS)Which.c'an schedule multiple resources Fior=aX,+(1—a)F, where,0<a <1 (1)
adaptively, fairly and efficiently among all the competing
flows. Detailed simulation, analytical and experimentarkvo where, F; and F;,, are the predicted value at" and
presented in [10] proves that our novel idea of integrating+1)*" period respectivelyX; is the actual duration required
the CPU and bandwidth scheduling functionalities within 8 process the packet that arrived at timend« is the SES
single scheduling scheme can provide significantly bettéayd coefficient which determines the relative weight allocated
guarantees than those achievable through separate resotire history and the current estimated sample. In our work,
schedulers. the SES coefficient, was set to 0.4, based on earlier
Although, CBCS has high efficiency but it was develexperimentation, which indicates that a value of 0.4 presid
oped only for best effort flows and does not ensure flothhe most accurate results.
differentiation. In this paper, we present our new composit Most of the packets that are processed by today’s routers
scheduling algorithm called Weighted Composite Bandwidttan be broadly classified into two categories based on their
and CPU Scheduler (WCBCS), which is the extended versiprmocessing needs: (a) header processing and (b) payload pro
of CBCS to make it suitable for QoS flows. The noveltgessing. Header processing application (i.e., IP forvmandi
of this algorithm is, (1) it schedules multiple resources ianly requires read and write operations in the header of the
a single algorithm, (2) it employs a simple and adaptiveacket and so the processing complexity is independenteof th
online prediction scheme called modified Single Exponéntisize of the packets. In contrast, payload processing aijait
Smoothing for determining the packet execution times.t() i (such as IPSec Encryption, packet compression and packet
suitable for QoS flows where flows with different reserve@ ratontent transcoding etc.) involves read and write opeamatio
are weighted differently, but unlike other scheduling aitpon on all the data in the packet, and therefore the processing
of similar capability WCBCS has very low work complexitycomplexity strongly correlates to the packet size [5]. Idesr
(O(1)), making it attractive for implementating in high-speedo count for the correlation between the processing cosls an
routers. packet sizes, we define a parameter calfhling Factor
The paper is organised as follows: Section Il presents tfeF) as: SF' = 1 for header processing packets aﬁg:ﬁl
proposed algorithm. Section Il describes details of the-si for payload processing packets. Hefg, L, = Length of

the packet arriving at time& (t+1) respectively. The scaling in a linked list and the flows are served in a round-robin order
factor is incorporated in the SES estimation as follows: by the WCBCS scheduler. The algorithm uses the following
parameters and equations:
Fi 1 =SF{aX 1—a)F 2
1 {aXi+ (A —a)F} @ " B = Bandwidth of the transmission link in Mbps.
B. Setting up the flow weights « EPF = Estimated processing cost of packebf flow i

WCBCS schedules guaranteed rate connection by assigning inksec. o
weight to each flow. Here we describe how the weight was* Lii = Length of packet: of flow i in bits.
set for each flow. Lew! and ¢} are the weights for CPU * 7' = Resize factor of the packets in flow

and bandwidth for flow. If +* andsi are the reserved CPU * ¢ ~» ¢/“= Upper and lower limit (respectively) of the
and bandwidth for flowi respectively, and"™ and rj* are total CPU queue in terms of CPU processing time re-

the minimum reserved CPU and bandwidth among all flows ?Duir;emer:]nt for ";l_l th;: packets in aIIdthe flows. f
- - - Lo o Ptck=the combined processing and transmission cost for
respectively. The weights are assigned as belgiws= —< and i
_ P i y g g e the £t packet of flow:.
Ph = - e PtcMer = The maximum allowable time slice that a
C. Overview of the WCBCS algorithm packet requires to cover both CPU processing and net-

work transmission, amongst all flows (total cost). There-
We first begin by briefly describing the system model used fgre,

in our work. The Resource Manager (as shown in Figure 1) e 100 x4t x LK
controls the flow registration and setup (including settinm Pte; = T BW
weights for any reserved flows based on the reserved rates
of the bandwidth and processing resources) and admission of
each individual packet. The resource manager also essmate
the CPU requirements of an individual flow based on the

feedback received from the processor handler. The schredule

enqueues them in the corresponding flow queues and dequeues summation of the weights among all flows. TQe:antum

packets using its composite scheduling algorithm WCBCS, . i Moo
which takes both the estimated processing time and trans- of each flow is calculated ag « Pteer. Let Q(r)

mission time of packets into account to decide which packet denqte_the quantum in round .

to dequeue. After dequeueing a packet, the scheduler hands EC[Z] I_ Crfedlt ipl;nﬁer, "?‘jta‘e Va“?blithat re[:()jres.(tarr]l.ts a
the packet to the processor handler object for processing if ;T;Eesc:;i rgLr\:\(lj g:f sc(r)l\géulasger(viismzec? SL?éréé[i]\?:ﬂl) n
required. The processor handler object notifies the Resourc represent the Credit Counter for floiin ro.und T"

