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Abstract— The popularity and availability of Internet connec-
tion have accelarated the emergence of new idea for network-
centric collaborative works. Contending traffic flows in this
collaborative scenario share different kinds of resources such
as network links, buffers, and router CPU. The goal should
hence be overall fairness in the allocation of multiple resources
rather than a specific resource. Moreover, conventional resource
scheduling algorithms depend strongly upon the assumption
of prior knowledge of network parameters and cannot handle
variations or lack of information about these parameters. In
this paper, firstly, we present a novel QoS-aware resource
scheduling algorithm called Weighted Composite Bandwidth and
CPU Scheduler (WCBCS), which jointly allocates the fair share
of the link bandwidth as well as processing resource to all
competing flows. WCBCS also uses a simple and adaptive online
prediction scheme for reliably estimating the processing times
of the incoming data packets.Secondly, we present complexity
analysis, extensive NS-2 simulation works, and experimental
results from our implementation on Intel IXP2400 network
processor. The simulation and implementation results show that
our low complexity scheduling algorithm can efficiently maximise
the CPU and bandwidth utilisation while maintaining guaranteed
Quality of Servie (QoS) for each individual flow.

I. I NTRODUCTION

The popularity and availability of Internet connection has
opened up the opportunity for network-centric collaborative
work that was impossible a few years ago. Different net-
work centric entertainment applications such as networked
online games, multimedia streaming (video and audio) to
heterogenous system in collaborative environment, Network-
centric Music Performance or NMP where Internet is used as
rehearsal room by a number participants [1] etc. are becoming
very popular. Recent development of Internet technology has
opened up new opportunities for enterprises too. Dynamic col-
laboration service in virtual enterprise scenario where multiple
participants join in a secured audio/video conferencing session
and record and store the whole session for future reference is
one example of collorative work in Enterprise scenario.

Provisioning smart, efficient, dynamic collaborative service
has drawn huge interest from industries and as a result has
become a challenging research issue. Many of these applica-
tions in collaborative environment need processing the packet
upon arrival, before transmitting it to the clients ([1], [2]).
Many applications have strict delay bound where as others are
intolerable of packet loss [2]. The best effort Internet, with no

guarantee of network capacity or packet delivery, is a challenge
for the real time interaction required for most of these collab-
orative services. Efficient resource allocation in such a system
is an important and fundamentally complicated problem. In
order to satisfy QoS requirements of various applications the
node must control the use of network and processing resources
by properly scheduling them. The system must ensure that
all the flows receive their reserved resources while QoS is
also maintained. To ensure this, there must be mechanisms
to give guaranteed bandwidth and computational resources to
incoming flows. However, allocation of bandwidth and CPU
resources are interdependent and maintaining fairness in one
resource allocation does not necessarily entail fairness in other
resource allocation. Therefore, for better maintenance ofQoS
guarantees and overall fairness in resource allocations for the
contending flows, the processor and bandwidth scheduling
schemes should be integrated.

A significant amount of work has been done in band-
width resource scheduling for traditional network. PacketFair
Queueing (PFQ) disciplines such as WFQ and WF2Q [3]
provide perfect fairness among contending network flows.
However, WFQ and WF2Q cannot readily be used for pro-
cessor scheduling because they require precise knowledge of
the execution times for the incoming packets at time of their
arrival in the node. Moreover, the work complexity of these
algorithms areO(N), whereN is the number of flows sharing
the link. Another PFQ algorithm for bandwidth scheduling
is Start-Time Fair Queueing (SFQ) [4], which does not
use packet lengths for updating virtual time, and therefore
seems suitable for scheduling computational resources (since
it would not need prior knowledge of the execution times
of packets) [4]. However, the worst-case delay under SFQ
increases with the number of flows and it tends to favor
flows that have a higher average ratio of processing time per
packet to reserved processing rate [5]. One algorithm called
deficit round robin (DRR) achieves fair scheduling withO(1)
complexity. But it is used only for link bandwidth scheduling.

A large amount of work has also been done on CPU
scheduling [6], [7], but most of them are on CPU scheduling
for end systems and work on task level (not on packet level).
Moreover, the execution times of various applications on pack-
ets are not known in advance, thus constraining efficient and



fair processor scheduling algorithms, which in turn limitsthe
applicability of well-known bandwidth scheduling algorithms
and also makes explicit or implicit admission control at the
flow level more difficult.