Manager after processing each packet so that the schednler ¢ - t
re-estimate the processing times for the new incoming packe ©ON receiving a new packet, the scheduler examines the
The processing and transmissions of different packetserappe2der to determine the flow-id, calculates the CPU prougssi
in parallel in the system, i.e., after processing, the pacieter time using the online prediction scheme d|sc_ussed eartidr a
into a FIFO queue for transmission to their next destinatjorfh€ resize factor, and then stores the packet in the comelspo
which is served by a separate thread. The packets that do gt flow queue. It may be worth noting that processing of
require processing enter directly into the transmissioaugu P2CKets can also affect the sizes of the packets after mioges
after the scheduler dequeues them from their flow queusCOmpleted. To take this packet size change into account fo
Packets from each flow are first processed by the procesggpdwidth consumption, we define and calculate a resizerfact
and then transmitted to the output link. The joint allocatiothat is the average packet size after processing for anichdiv

of the processing and bandwidth resource is accomplisH&yV divided by the average packet size before processing for
by the composite scheduler which selects a packet from fhat flow. The corr_1posﬂe sgheduler malnt_alns a resize factor
input buffers and passes it onto the CPU for processing. [®J &ach flow and its value is updated online.

scheduling action takes place after the processing; theepmc 1he WCBCS scheduler continues to monitor the queue
processed by the CPU are stored in the buffer between {RBIth for all individual flows in terms of the CPU time
processor and the link, and are transmitted in a first-corse-firéquirement and stops accepting packets from a flow if its
serve order. The WCBCS scheduler is based on the principféue length becomes greater theffjy. In this case the
used in DRR [12] . Further contrary to the single resc,ur@cheduler continues to refuse new packets from flountil
schedulers, WCBCS is designed to schedule both bandwidhdueue length becomes smaller thery.

and CPU resources adaptively, fairly and efficiently amahg a Upon initialisation, the&Quantum is set toﬁ—;*Pth %% and

the competing flows. It succeeds in eliminating the unfasnethe Credit Counte(C'C[:]) for all flows are set to zero. The

of pure packet-based round-robin by maintainingCeedit scheduler continues to serve all non-empty queues wittgh ea
Counter to measure the past unfairnesSredit Counteris round of processing. When it starts to serve a queue within a
similar to the variable®eficit counterused by single resourceround, the Credit Counter is set @uantum plus the Credit
schedulers such as DRR [12]. All backlogged flows are stor€bunter of the previous round. The scheduler then dequeues

+ EPY (3)

Quantum = A variable that represents a time slice used
to serve packets from each flow queue, which includes
both CPU processing time and network transmission time
(in msec). Ifw® is the summation of the weights (both
CPU & bandwidth) of flow: and w™ is the smallest

TABLE |

a packet from the head of the queue and calculates’tia SETTINGS FORINDIVIDUAL FLOWS

of the packet according to the Eq.(3). It sets H€i] to

Flow Number 1-10 11-20 21-30
(CC[Z] - Ptcf) and handS the paCket to the processor Handler Referenced Application MPEG2 Encoder | RC2 Decryption | RC2 Encryption
. . . . s Data Size 1.5-24 KB 16 KB 4 KB
object for execution. The packet is sent to its next destinat CPU Requirements per data block __10-40msec 13 msec T3 msec
Resize Factor 0.11 -0.36 0.25 4.0

after processing. The scheduler stops serving a queue loace t
gueue is empty or the credit counter becomes zero or negative
It may be noted that th€'C[i] for a non-active flow (i.e., a
flow having no packets in the queue) is reset to zero. B. Delay Measurements

Fig. 2 shows the delays experienced by the packets of
MPEG2 flows using WCBCS and separate WFQ schedulers.
The maximum and average delays and the standard deviation
The work complexity of a scheduler is defined as thef the delays for all three flows are shown in Table Il

order of time complexity with respect to enqueuing and thedur results show that WCBCS achieves better delay char-

D. Work Complexity

dequeuing a packet for transmission. acteristics compared to separate WFQ schedulers for CPU
Theorem 1:The worst-case work complexity of theand bandwidth scheduling for flows with variable packet size
WCBCS scheduler i©(1). and CPU requirements. With WCBCS, the worst case delay

Proof: The enqueue operation consists of determiniri§ reduced to 16% for MPEG2 and was more or less same
the flow at which the packet arrives and adding the flof@r both RC2 decryption and encryption data flow compared
to the linked list if it is not already in the list. Both ofto the delays achieved using WFQ. Also the average delay
these operations ar@(1). The dequeue procedure involvegvas reduced to 33% for MPEG2 data flow, and was same
determining the next flow to be served, calculating the ¢redpr both RC2 decryption and RC2 encryption data flows
counter and removing the flow from the active list. All of thescompared to the average delays achieved using WFQ. Similar
can be done in constant time, so we can say that dequéugrovements are observed in the standard deviation aethiev
operation is of time complexity)(1). As the complexity of with WCBCS, implying that it provides much more consistent
both the enqueuing and dequeuing task®){d). it follows delay guarantees than that with separate WFQ schedulers.
that the work complexity of the WCBCS scheduler@g1). Note that in our simulation scenario the packet sizes and the
m processing requirements varied significantly for MPEG2 flow

which is typical of real network traffic. The improved delay

performance of WCBCS can be attributed to the fact that the
maximum total cost of scheduling a packet with WCBCS (for
This section presents simulation results on the delay char&PU and bandwidth) is lower than the maximum processing
teristics and the fairness properties of the WCBCS schedufé®st of a packet and maximum transmission cost of a packet
We compared the performance of WCBCS with WFQ, whic¥ith separate WFQ schedulers.
is well known for its good delay and fairness behaviour and TABLE Il
currently used in the routers.

IIl. SIMULATION RESULTS

DELAY MEASUREMENTS

Data Delay using WCBCS (in sec) Delay using WFQ (in sec)
H H P flow Max Avg Standard Max Avg Standard
A. Simulation settlngs delay | delay deviation delay | delay | deviation
. . . MPEG2 1.6 0.2 0.2 1.92 0.3 0.3
_The simulations were performed using j[he NS2 network [—pecryption T 0.6 | 0.1 01 04 T 01 0.29
simulator [13] on a PC with 1.7 GHz Pentium M processor [Encryption | 05 | 0.1 01 05 [01 0.1
and 1012 MB memory running the Linux operating system
(Ubuntu 5.10). Our simulation model consists of 30 UDP flows
sharing a single processor and a link. The simulation ggttin TABLE 11l
of the individual flows are given in Table I. The output link FAIRNESSMEASUREMENTS
capacity was set to 10 Mbps. The simulation was run f@r Data flow w?,, | wi, | Utiized CPU Rates| Utilized BW Rates
. isterval WCBCS | WFQ | WCBCS | WFQ
300 seconds and samples were collected at 1-second ister TS T s

The packet generation rates for all the flows were adjuste®cs becryption | 0.016 | 0.02 | 0.0156 | 0.0156 | 0.02 0.019
such that the cumulative demand for the CPU and bandwidtfC2 Encryption | 0.016 | 0.078 | 0.0157 | 0.0157] 0.078 | 0.079
resources were 92% and 94% respectively. This ensures that

the measured delays reflect the performance of the scheduler

and are not affected by large queuing delays. We compare fhe Fairness Measurements

performance of WCBCS with an implementation consisting of To evaluate the fairness characteristics, we measure tble CP
separate WFQ schedulers for CPU and bandwidth scheduliagd bandwidth utilized by all the flows and compare them with
We assume that the WFQ CPU scheduler uses the same ontheereserved rates. The results are summarized in Tablig 111,
prediction scheme SES, used by WCBCS for estimating tehows that the fairness achieved by WCBCS is better than that
processing duration of each packet. achieved by separate WFQ schedulers.

WCBCS for MPEG2 flow (Max:1.6 sec., Avg:0.2 sec) —— "WFQ for MPEG2 flow (Max:1.92sec., Avg:0.3sec) ——

Delay (sec)
Delay (sec)

0 200 400 600 800 1000 0 200 400 600 800 1000
acket Number Packet Number

(a) DelayPUsing WCBCS (b) Delay Using WFQ

Fig. 2. Delay for MPEG2 flows using WCBCS and WFQ.

0.001

CPU uilization wescs ——

BW utiization --—--
100 - 4

W 0.0008

0.0006
£

80

Error

60 -

esource Utilized (%)

< 00004 [
40 -

Total R

0l 0.0002 -

.
o 50 100 150 200 250 300 50 100 150 200 250 300
Time (sec)

(2) CPU and BW ufilisation with WCBCS. (b) Error

Fig. 3. Resource utilisation and Error in Fairness

D. Resource utilisation IV. IMPLEMENTATIONS OFWCBCSON IXP2400
We measured the CPU and bandwidth utilisations for all the.l_his section presents implementation details of WCBCS

flows for the entire simulation period. Resource utilisatie- -
... on IXP2400. We have developed a data plane application for
sults for WCBCS and WFQ were comparable (CPU ut|I|sat|o|r§(p2400 network processor and have implemented both the

\r,\tlazin?rzc(? St“?saBt\i/gnqu?(:l?Jgi\évgsv\?éos/o():'sﬁgure 3(a) shows tr\V%CBCS and also two sets of separate CPU and baqdw{dth
' schedulers (based on WFQ) on the fast path processing i.e.,
E. Error Calculation on the microengines. Our application consists of modules fo
Here we present the analysis of error in maintaining fasneBacket Rx, Processing, Packet Tx, Queue Manager, and the
in resource allocation among contending flows. We measuregheduler. Also the Ethernet layer 2 encapsulation is detlu
the error in maintaining fairness in resource allocatianaioy in the packet-processing block.
backlogged flow; for the time period(¢t2 — t1) as:

o211 _ {Dev(.tz_“)}Q @) A. Implementation Hardware and Software
(t2—t1) - ’ o ') The implementation platform consists of a dual boot work-
Here, Dev; is the deviation from the ideal resourcestation, an IXP2400 PCI card, and Intel IXA (Internet Ex-

allocation for any flowi. The error in maintaining fairnesschange Architecture) 3.1 SDK and framework. IXA 3.1 frame-
in resource allocation for any backlogged flavior the time \york also includes a developer workbench or Integrated Beve
period (12 — ¢1) is measure as opment Environment (IDE). The development workstation is