Pappu et al. [5] presented a processor scheduling algo-
rithm for programmable routers called Estimation-based Fair
Queueing (EFQ) that estimated the execution times of various
applications on packets of given lengths off-line and then
scheduled the processing resources based on the estimations.
Fixed values of the estimation parameters measured off-line
may not always produce good estimations due to variation
in server load and operating system scheduling. Galtier et
al. [8] proposed a scheme to predict the CPU requirements of
executing a specific code on a variety of platforms. Doulamis
et. al. [9] used least square algorithm to predict task work
load and used this information for resource scheduling in grid
computing. However, all these schemes seem too complicated
to be implemented in routers.

All the scheduling schemes discussed above are designed
to schedule only a single resource, i.e., either bandwidth or
processing resource. Although the determination of execution
times for packets in advance on a programmable or active node
has been identified as a major obstacle in managing processing
resources [8], [5], none of the previous studies provided a
generalized online solution to the problem.

Unlike all the previous works, our work takes an inte-
grated approach and provides a composite scheduler for both
bandwidth and CPU scheduling in order to provide better
QoS guarantees to the contending data flows. In our previous
work [10], [11], we presented a composite bandwidth and
processor scheduler calledComposite Bandwidth and CPU
Scheduler (CBCS), which can schedule multiple resources
adaptively, fairly and efficiently among all the competing
flows. Detailed simulation, analytical and experimental work
presented in [10] proves that our novel idea of integrating
the CPU and bandwidth scheduling functionalities within a
single scheduling scheme can provide significantly better delay
guarantees than those achievable through separate resource
schedulers.

Although, CBCS has high efficiency but it was devel-
oped only for best effort flows and does not ensure flow
differentiation. In this paper, we present our new composite
scheduling algorithm called Weighted Composite Bandwidth
and CPU Scheduler (WCBCS), which is the extended version
of CBCS to make it suitable for QoS flows. The novelty
of this algorithm is, (1) it schedules multiple resources in
a single algorithm, (2) it employs a simple and adaptive
online prediction scheme called modified Single Exponential
Smoothing for determining the packet execution times. (3) it is
suitable for QoS flows where flows with different reserved rate
are weighted differently, but unlike other scheduling algorithm
of similar capability WCBCS has very low work complexity
(O(1)), making it attractive for implementating in high-speed
routers.

The paper is organised as follows: Section II presents the
proposed algorithm. Section III describes details of the sim-

Fig. 1. System Model for WCBCS Scheduler.

ulation set-up and analyses the performance of the scheduler
through simulation. Section IV presents some experimental
results and conclusions are drawn in Section VI.

II. WCBCS - WEIGHTED COMPOSITEBANDWIDTH AND

CPU SCHEDULER

This section describes the WCBCS scheduler and prediction
technique used to estimate the packet processing duration.

A. Online Prediction Process

Since the processing requirement of each packet is not
known apriori, the WCBCS scheduler needs to estimate the
processing duration for each arriving packet. We have in-
vestigated several smoothing methods and their suitability
for predicting the processing requirements of the packets.
A detailed analysis, investigations and a comparative perfor-
mance analysis of the alternatives are discussed in [11]. Our
investigations show that the Single Exponential Smoothing
(SES) technique is well-suited to estimate the execution times
of the packets. SES is computationally simple and an attractive
method of forecasting. SES uses the following equation to
calculate a new predicted value.

Ft+1 = αXt + (1 − α)Ft where, 0 ≤ α ≤ 1 (1)

where, Ft and Ft+1 are the predicted value attth and
(t+1)th period respectively.Xt is the actual duration required
to process the packet that arrived at timet, andα is the SES
coefficient which determines the relative weight allocatedto
the history and the current estimated sample. In our work,
the SES coefficient,α, was set to 0.4, based on earlier
experimentation, which indicates that a value of 0.4 provides
the most accurate results.

Most of the packets that are processed by today’s routers
can be broadly classified into two categories based on their
processing needs: (a) header processing and (b) payload pro-
cessing. Header processing application (i.e., IP forwarding)
only requires read and write operations in the header of the
packet and so the processing complexity is independent of the
size of the packets. In contrast, payload processing application
(such as IPSec Encryption, packet compression and packet
content transcoding etc.) involves read and write operations
on all the data in the packet, and therefore the processing
complexity strongly correlates to the packet size [5]. In order
to count for the correlation between the processing costs and
packet sizes, we define a parameter calledScaling Factor
(SF), as: SF = 1 for header processing packets andLt+1

Lt

for payload processing packets. Here,Lt, Lt+1 = Length of



the packet arriving at timet & (t+1) respectively. The scaling
factor is incorporated in the SES estimation as follows:

Ft+1 = SF{αXt + (1 − α)Ft} (2)

B. Setting up the flow weights

WCBCS schedules guaranteed rate connection by assigning
weight to each flow. Here we describe how the weight was
set for each flow. Letφi

c and φi
b are the weights for CPU

and bandwidth for flowi. If ri
c and ri

b are the reserved CPU
and bandwidth for flowi respectively, andrm

c and rm
b are

the minimum reserved CPU and bandwidth among all flows
respectively. The weights are assigned as below:φi

c =
ri

c

rm
c

and

φi
b =

ri
b

rm
b

.