N Brror®2—t1) a Linux workstation configured to allow the use of Windows

(t2—t1) _ rror; . . o
Errory,, = E — N (5) 2000 hosted tools. This functionality is enabled by the use
i=1 of VMware (a software that allows PCs to support multiple

Here, N is total number of flows. We measured the error (i.@perating systems simultaneously) to provide a virtual ma-
deviation from the ideal situation) as defined in Eq. (5) fibr achine environment. The VMware allows running the IXA SDK
the flows and the results are shown in Figure 3(b). The averatgvelopers Workbench under Microsoft Windows 2000 while
error for each flow was recorded as 0.0006 using WCBCS.ritnning Linux as the host operating system. The workstation
proves that using WCBCS the achieved results did not devidtas Pentium 4, 1.5 GHZ CPU and 512 MB of RAM. IXA 3.1
noticeably from the expected ideal situation. SDK and framework provide the IXP API libraries and some

IXP2400 Processor on XA 1XP2400 Processor on IXA ors

Education Workstation sRa Education Workstation il
b i CPU used and flow ID for
a packet
R Packet Processing Block e Packet Processing Block

. B = . SR ‘]
SR- T 70 sR4 METD WETH Bandkiih

- sna cos | sms
ME 0:0 ’ ME 1:3 cru IPV4 Fo o d s "_ ME 1:3
— packet e [cocsera O Processing tasks O b 1< [—»! PacketRe PO o (O orwarding and | »{Jy saree Packet Tx

orther processing tasks

MIED1,.0:2.1:1,12 ME Q102,17 1.2

WCBCS Implementation Architecture Separate CPU and Bandwith Scheduler Implementation Architecture

Fig. 4. WCBCS implementation architecture. Fig. 5. Separate CPU and Bandwidth scheduler implementatahitecture.

application building blocks that can be used for developingicroblocks on a microengine and implements the data flow
applications for IXP 2400 network processor. between them. The dispatch loop also caches commonly used
B. WCBCS Implementation Architecture variables in registers or Iocall memory. These variablesbean

)] .) accessed by microblocks using the dispatch loop macros and
_ The implementation architecture of the schedulers is ShOWfhtions. We have used dispatch loop functions to writeesom
in Figure 4. The scheduler is implemented before the packgli, jike total resource requirement for a packet (for WCBCS
processing block. The packet Rx microengine receives tghaqyler) into a member of the packet meta data in the SRAM

packets and sends an enqueue message to the scheduleg g nacket enqueue operation and to retrieve the data bac
scratchpad ring 1(SR-1). The scheduler microengine conti,, the SRAM during packet dequeue operation.
ually reads the enqueue request from SR-1, estimates the

CPU requirements of the packet using the SES estimatighs WCBCS Implementation Details
technique, and enqueues the packet info in the SRAM queue

After dequeuing a packet,_the spheduler sends a MeSSAHEBCS scheduler variable such as Quantum (or credit incre-
to the processor microengines via a scratchpad ring (SR- ;
mgnt), packet counts for the flows or queues, credit counter

2). Packqt processing code runs on f_our MICToengines g%:r flow, estimated CPU requirements (per packet per flow)
all the microengines read the processing requests from -

2 and process the packets. After processing the packet,
packet-processing microengines send a message spedtigin C
CPU consumed and the flow id to the scheduler via anotgh%'gbmmahsat'on thread, enqueue thread, dequeuadhrand

. i . prediction thread. After initialisation is completade
scratchpad ring (SR-3). After processing the packet, FIaCIfr‘?'tialisation thread sends signals to the enqueue, dexqjuew

processor microengines §end a transmlsglon message toé U prediction threads to begin their tasks as they wait on
transmitter microengine via a scratchpad ring (SR-4). T ; . .
the initialisation thread’s completion signal.

C. Separate CPU and Bandwidth schedulers 1) Initialisation: Initialisation thread sets the SRAM chan-

As mentioned earlier, we have also implemented a set ¥l CSR to indicate that packet based enqueue and dequeue
separate WFQ schedulers for scheduling CPU and bandwittfuld be done, i.e., we enqueue and dequeue a full packet
separately on the IXP2400 processor in order to evaluate §¥ry time. The thread also initializes SRAM queue descrip-
performance of the WCBCS scheduler compared to usifffS (@nd queue array) and the scheduler variables (e.g., it
separate CPU and bandwidth schedulers. Figure 5 shows ifH#ialises the value of quantum, credit counter for the Bow
implementation architecture of the separate schedulers. ~€stimated CPU requirements per flow etc.). After initiaigi

The messages that pass through the SR-1, SR-2, and §"|_Q_sched_uler varlables,. the thread termmates |tselfast_7tltie.