C. Overview of the WCBCS algorithm

We first begin by briefly describing the system model used
in our work. The Resource Manager (as shown in Figure 1)
controls the flow registration and setup (including settingup
weights for any reserved flows based on the reserved rates
of the bandwidth and processing resources) and admission of
each individual packet. The resource manager also estimates
the CPU requirements of an individual flow based on the
feedback received from the processor handler. The scheduler
enqueues them in the corresponding flow queues and dequeues
packets using its composite scheduling algorithm WCBCS,
which takes both the estimated processing time and trans-
mission time of packets into account to decide which packet
to dequeue. After dequeueing a packet, the scheduler hands
the packet to the processor handler object for processing if
required. The processor handler object notifies the Resource
Manager after processing each packet so that the scheduler can
re-estimate the processing times for the new incoming packets.
The processing and transmissions of different packets happen
in parallel in the system, i.e., after processing, the packets enter
into a FIFO queue for transmission to their next destinations,
which is served by a separate thread. The packets that do not
require processing enter directly into the transmission queue
after the scheduler dequeues them from their flow queues.
Packets from each flow are first processed by the processor
and then transmitted to the output link. The joint allocation
of the processing and bandwidth resource is accomplished
by the composite scheduler which selects a packet from the
input buffers and passes it onto the CPU for processing. No
scheduling action takes place after the processing; the packets
processed by the CPU are stored in the buffer between the
processor and the link, and are transmitted in a first-come-first
serve order. The WCBCS scheduler is based on the principles
used in DRR [12] . Further contrary to the single resource
schedulers, WCBCS is designed to schedule both bandwidth
and CPU resources adaptively, fairly and efficiently among all
the competing flows. It succeeds in eliminating the unfairness
of pure packet-based round-robin by maintaining aCredit
Counter to measure the past unfairness.Credit Counter is
similar to the variablesDeficit counterused by single resource
schedulers such as DRR [12]. All backlogged flows are stored

in a linked list and the flows are served in a round-robin order
by the WCBCS scheduler. The algorithm uses the following
parameters and equations:

• BW = Bandwidth of the transmission link in Mbps.
• EP k

i = Estimated processing cost of packetk of flow i

in sec.
• Lk

i = Length of packetk of flow i in bits.
• γi = Resize factor of the packets in flowi.
• cUL

t , cLL
t = Upper and lower limit (respectively) of the

total CPU queue in terms of CPU processing time re-
quirement for all the packets in all the flows.

• Ptck
i = the combined processing and transmission cost for

the kth packet of flowi.
• PtcMax = The maximum allowable time slice that a

packet requires to cover both CPU processing and net-
work transmission, amongst all flows (total cost). There-
fore,

Ptck
i =

106 ∗ γi ∗ Lk
i

BW
+ EP k

i (3)

• Quantum = A variable that represents a time slice used
to serve packets from each flow queue, which includes
both CPU processing time and network transmission time
(in msec). If wi is the summation of the weights (both
CPU & bandwidth) of flowi and wm is the smallest
summation of the weights among all flows. TheQuantum
of each flow is calculated asw

i

wm ∗ PtcMax. Let Q(r)
denote the quantum in roundr.

• CC[i] = Credit Counter, a state variable that represents a
time slice for which flowi deserves to be served within
a specific round of scheduling ( in msec). LetCCr[i](r)
represent the Credit Counter for flowi in roundr.

On receiving a new packet, the scheduler examines the
header to determine the flow-id, calculates the CPU processing
time using the online prediction scheme discussed earlier and
the resize factor, and then stores the packet in the correspond-
ing flow queue. It may be worth noting that processing of
packets can also affect the sizes of the packets after processing
is completed. To take this packet size change into account for
bandwidth consumption, we define and calculate a resize factor
that is the average packet size after processing for an individual
flow divided by the average packet size before processing for
that flow. The composite scheduler maintains a resize factor
for each flow and its value is updated online.

The WCBCS scheduler continues to monitor the queue
length for all individual flows in terms of the CPU time
requirement and stops accepting packets from a flow if its
queue length becomes greater thancUL

t[i] . In this case the
scheduler continues to refuse new packets from flowi until
its queue length becomes smaller thancLL

t[i] .

Upon initialisation, theQuantum is set to wi

wm ∗PtcMax and
the Credit Counter(CC[i]) for all flows are set to zero. The
scheduler continues to serve all non-empty queues within each
round of processing. When it starts to serve a queue within a
round, the Credit Counter is set toQuantum plus the Credit
Counter of the previous round. The scheduler then dequeues



a packet from the head of the queue and calculates thePtck
i

of the packet according to the Eq.(3). It sets theCC[i] to
(CC[i] - Ptck

i ) and hands the packet to the processor Handler
object for execution. The packet is sent to its next destination
after processing. The scheduler stops serving a queue once the
queue is empty or the credit counter becomes zero or negative.
It may be noted that theCC[i] for a non-active flow (i.e., a
flow having no packets in the queue) is reset to zero.

D. Work Complexity

The work complexity of a scheduler is defined as the
order of time complexity with respect to enqueuing and then
dequeuing a packet for transmission.

Theorem 1:The worst-case work complexity of the
WCBCS scheduler isO(1).

Proof: The enqueue operation consists of determining
the flow at which the packet arrives and adding the flow
to the linked list if it is not already in the list. Both of
these operations areO(1). The dequeue procedure involves
determining the next flow to be served, calculating the credit
counter and removing the flow from the active list. All of these
can be done in constant time, so we can say that dequeue
operation is of time complexityO(1). As the complexity of
both the enqueuing and dequeuing tasks isO(1). it follows
that the work complexity of the WCBCS scheduler isO(1).

III. S IMULATION RESULTS

This section presents simulation results on the delay charac-
teristics and the fairness properties of the WCBCS scheduler.
We compared the performance of WCBCS with WFQ, which
is well known for its good delay and fairness behaviour and
currently used in the routers.

A. Simulation settings

The simulations were performed using the NS2 network
simulator [13] on a PC with 1.7 GHz Pentium M processor
and 1012 MB memory running the Linux operating system
(Ubuntu 5.10). Our simulation model consists of 30 UDP flows
sharing a single processor and a link. The simulation settings
of the individual flows are given in Table I. The output link
capacity was set to 10 Mbps. The simulation was run for
300 seconds and samples were collected at 1-second intervals.
The packet generation rates for all the flows were adjusted
such that the cumulative demand for the CPU and bandwidth
resources were 92% and 94% respectively. This ensures that
the measured delays reflect the performance of the scheduler
and are not affected by large queuing delays. We compare the
performance of WCBCS with an implementation consisting of
separate WFQ schedulers for CPU and bandwidth scheduling.
We assume that the WFQ CPU scheduler uses the same online
prediction scheme SES, used by WCBCS for estimating the
processing duration of each packet.

TABLE I

SETTINGS FORINDIVIDUAL FLOWS

Flow Number 1-10 11-20 21-30
Referenced Application MPEG2 Encoder RC2 Decryption RC2 Encryption

Data Size 1.5-24 KB 16 KB 4 KB
CPU Requirements per data block 10-40msec 1-3 msec 1-3 msec

Resize Factor 0.11 -0.36 0.25 4.0

B. Delay Measurements

Fig. 2 shows the delays experienced by the packets of
MPEG2 flows using WCBCS and separate WFQ schedulers.
The maximum and average delays and the standard deviation
of the delays for all three flows are shown in Table II.
Our results show that WCBCS achieves better delay char-
acteristics compared to separate WFQ schedulers for CPU
and bandwidth scheduling for flows with variable packet size
and CPU requirements. With WCBCS, the worst case delay
is reduced to 16% for MPEG2 and was more or less same
for both RC2 decryption and encryption data flow compared
to the delays achieved using WFQ. Also the average delay
was reduced to 33% for MPEG2 data flow, and was same
for both RC2 decryption and RC2 encryption data flows
compared to the average delays achieved using WFQ. Similar
improvements are observed in the standard deviation achieved
with WCBCS, implying that it provides much more consistent
delay guarantees than that with separate WFQ schedulers.
Note that in our simulation scenario the packet sizes and the
processing requirements varied significantly for MPEG2 flows,
which is typical of real network traffic. The improved delay
performance of WCBCS can be attributed to the fact that the
maximum total cost of scheduling a packet with WCBCS (for
CPU and bandwidth) is lower than the maximum processing
cost of a packet and maximum transmission cost of a packet
with separate WFQ schedulers.