3 are same as that of Figure 4. Here, after processing fRéroengine thread arbiter excludes this thread from s li
packet, the processor microengines send an enqueue réguest2) Enqueue:Figure 6 shows a simplified flow diagram of
the bandwidth scheduler via SR-4. After dequeuing a pack@iorks performed within the WCBCS enqueue thread. The
the bandwidth scheduler sends a transmission message to€igueue thread waits for the signal from the initialization

We have used microengine local memory for keeping

C.
The WCBCS scheduler is implemented using 4 threads

Packet TX microengine via SR-5. thread before starting its infinite loop. In each turn, thedal
)) calls an SRAM API (e.g., scrataetring) to read an enqueue

The communications between different microengines aparameter to the API call). The thread then swaps out to allow
done through some pre-defined messages. For each packier threads to run as the SRAM read operation would take
received, packet data are kept in DRAM and packet metadatame time. After receiving the control back, the thread kbec
(i.e., information about the packet) is kept in the SRAM. Ththe presence of the signal (i.e., checks whether the enqueue
packet metadata structure has 8 long word members. IXiessage read operation is completed or not. Once the enqueue
library provides macros and functions called dispatch loapessage is read, it checks the validity of the enqueue messag
functions to read packet metadata from SRAM and to writs there may not be any message in the ring.
back the metadata into the SRAM. A dispatch loop combinesif the thread receives an invalid message, it does context

. 2:' ar Slgnal o i = Flow number that is servicad within a WCBCS round.
rom the Inital Jil art CC[i] = Credit Counter for flow i
thread v Wi = Weight for flow i
N = Max flow number.
QG| = Queue Count for flow i (i.e. no of packets in gueue).
Vait for Signal RR = CPU + Bandwidih Requirements of the Packet (in nano sec)
e Call SRAM :“‘PI lo read 2 from the Initialization which was stored in the 7th LW of the Pkt metadata in
h i;“ -a(cnr-\ framl S_F{- 1 ; SRAM by the engueue thread
and specily read complation
signal number (e.g. Signal-1} Ctx Swap means give up the contral of the procassor to allow
other threads to run
Cix Swap CCli and Q] are global vanables that are initialized bythe
{tor allow ather intializer thread

threads fo run)

Chx Swap
(to allow other
threads to run)

Call SRAM API to write the
Schaduler-to-processor
message in SR-2. (Do not

Serva nest
aclive flow

Wait for
Signak-3

d from the sopBufhandle

mamber of the enqueus message

Engueus is done using the packetNext

Wait for § s SetCCll=0 wiait for write complition)
5 o Set |=i+1
g
|
Incrament packet .
count for the gueus 2 b
Ctx Swap = ratchpad Ring
(to allow other T \\f" {SR'EJ 4
thiadatc) o Try to server next
Call SRAM AP 10 enqueus
the Pkt Info into the SRAM
queue coresponding to the - - % Gererate 8
Call SRAM API L read third LW flow 1d {specified in the oAl Dan Schedulerto-
of Pkt metadata from SRAM and enqueus message) £ Oc['.], vl Processar
specify read completion signal S message
rumber (e.g. Signal-2) T = T
Caill SRAM API to dequeus a
Call SRAM API to write the vaise of RR packet Info from the SRAM
of the Pkt in the Tih LW of the Pkt queue corresponding to flow i Set CC[i] =
Wait for metadata in SRAM and spacify the writa and specify degueus compietion CCl]-RR
Signal-2 camplation signal number (e.g. Signal-3) slgnal (e.g. Sigral-1)

Wait for
Signal-2

Caloutate total (e, CPU +

the global variables that are constantly
updated by the CPU Prediction Thread

Use predicted CPU requi

f{iﬁr?gg:db?i:zf Bandwidth) resource |
the metadata LW reqimmant (R dor e Is Call SRAM APl to read the

Pt (in nano sec) value of RR of the Pkt and
specify the read complation

signal (e.g. Signal-2}

Daqueued l;uﬁe; handlE
j.e. packetMext ptr) valid
7

Fig. 6. Flow diagram of the WCBCS enqueue thread.
Fig. 7. Flow diagram of the WCBCS dequeue thread.

swap and then goes for the next turn. The third LW of packet
metadata contains the packet size field. So, if the enqueaguation.
message is a valid message, the thread reads the third LWRdt= CPU Cost (nsi Transmission cost (ns) of the packet
the packet metadata from the SRAM using another API (e.g5s CPU cost (ns) per CPU Cycle Estimated CPU Cycles
sramread) and extracts the packet size for calculating the tofd&quirement- Transmission cost per byte (ns)Packet size
resource requirement (i.e., both the CPU and bandwidth) fior Bytes.
the packet. The CPU requirement data is taken from the globalt should be mentioned that, each microengine has clock
variable (per flow), which is constantly updated by the CPtequency of 600 MHZ i.e., 600 millions cycles per sec.
prediction thread. The calculated total resource requérem Therefore, CPU cost (ns) pef'PUCycle = 2ns. For a
is used by the dequeue thread for scheduling purposes, a0d Mbits network interface, the transmission cost per byte
therefore it needs to be stored. We decided to e W of would be = 80 ns. Since the microengines do not support
the packet metadata to store this scheduler data. the floating-point calculations, the CPU cost calculation f
The enqueue thread calls an SRAM API (e.g., swarite) a packet is approximated, where the calculation error is les
to write back the resource requirement data to the SRAMan or equal t& ns. This calculation error or approximation
and specifies a signal number. While the write operation is i& quite acceptable as it is tiny compared to the valug?&f
progress, the thread calls another API to enqueue the packed it happens for some of the packets for all flows.
info in the SRAM queue corresponding to the flow-id. It may 3) Dequeue ThreadFigure 7 shows the simplified flow
be mentioned that the enqueue is done using the packetNgilgram of the activities performed within the WCBCS de-
pointer (calculated using the sopBufHandle member of thgeue thread. As shown in the figure, dequeue thread waits for
enqueue message). The thread increments the packet ceigiial from initialization thread before starting its irfeloop.
for the queue and waits for the SRAM write operation to bgy each WCBCS round, the algorithm serves all the active or
completed. The thread then does a context swap and goespitklogged flows (i.e., the flows having one or more packets in
the next round. the queue). So for each floiy the algorithm checks whether
The total resource requirement (RR) for the incominthe Queue Count i.eQC[i] (stored in global variables) is
packets is calculated in nano seconds (ns) using the falpwipositive or not. If QCJi] is positive, it adds quantum to

the value of the Credit Counter of the flo(i.e., CC[i]),
otherwise it resets th€'C[i] to 0 and tries to serve the next

TABLE IV

EXPERIMENTAL SETUP

active flow. Flow CPU Req.| Bandwidth CPU Req. Packet
While serving flow | within each WCBCS round, th 1“‘;"‘;6{3 C?_'tfghory ReQ-Lg‘?vtegory 24((()38@'%36)00 Siiez (Bz’ées)
algorithm checks whether both #@&C[i] and theQCli] are |5 "¢ 1574 Tow Figh e e
positive or not. If either of them is O or negative, the algom 7.16 Medium Medium 1200 - 1800 80 - 88
does a context swap (so that other threads get a chance to rung, 8, 12 Low Low 78 - 134 42 - 48
and then tries to serve the next active flow. Otherwise, the# 11. 15 High High 2400 - 3600] 120 - 127

algorithm calls an SRAM API (e.g., sradequeue) to dequeue
a packet info from the SRAM queue corresponding to flow
1 and it waits for the dequeue completion signal. After the

System Configuration

x|

Clack Frequencies | Mermory | MSF Devices | MSF Connections | CBUS Connections |

dequeue, it decrements the queue count for flow i and ther, o [[Froasmmeseiegenaes = FEwanslieenes
it checks the validity of the dequeued buffer handle (ilee t PLL st ey SR 0 [0 lhee | | FxClcktiod: [sege =
. . Standad[1200 =] MHz SRAM 1 [2000 =] WHz RXCLKOT [125 =] MHz
packetNext ptr as enqueued in the enqueue operation). If the
. (ol Euslnml 1200 MHz RACLEZ3 (125 = | MHz
buffer handle is invalid, it does a context swap and therstrie e Cocktode e 3]
. . ock Mode | Single =
to serve the next packet from the same flow R — W e [] e
For a valid dequeue of a packet, the code calls anothel e ‘s yTﬁuMH petez [T =]
SRAM API to read the resource requiremeriRK, which Poi [—5] i
is the CPU requirement plus bandwidth requirement in nano

Clock Control CSR | 0x00040033 MSF Clock Control CSR | 0x00FFO000

seconds) from the 7th LW of the packet metadata in SRAM (as
it was stored there during enqueue operation) and waithéor t
read operation to complete. On completion of the SRAM read,
the system signals the thread and the code then decremen
the CCJi] by the value of RR. The thread then generates a
scheduler-to-processor message and enqueues the message
the scratchpad ring 2 (SR-2). However, before enqueuing the
message in SR-2, it checks the fullness of the ring using IXP
library APl and waits if the ring is full. After sending the
message to the processor, the thread swaps out and tries to
serve the next packet from the same flaw

The enqueue operation consists of determining the flow at
which the packet arrives and adding the flow to the linked
list if it is not already in the list. Both of the operationsear As mentioned earlier, we have tested the performance of
O(1) operation. The Dequeue procedure includes determinihe WCBCS scheduler against the performance of the imple-
the next flow to be served, calculating the credit countanented separate schedulers. The experiments were pedorme
removing the flow from the active list. All of these can béy running the code on IXA workbench’s "Cycle Accurate”
done in constant time, so we can say that dequeue operati@msactor. The port logging options were turned on to log
is of time complexity O(1). As the time complexity ofthe packets received and transmitted at the media intexface
enqueuing and dequeuing is O(1)the overall time complexitihe logs files produced were used by a custom software tool
of WCBCS scheduler is O(1). (that we have also developed under this project) to anahgze t

packet logs and produce the delay results for the individual

4) CPU Prediction ThreadThis thread waits for the signal flows.
from the initialization thread before it starts its infini@op.)]
In each turn, the thread calls an SRAM API to read th@ D€sign of experiments
processor-to-scheduler message from scratchpad ring-3 SR We used 16 flows with varying packet sizes and different
and specifies a signal number to wait on and then swaps @RU requirements. Four of the flows (e.g., flow 2, 6, 10, and,
so that other threads can work while it is waiting for the reat¥) required IPv4 forwarding and other flows required some
to complete. After reading the message, the thread vasidatgher processing code. Table IV shows the CPU requirements
the message and if it's a valid message, then it updaisd packet sizes for each individual flows.
the estimated CPU requirement of the specified flow usingFor all the experiments, receive and transmission rates on
SES estimation technique. The estimated CPU requiremetits media interfaces were set to 50 Mbps. For system settings
(per packet) per flow are kept in global variables. Agaimworkbench simulator’s default settings (as shown in Figd)re
due to unavailability of the floating-point calculationdiet were used.
estimations are approximated and the approximations or err We created 16 data stream files containing Ethernet frames
of calculation is less than or equal %)cycles while using and used the Workbench Simulator'’s Network traffic assign-
alpha value of 0.4 for SES equation. ment functionality (as shown in Figure 9) to inject the data

f=
=

Cancel

Fig. 8. Experimental system configurations.