TABLE II

DELAY MEASUREMENTS

Data Delay using WCBCS (in sec) Delay using WFQ (in sec)
flow Max Avg Standard Max Avg Standard

delay delay deviation delay delay deviation
MPEG2 1.6 0.2 0.2 1.92 0.3 0.3

Decryption 0.6 0.1 0.1 0.4 0.1 0.29
Encryption 0.5 0.1 0.1 0.5 0.1 0.1

TABLE III

FAIRNESSMEASUREMENTS

Data flow wi
cpu wi

bw Utilized CPU Rates Utilized BW Rates
WCBCS WFQ WCBCS WFQ

MPEG2 0.068 0.002 0.0689 0.0689 0.002 0.002
RC2 Decryption 0.016 0.02 0.0156 0.0156 0.02 0.019
RC2 Encryption 0.016 0.078 0.0157 0.0157 0.078 0.079

C. Fairness Measurements

To evaluate the fairness characteristics, we measure the CPU
and bandwidth utilized by all the flows and compare them with
the reserved rates. The results are summarized in Table III,it
shows that the fairness achieved by WCBCS is better than that
achieved by separate WFQ schedulers.
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D. Resource utilisation

We measured the CPU and bandwidth utilisations for all the
flows for the entire simulation period. Resource utilisation re-
sults for WCBCS and WFQ were comparable (CPU utilisation
was 92% and BW utilisation was 94%). Figure 3(a) shows the
resource utilisation while using WCBCS.

E. Error Calculation

Here we present the analysis of error in maintaining fairness
in resource allocation among contending flows. We measured
the error in maintaining fairness in resource allocation for any
backlogged flowi for the time period(t2 − t1) as:

Error
(t2−t1)
i = {Dev

(t2−t1)
i }

2
(4)

Here, Dev
(t2−t1)
i is the deviation from the ideal resource

allocation for any flowi. The error in maintaining fairness
in resource allocation for any backlogged flowi for the time
period (t2 − t1) is measure as

Error(t2−t1)
avg =

N∑

i=1

Error
(t2−t1)
i

N
(5)

Here, N is total number of flows. We measured the error (i.e.,
deviation from the ideal situation) as defined in Eq. (5) for all
the flows and the results are shown in Figure 3(b). The average
error for each flow was recorded as 0.0006 using WCBCS. It
proves that using WCBCS the achieved results did not deviate
noticeably from the expected ideal situation.

IV. I MPLEMENTATIONS OFWCBCSON IXP2400

This section presents implementation details of WCBCS
on IXP2400. We have developed a data plane application for
IXP2400 network processor and have implemented both the
WCBCS and also two sets of separate CPU and bandwidth
schedulers (based on WFQ) on the fast path processing i.e.,
on the microengines. Our application consists of modules for
Packet Rx, Processing, Packet Tx, Queue Manager, and the
Scheduler. Also the Ethernet layer 2 encapsulation is included
in the packet-processing block.

A. Implementation Hardware and Software

The implementation platform consists of a dual boot work-
station, an IXP2400 PCI card, and Intel IXA (Internet Ex-
change Architecture) 3.1 SDK and framework. IXA 3.1 frame-
work also includes a developer workbench or Integrated Devel-
opment Environment (IDE). The development workstation is
a Linux workstation configured to allow the use of Windows
2000 hosted tools. This functionality is enabled by the use
of VMware (a software that allows PCs to support multiple
operating systems simultaneously) to provide a virtual ma-
chine environment. The VMware allows running the IXA SDK
developers Workbench under Microsoft Windows 2000 while
running Linux as the host operating system. The workstation
has Pentium 4, 1.5 GHZ CPU and 512 MB of RAM. IXA 3.1
SDK and framework provide the IXP API libraries and some



Fig. 4. WCBCS implementation architecture.

application building blocks that can be used for developing
applications for IXP 2400 network processor.

B. WCBCS Implementation Architecture

The implementation architecture of the schedulers is shown
in Figure 4. The scheduler is implemented before the packet-
processing block. The packet Rx microengine receives the
packets and sends an enqueue message to the scheduler via
scratchpad ring 1(SR-1). The scheduler microengine contin-
ually reads the enqueue request from SR-1, estimates the
CPU requirements of the packet using the SES estimations
technique, and enqueues the packet info in the SRAM queue.
After dequeuing a packet, the scheduler sends a message
to the processor microengines via a scratchpad ring (SR-
2). Packet processing code runs on four microengines and
all the microengines read the processing requests from SR-
2 and process the packets. After processing the packet, the
packet-processing microengines send a message specifyingthe
CPU consumed and the flow id to the scheduler via another
scratchpad ring (SR-3). After processing the packet, packet
processor microengines send a transmission message to the
transmitter microengine via a scratchpad ring (SR-4).

C. Separate CPU and Bandwidth schedulers

As mentioned earlier, we have also implemented a set of
separate WFQ schedulers for scheduling CPU and bandwidth
separately on the IXP2400 processor in order to evaluate the
performance of the WCBCS scheduler compared to using
separate CPU and bandwidth schedulers. Figure 5 shows the
implementation architecture of the separate schedulers.

The messages that pass through the SR-1, SR-2, and SR-
3 are same as that of Figure 4. Here, after processing the
packet, the processor microengines send an enqueue requestto
the bandwidth scheduler via SR-4. After dequeuing a packet,
the bandwidth scheduler sends a transmission message to the
Packet TX microengine via SR-5.

D. Data Structures and Inter-microengines Messages

The communications between different microengines are
done through some pre-defined messages. For each packet
received, packet data are kept in DRAM and packet metadata
(i.e., information about the packet) is kept in the SRAM. The
packet metadata structure has 8 long word members. IXP
library provides macros and functions called dispatch loop
functions to read packet metadata from SRAM and to write
back the metadata into the SRAM. A dispatch loop combines

Fig. 5. Separate CPU and Bandwidth scheduler implementation architecture.

microblocks on a microengine and implements the data flow
between them. The dispatch loop also caches commonly used
variables in registers or local memory. These variables canbe
accessed by microblocks using the dispatch loop macros and
functions. We have used dispatch loop functions to write some
data like total resource requirement for a packet (for WCBCS
scheduler) into a member of the packet meta data in the SRAM
during packet enqueue operation and to retrieve the data back
from the SRAM during packet dequeue operation.

E. WCBCS Implementation Details

We have used microengine local memory for keeping
WCBCS scheduler variable such as Quantum (or credit incre-
ment), packet counts for the flows or queues, credit counter
per flow, estimated CPU requirements (per packet per flow)
etc.

The WCBCS scheduler is implemented using 4 threads
e.g., initialisation thread, enqueue thread, dequeue thread, and
CPU prediction thread. After initialisation is completed,the
initialisation thread sends signals to the enqueue, dequeue, and
CPU prediction threads to begin their tasks as they wait on
the initialisation thread’s completion signal.

1) Initialisation: Initialisation thread sets the SRAM chan-
nel CSR to indicate that packet based enqueue and dequeue
would be done, i.e., we enqueue and dequeue a full packet
every time. The thread also initializes SRAM queue descrip-
tors (and queue array) and the scheduler variables (e.g., it
initialises the value of quantum, credit counter for the flows,
estimated CPU requirements per flow etc.). After initializing
the scheduler variables, the thread terminates itself so that the
microengine thread arbiter excludes this thread from its list.

2) Enqueue:Figure 6 shows a simplified flow diagram of
works performed within the WCBCS enqueue thread. The
enqueue thread waits for the signal from the initialization
thread before starting its infinite loop. In each turn, the thread
calls an SRAM API (e.g., scratchget ring) to read an enqueue
message from SR-1 and specifies a signal number (as a
parameter to the API call). The thread then swaps out to allow
other threads to run as the SRAM read operation would take
some time. After receiving the control back, the thread checks
the presence of the signal (i.e., checks whether the enqueue
message read operation is completed or not. Once the enqueue
message is read, it checks the validity of the enqueue message
as there may not be any message in the ring.

If the thread receives an invalid message, it does context



Fig. 6. Flow diagram of the WCBCS enqueue thread.

swap and then goes for the next turn. The third LW of packet
metadata contains the packet size field. So, if the enqueue
message is a valid message, the thread reads the third LW of
the packet metadata from the SRAM using another API (e.g.,
sramread) and extracts the packet size for calculating the total
resource requirement (i.e., both the CPU and bandwidth) for
the packet. The CPU requirement data is taken from the global
variable (per flow), which is constantly updated by the CPU
prediction thread. The calculated total resource requirement
is used by the dequeue thread for scheduling purposes, and
therefore it needs to be stored. We decided to use7th LW of
the packet metadata to store this scheduler data.

The enqueue thread calls an SRAM API (e.g., sramwrite)
to write back the resource requirement data to the SRAM
and specifies a signal number. While the write operation is in
progress, the thread calls another API to enqueue the packet
info in the SRAM queue corresponding to the flow-id. It may
be mentioned that the enqueue is done using the packetNext
pointer (calculated using the sopBufHandle member of the
enqueue message). The thread increments the packet count
for the queue and waits for the SRAM write operation to be
completed. The thread then does a context swap and goes for
the next round.