V. EXPERIMENTS AND RESULTS

Assign Input To Port 0 on Device 0

" Noinput

%

for low CPU and high BW scenario, 15% for low CPU and
low BW scenario, and 23% for data flow with medium CPU
and medium BW requirement compared to the delays achieved

el dafa fiom Netymork, Traifc Simaior: | DaleSueams =

List of all data streams. Assigned stieams,

Stream Narme Stram Type = i Stl.aam Narme Sheam Type j USIng WFQ

e ip_port_0_F1 Ethemet IF bssign = | Telip pot 00| Ethemel P

e_ip_por_0_F2 Ethemet IP e_ip_port_0_F1 Ethemet IP

e ip_port 0_F3 Ethemet IF Remave e ip_pot 0 F2 | Ethemet IF

e_ip_par_0_F4 Ethernet IP e _ip_port_0_F3 Ethemet IP =l VI. CONCLUSION

Ethernet IP
Ethernet IP

[ST—.T)

e ip_port_0_F5
e_ip_por_0_FE
A =

How ta select packets fom streams)

" Sequential, starting at packet |1

© Randam

& Interleaved, starting at packet [1

KNl

In this paper, we present our new composite scheduling
algorithm called Weighted Composite Bandwidth and CPU
Scheduler (WCBCS) which has the following properties: (1)
unlike any other scheduling algorithms presented by otber r
searchers it schedules multiple resources in a singleitigor
(2) WCBCS employs a simple and adaptive online prediction
scheme for determining the packet execution times. (3) it is
suitable for QoS flows where flows with different reservee rat
are weighted differently, but unlike other scheduling aidpon
) of similar capability WCBCS has very low work complexity
B. Experimental Results: WCBCS vs Separate WFQ SCh?(g'(l)), making it attractive for implementation in high-speed
ulers routers.

Experiments were performed and packet logs were collectedour simulation and experimental results show that the delay
while using both the WCBCS scheduler and the separate Wih@haviour of WCBCS is better than WFQ algorithm when
schedulers for 16 flows. Then we used our tool to analyzged separately for CPU and bandwidth scheduling specially
the logs and produce the delay results. The delay graphsthe scenario when flows come with variable packet size
and the delay summaries for each type of packet flow ag@d CPU reuirements. Here it should be noted WFQ can
shown below. The results show that the WCBCS providesbt be directly used for CPU scheduling (here we used our
superior delay performance. We could not provide any othgfediction scheme), moreover the work complexity of WFQ
kind of performance comparison because of the limitatidns @ much higher than the work complexity of WCBCS. The
the workbench simulator (which only provides the input angyCBCS algorithm would be very attractive for scenarios
output port logging options). where flows are competing for both CPU and bandwidth
resources. In particular, WCBCS can provide superior delay
guarantees in highly dynamic environments where some or all
flows can carry packets with varying sizes and varying CPU
requirements.

Fig. 9. Assigning experimental data streams using workbemohlator.

frames during experiments.

TABLE V
DELAY STATISTICS UNDER DIFFERENT SCENARIOS(RESOURCE
REQUIREMENTS).

Delay using Delay using
WCBCS (sec) WFQ (sec)
Scenarios Max. | Min. Avg Max. | Min. Avg REFERENCES
delay | delay | delay | delay | delay | delay

High CPU, High BW | 1.01 0.3 0.61 11 0.31 | 0.79 | [1] Z. Kurtisi, X. Gu, L.Wolf, Enabling network-centric musperformance
High CPU, Low BW | 1.09 | 0.38 | 0.68 | 1.10 0.4 0.77 in wide-area networks, Special issue on Entertainment n&iag
Low CPU, HighBW | 0.86 | 0.27 | 0.55 | 1.09 0.4 0.70 Communications of the ACM, Volume 49, Issue 11, PP: 52 - 54,
Low CPU, Low BW | 0.96 | 0.3 | 058 | 1.0 | 0.28 | 0.68 ISSN:0001-0782, November 2006
Med. CPU, Med. BW| 1.06 | 0.28 | 0.61 | 1.08 05 0.79 | [2] K. Chen, P. Huang, C. Lei, How sensitive are online gamesetwork

quality, Communication of the A

CM, Vol. 49, Numbers 11, PP: 34-38, November 2006.

J.C.R. Bennett and H. Zhang. “WFQ: Worst-case Fair WeidhEair
Queueing.” In Proceedings of the IEEE INFOCOM, San Framgisc
March 1996.