The total resource requirement (RR) for the incoming
packets is calculated in nano seconds (ns) using the following

Fig. 7. Flow diagram of the WCBCS dequeue thread.

equation.
RR= CPU Cost (ns)+ Transmission cost (ns) of the packet
= CPU cost (ns) per CPU Cycle∗ Estimated CPU Cycles

Requirement+ Transmission cost per byte (ns)∗ Packet size
in Bytes.

It should be mentioned that, each microengine has clock
frequency of 600 MHZ i.e., 600 millions cycles per sec.
Therefore, CPU cost (ns) perCPUCycle = 5

3ns. For a
100 Mbits network interface, the transmission cost per byte
would be = 80 ns. Since the microengines do not support
the floating-point calculations, the CPU cost calculation for
a packet is approximated, where the calculation error is less
than or equal to23 ns. This calculation error or approximation
is quite acceptable as it is tiny compared to the value ofRR

and it happens for some of the packets for all flows.

3) Dequeue Thread:Figure 7 shows the simplified flow
diagram of the activities performed within the WCBCS de-
queue thread. As shown in the figure, dequeue thread waits for
signal from initialization thread before starting its infinite loop.
In each WCBCS round, the algorithm serves all the active or
backlogged flows (i.e., the flows having one or more packets in
the queue). So for each flowi, the algorithm checks whether
the Queue Count i.e.,QC[i] (stored in global variables) is
positive or not. If QC[i] is positive, it adds quantum to



the value of the Credit Counter of the flowi (i.e., CC[i]),
otherwise it resets theCC[i] to 0 and tries to serve the next
active flow.

While serving flow I within each WCBCS round, the
algorithm checks whether both theCC[i] and theQC[i] are
positive or not. If either of them is 0 or negative, the algorithm
does a context swap (so that other threads get a chance to run)
and then tries to serve the next active flow. Otherwise, the
algorithm calls an SRAM API (e.g., sramdequeue) to dequeue
a packet info from the SRAM queue corresponding to flow
i and it waits for the dequeue completion signal. After the
dequeue, it decrements the queue count for flow i and then
it checks the validity of the dequeued buffer handle (i.e., the
packetNext ptr as enqueued in the enqueue operation). If the
buffer handle is invalid, it does a context swap and then tries
to serve the next packet from the same flowi.

For a valid dequeue of a packet, the code calls another
SRAM API to read the resource requirement (RR, which
is the CPU requirement plus bandwidth requirement in nano
seconds) from the 7th LW of the packet metadata in SRAM (as
it was stored there during enqueue operation) and waits for the
read operation to complete. On completion of the SRAM read,
the system signals the thread and the code then decrements
the CC[i] by the value of RR. The thread then generates a
scheduler-to-processor message and enqueues the message to
the scratchpad ring 2 (SR-2). However, before enqueuing the
message in SR-2, it checks the fullness of the ring using IXP
library API and waits if the ring is full. After sending the
message to the processor, the thread swaps out and tries to
serve the next packet from the same flowi.

The enqueue operation consists of determining the flow at
which the packet arrives and adding the flow to the linked
list if it is not already in the list. Both of the operations are
O(1) operation. The Dequeue procedure includes determining
the next flow to be served, calculating the credit counter,
removing the flow from the active list. All of these can be
done in constant time, so we can say that dequeue operation
is of time complexity O(1). As the time complexity of
enqueuing and dequeuing is O(1)the overall time complexity
of WCBCS scheduler is O(1).

4) CPU Prediction Thread:This thread waits for the signal
from the initialization thread before it starts its infiniteloop.
In each turn, the thread calls an SRAM API to read the
processor-to-scheduler message from scratchpad ring 3 (SR-3)
and specifies a signal number to wait on and then swaps out
so that other threads can work while it is waiting for the read
to complete. After reading the message, the thread validates
the message and if it’s a valid message, then it updates
the estimated CPU requirement of the specified flow using
SES estimation technique. The estimated CPU requirements
(per packet) per flow are kept in global variables. Again,
due to unavailability of the floating-point calculations, the
estimations are approximated and the approximations or error
of calculation is less than or equal to12 cycles while using
alpha value of 0.4 for SES equation.

TABLE IV

EXPERIMENTAL SETUP

Flow CPU Req. Bandwidth CPU Req. Packet
Number Category Req. Category (Cycles) Size (Bytes)

1, 5, 9, 13 High Low 2400 - 3600 42 - 48
2, 6, 10, 14 Low High 78 - 134 120 - 127

7, 16 Medium Medium 1200 - 1800 80 - 88
3, 8, 12 Low Low 78 - 134 42 - 48
4, 11, 15 High High 2400 - 3600 120 - 127

Fig. 8. Experimental system configurations.

V. EXPERIMENTS AND RESULTS

As mentioned earlier, we have tested the performance of
the WCBCS scheduler against the performance of the imple-
mented separate schedulers. The experiments were performed
by running the code on IXA workbench’s ”Cycle Accurate”
transactor. The port logging options were turned on to log
the packets received and transmitted at the media interfaces.
The logs files produced were used by a custom software tool
(that we have also developed under this project) to analyze the
packet logs and produce the delay results for the individual
flows.

A. Design of experiments

We used 16 flows with varying packet sizes and different
CPU requirements. Four of the flows (e.g., flow 2, 6, 10, and,
14) required IPv4 forwarding and other flows required some
other processing code. Table IV shows the CPU requirements
and packet sizes for each individual flows.

For all the experiments, receive and transmission rates on
the media interfaces were set to 50 Mbps. For system settings,
workbench simulator’s default settings (as shown in Figure8)
were used.

We created 16 data stream files containing Ethernet frames
and used the Workbench Simulator’s Network traffic assign-
ment functionality (as shown in Figure 9) to inject the data



Fig. 9. Assigning experimental data streams using workbench simulator.

frames during experiments.

B. Experimental Results: WCBCS vs Separate WFQ sched-
ulers

Experiments were performed and packet logs were collected
while using both the WCBCS scheduler and the separate WFQ
schedulers for 16 flows. Then we used our tool to analyze
the logs and produce the delay results. The delay graphs
and the delay summaries for each type of packet flow are
shown below. The results show that the WCBCS provided
superior delay performance. We could not provide any other
kind of performance comparison because of the limitations of
the workbench simulator (which only provides the input and
output port logging options).

TABLE V

DELAY STATISTICS UNDER DIFFERENTSCENARIOS(RESOURCE

REQUIREMENTS).

Delay using Delay using
WCBCS (sec) WFQ (sec)

Scenarios Max. Min. Avg Max. Min. Avg
delay delay delay delay delay delay

High CPU, High BW 1.01 0.3 0.61 1.1 0.31 0.79
High CPU, Low BW 1.09 0.38 0.68 1.10 0.4 0.77
Low CPU, High BW 0.86 0.27 0.55 1.09 0.4 0.70
Low CPU, Low BW 0.96 0.3 0.58 1.0 0.28 0.68
Med. CPU, Med. BW 1.06 0.28 0.61 1.08 0.5 0.79

Figures 10 and 11 show the delays measured for data
flows using WCBCS and WFQ. Due to space limitation we
present graphs only for two scenarios (for flows with high
CPU and low bandwidth requirement, and flows with low
CPU and high bandwidth requirement), delay behaviour is
similar for other scenarios too. The maximum, minimum and
average delays (measured in ms) for these flows are shown in
Table V. Delay results show that WCBCS achieved superior
delay guarantees compared to WFQ (when used individually
for CPU and bandwidth scheduling) for all the flows.

We ran our experiments for five scenarios (as shown in
Table IV). For all the cases the maximum is worse for separate
WFQ than WCBCS. The results show that using WCBCS, the
average delay was reduced by 10% for flows with high CPU
and high BW, 12% for high CPU and low BW scenario, 21%

for low CPU and high BW scenario, 15% for low CPU and
low BW scenario, and 23% for data flow with medium CPU
and medium BW requirement compared to the delays achieved
using WFQ.

VI. CONCLUSION

In this paper, we present our new composite scheduling
algorithm called Weighted Composite Bandwidth and CPU
Scheduler (WCBCS) which has the following properties: (1)
unlike any other scheduling algorithms presented by other re-
searchers it schedules multiple resources in a single algorithm,
(2) WCBCS employs a simple and adaptive online prediction
scheme for determining the packet execution times. (3) it is
suitable for QoS flows where flows with different reserved rate
are weighted differently, but unlike other scheduling algorithm
of similar capability WCBCS has very low work complexity
(O(1)), making it attractive for implementation in high-speed
routers.

Our simulation and experimental results show that the delay
behaviour of WCBCS is better than WFQ algorithm when
used separately for CPU and bandwidth scheduling specially
in the scenario when flows come with variable packet size
and CPU reuirements. Here it should be noted WFQ can
not be directly used for CPU scheduling (here we used our
prediction scheme), moreover the work complexity of WFQ
is much higher than the work complexity of WCBCS. The
WCBCS algorithm would be very attractive for scenarios
where flows are competing for both CPU and bandwidth
resources. In particular, WCBCS can provide superior delay
guarantees in highly dynamic environments where some or all
flows can carry packets with varying sizes and varying CPU
requirements.
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