P. Goyal, H.M. Vin and H. Cheng, “Start-time fair queuings
scheduling algorithm for integrated services packet swiig networks.”
IEEE/ACM Transactions on Networking, vol. 5, no. 5, pp. 6904,

Figures 10 and 11 show the delays measured for datd
flows using WCBCS and WFQ. Due to space limitation we
present graphs only for two scenarios (for flows with high4]
CPU and low bandwidth requirement, and flows with low

CPU and high bandwidth requirement), delay behaviour is
similar for other scenarios too. The maximum, minimum and5]
average delays (measured in ms) for these flows are shown
Table V. Delay results show that WCBCS achieved superior
delay guarantees compared to WFQ (when used individually
for CPU and bandwidth scheduling) for all the flows.]
We ran our experiments for five scenarios (as shown ih
Table 1V). For all the cases the maximum is worse for separate
WFQ than WCBCS. The results show that using WCBCS, thF
average delay was reduced by 10% for flows with high cpf!
and high BW, 12% for high CPU and low BW scenario, 21%

&

October 1997.

P. Pappu and T. Wolf, "Scheduling Processing ResourcedPrio-
grammable Routers”, in Proc. of IEEE INFOCOM'02, NY, June 2002
Clifford W. Mercer, Stefan Savage, Hideyuki Tokudageessor Capac-
ity Reserves: Operating System Support for Multimedia Aqgilbns”.
In Proc. of the IEEE International Conference on Multimed@ar®uting
and Systems, May 1994. pp. 90-99.

K. Lakshman, R. Yavatkar and R. Finkel, "Integrated CPW &tetwork
1/0 QoS Management in an Endsystem”, in Proc. of the 5th Intinmal
Workshop on Quality of Service (IWQOS’'97), New York, USA, pp7t
178.

V. Galtier, K. Mills and Y. Carlinet, “Predicting and Ctmolling Re-
source Usage in a Heterogeneous Active Network (2001).ioNat
Institute of Standards 2001.

j j WCBCS (Min:0.38, Max. .09, Avg: 0.68) ——
14t 1 14t
12} 1 12}
1t 1 1t

Sep. wiq (Min: 0.4, Max: 1.1, Avg: 0.77) —+—

\, | ‘
i T
Ef Ef Al - ‘m\l"""i‘k.‘f"!y mu\mwl‘i\\”‘w!" \|\|M|‘lu‘“'§"!|' ”M\mw"‘l\\“ﬁ"!' ‘”‘IhMI‘iw!'- ‘”M\n'n‘l‘i\\‘vwll' ‘”M\nﬂii\
1l l"h 1l l"‘h H 1] l"h 1l l"‘h Ul l"h i i l"‘h H Ul
. a! A
0.2 B 0.2 - B
0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Packet Number Packet Number
(a) WCBCS (b) WFQ
Fig. 10. Delay for Flows with High CPU and Low BW Requirements
j j WCBCS (Min:0.27, Max. 0.86, Avg: 0.55) —— j j Sep. WFQ (Min: 0.28, Max: 1.08, Avg: 0.70) ——
14 ~ 1.4 | 4
12 ~ 1.2 4
1+ B 1+ B
z i b th ; ke b the the 1l ! z
2 il [a0.] 18], 1T 4] L:I Ul 'r’ il g
a .' 1 i i 1 it il it i 1 it a
| i [!\’\ ’NM '\!‘ I” ”lluu’\ \'w"u!“l |\|| 'J| Wiﬂl Miw |||m I'J wl‘n
il il il il i | m
R e R R R .n.ﬁ”""‘ .,;m"‘ '!!!i' '!!,"J"?"‘ '!!1!‘“"‘ '!!.!\"'
|+ | i i I i [Hl - [[
0.2 B 0.2 B
o o
0 200 400 600 800 1000 0 200 400 600 800 1000
Packet Number Packet Number
(a) WCBCS (b) WFQ
Fig. 11. Delay for Flows with Low CPU and High BW Requirements

[9] N. Doulamis, A. Doulamis, A. Litke, A. Panagakis, T. Varigou, E.
Varvarigos, Adjusted fair scheduling and non-linear wodd predic-
tion for QoS guarantees in grid computing, Volume 30, pp: 485;5
Computer Communication, Elsevier, 2007

F. Sabrina, Salil S. Kanhere, Sanjay K. Jha, Design,lysi& and Im-
plementation of a Novel Low Complexity Scheduler for Joint ®ese
Allocation, Accepted for IEEE Transaction of Parallel angtbbuted
Systems, Volume 18, No 6, June 2007.

F. Sabrina, S. Jha, "Scheduling Resources in Progranenaatd Active
Networks Based on Adaptive Estimations”, in Proceedingshef28th
Annual IEEE Conference on Local Computer Networks (LCN), Bon
Germany, Oct. 2003, pp. 2-11.

M. Shreedhar and George Varghese, “Efficient Fair qineueising
Deficit round robin.” IEEE/ACM Trans. Networking, vol 9, nQ Bp.
375 - 385, 1996.

The Network Simulator-
http://www.isi.edu/nsnam/ns/.

[20]

[11]

[12]

[13] ns-2, [Online], Available:

