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Abstract— Adaptive modulation is a promising technique
to increase the spectral efficiency of a wireless communi-
cation system. In this paper we investigate the effective-
ness of adaptive modulation in maximizing the spectral
efficiency of a MIMO multiuser downlink channel. The
MIMO multiuser downlink transmission is carried out
by the minimum-mean-squared-error feedback precoder.
The overall spectral efficiency is maximized by adapting
transmission power and/or transmission rate to the user
channels. We show that there is a penalty associated with
the use of MQAM and the penalty becomes more severe if
only a finite set of discrete modulation sizes is provided to
the transmitter.

I. INTRODUCTION

The need for high-rate wireless communications has
significantly increased over the past years as more and
more subscribers demand more feature-rich contents to
be delivered to their handsets. This has ignited the
flare of research interests in the multiple-input multiple-
output (MIMO) technologies. During its initial phase of
development, the research in MIMO communications had
been confined to the point-to-point link [1][2]. Later,
the MIMO concept was extended to the multiple-access-
channel (MAC) to provide additional diversity gain [3].
Until recently, in the information-theoretic work by Caire
and Shamai [4], the set of achievable rates for the
downlink MIMO broadcast channel (BC) has been char-
acterized by applying the ”dirty paper coding” technique.
A practical realization of such a technique is the MMSE
feedback precoder (MMSE-FBP) originally proposed in
[5] and later optimized in [6]

The results from [5] and [6] also revealed one dis-
tinctive characteristic of multiuser transmission. It is
statistically unlikely that all users within the coverage
area of a base-station undergo the same level of channel
disturbances in a given time period. The conventional
way of combating the uncertainties in channel variations
is to choose transmission parameters for the worst case
scenario, thus leading to an uneconomical distribution of
scarce resources. A more modern and efficient approach
is to instruct the base-station to track the fluctuations in

channel conditions and adjust transmission parameters
accordingly. Adaptive modulation thus came into play
and gradually became an emerging standard for future
wireless communication systems. Adaptive modulation
has been extensively studied for single-input single-
output channel [7] and MIMO point-to-point channel [9].
It has been shown, in both cases, that a greater throughput
can be attained by adapting transmission power and mod-
ulation scheme to channel variations. The contribution
of this paper is the extension of adaptive modulation
technique in the multiuser scenario, in particular the
MIMO BC.

The remainder of this paper is organized as follows.
Section II covers the system model and a brief summary
of the MMSE-FBP. The formulation of adaptive modu-
lation problem is presented at the end of Section II. The
main contribution of this paper is presented in Section
III, where we study adaptive modulation under different
system constraints. The discrete version is included in
Section IV while Section V concludes the paper.

II. SYSTEM MODEL

A. MIMO Multiuser Downlink Model

We consider a MIMO multiuser downlink system with
Nt transmit antennas at the access point serving Nr

users, each with one receive antenna. The data received
at the kth user is

yk =
Nt∑

i=1

hk,ixi + nk (1)

where hk,i is a zero-mean, unit-variance complex Gaus-
sian random fading coefficient associating the kth user’s
receiver and the ith transmit antenna at the access point.
Data transmitted from the ith transmit antenna is denoted
by xi and nk is the standard complex Gaussian noise
observed at the kth user’s receiver. If we group the
received data at all users’ receivers into a vector, we
can describe the same system with the following matrix
equation

y = Hx + n (2)



where y = [y1, ..., yNr
]T is the received data vector,

and x = [x1, ..., xNt]T is the vector of transmitted data.
Furthermore, we use xk to differentiate the per-user
transmit data vector and the composite transmit data
vector, x. The noise vector is symbolically represented by
n = [n1, ..., nNr ]

T . The matrix channel H has hk,i as its
constituents and its dimension is Nr×Nt. For simplicity,
we study the system where Nr = Nt and consider only
the slow block fading channel, i.e. the channel H stays
constant over the duration of one transmission frame,
which includes pilot and information symbols, but varies
from one frame to the other. Also, the channel state
information (CSI), hk.i, are estimated precisely at the
receivers and made available at the transmitter via delay-
and-error free feedback links.

B. MIMO Multiuser Downlink (Broadcast Channel) Ca-
pacity

If we assume the total transmission power is subject
to the following constraint

Nr∑

k=1

Pk = Ptotal (3)

where Pk is the power assigned to the kth user and Ptotal

is the total available transmission power. The capacity of
the kth user is given by

Ck = log2

det
[
hk (Σk + ... + ΣNr )h

†
k + σ2

nI
]

det
[
hk (Σk+1 + ... + ΣNr )h

†
k + σ2

nI
]

(4)
where Σk = E

[
xkx

†
k

]
is the transmit covariance matrix

for user k and Pk = Tr (Σk). The sum-capacity of the
Nr-user MIMO BC is

Csum
BC = max

{
Nr∑

k=1

Ck

}
(5)

s.t. {Σk}Nr

k=1 : Σk > 0,

Nr∑

k=1

Tr (Σk) ≤ Ptotal

There are plenty of algorithms available in the
literature to solve the optimization problem described by
(5), i.e. [10] and the references therein. We used the
2nd algorithm proposed in [10] due to its simplicity and
efficiency. The solutions provided by the algorithm can
be conceptually understood as water-filling the matrix
channel H across the spatial domain with joint power
constraint. The water-filling characteristic of the solu-
tions has also been identified in the scalar channel [7],
and the MIMO point-to-point channel, i.e. eq. (6) and
(7) in [9].

Fig. 1. Block Diagram of MMSE-FBP

C. MMSE-FBP

The MIMO multiuser downlink transmission is car-
ried out using the minimum-mean-squared-error feed-
back precoder (MMSE-FBP). The precoder uses the
knowledge of the channels to encode user information
symbols so that the sum capacity of the MIMO BC
can be achieved. Fig. 1 shows the block diagram of the
MMSE-FBP.

We define a matrix Pb = HH† + Kσ2
nI and using

Cholesky decomposition to separate it into an upper
triangular matrix G, with ones being the main diagonal,
and a diagonal matrix S having positive entries. The
transmit filter W is set as

W = H†G−1S−1 (6)

The matrix D is the power allocation matrix and its
elements are given by

E [dkk] =

√
Pk

Psk

(7)

where Psk
is the average power of the symbols at the out-

put of the Tomlinson-Harashima interference canceller
(THIC), sk, and its value is

Psk
=

τ2

6
(8)

where τ is the modulation-dependent modulo parameter.
The value of Pk in (7) depends on the type of power
control policy implemented. If the power control policy
is required to achieve the sum capacity of the MIMO
BC at all SNR, Pk will be the solutions of (5), i.e. Pk =
Tr (Σk). On the other hand, if equal power policy is
implemented, Pk will assume a value of 1/Nr for all k.

If we further define an effective channel between the
received signal vector, y, and the output of THIC, s,
as H̃ = HWD, the THIC encodes the user information
symbols obeying the dirty-paper-coding rule

sk = fτ


uk −

k−1∑

j=1

h̃k,jsj

h̃k,k


 for k = 1, ..., Nr (9)

where uk denotes the information symbol for user k and
the modulo function fτ is

fτ (y) =
{

R (y)− bR (y) + τ/2
τ

c × τ

}

+
{

I (y)− bI (y) + τ/2
τ

c × τ

}
(10)



with bc denoting the largest integer less than or equal to
its argument.

Finally, in order to define the per-user SINR in Section
III in a more informative manner, let us introduce here
the normalized transmit filter wk as follows:

(wk)norm , wk

||wk|| (11)

where wk is the kth column of the transmit filter matrix
W. We only summarized the important aspects of the
MMSE-FBP here. Full derivations of components and
discussions about choices of parameters can be found in
[5] and [6].

D. Problem Formulation

The following optimization problem characterizes the
adaptive modulation (AM) system we consider and it is
the multiuser version of the system discussed in [9]:

max ASE = EH

[
Nr∑

i=1

ki

]
(12)

subject to

EH

[
Nr∑

i=1

Pi

]
= Ptotal (13)

EH

[∑Nr

i=1 kiBERi∑Nr

i=1 ki

]
≤ BER (14)

for ki ≥ 0; Pi ≥ 0, i = 1, · · · , Nr

If we use Mi to symbolize the levels of modulation
used for the ith user, then log2 (Mi) = ki represents
the spectral efficiency (SE). The corresponding transmit
power is represented by Pi and the average sum of
transmit powers of all users need to comply with the
power constraint (13). The objective here is to maximize
the average spectral efficiency (ASE) of a MIMO BC.
From the above characterization we can see that ki,
Pi, and BERi must be adapted in both spatial domain,
i.e. across user space, and temporal domain, i.e. over a
series of channel realizations. This results in a space-
time optimization problem and is prohibitively complex
to analyze. One technique to get around this hurdle is
to freeze the channel in time and design the same AM
system for that instantaneous instance of channel. In
other words, instead of directly solving (12) to (14), we
solve the following:

max ASE =
Nr∑

i=1

ki (15)

subject to

Nr∑

i=1

Pi = Ptotal (16)

∑Nr

i=1 kiBERi∑Nr

i=1 ki

≤ BER (17)

for ki ≥ 0; Pi ≥ 0, i = 1, · · · , Nr

The significance of this simplication is that although a
closed form solution might not exist, for example due to
the highly non-linear structure of (17), we can at least
resort to the exhaustive numerical search method [9].

III. CONTINUOUS MQAM ADAPTIVE MODULATION

An AM system can emcompass a range of mod-
ulation techniques, however, we confine our study to
the quadrature amplitude modulation (QAM) due to the
availability of a closed form expression for its uncoded
BER performance. The uncoded BER for an M level
QAM is upper bounded by [7]:

BERi = 0.2 exp
[ −1.6Piλi

σ2
n (2ki − 1)

]
for i = 1, ..., Nr

(18)
where λi denotes the channel gain for the ith user and
Piλi/σ2

n is the instantaneous received SNR. This upper
bound is tight for M ≥ 4 and 0 ≤ SNR ≤ 30dB.
Obviously, the value of ki = log2 (Mk) can theoreti-
cally be taken from a continuous range, however, non-
integer values are not practically favorable as they result
in sophisticated modulators. Nonetheless, the treatment
bears some important implications. We will show in the
coming subsections that continuous AM (CAM) studied
herein yields closed form solutions for some of the
scenarios that we consider. Furthermore, it provides an
upper bound on the ASE that can be achieved by integer
values of ki.

In a multiuser context, such as the MIMO BC, the SNR
is generally not an appropriate parameter to characterize
system throughput. A more indicative parameter should
include the multiuser inteferences, such as the SINR.
Referring to Figure 1, we can express (18) in a more
precise form:

BERi = 0.2 exp

[
−1.6

(2ki − 1)
· Pi ||hiwi||2∑Nr

j≥i ||hiwj ||2 Pj + σ2
n

]

(19)
where wi, (i = 1, · · · , Nr) is defined previously in Sec-
tion II and Pi is the average power of the symbols in one
transmission frame at the output of the power allocation
block D. We need to point out while base-station is
able to compute (19) precisely provided our assumption
regarding perfect channel feedback holds true, the users
on the other end do not have such a luxury; in particular,
the ith user has no knowledge of the transmit filters that



correspond to users j 6= i, j = 1, · · · , Nr, hence it
decodes the received signal using only the noise statistics.
Mathematically this means the base-station needs to use

BERi = 0.2 exp

[
−1.6

(2ki − 1)
· Pi ||hiwi||2

σ2
n

]
(20)

to ensure coherence between transmitter and receivers.
Fortunately, simulation results show that the difference
of (19) and (20) is indistinguishable. Thus, eq. (20) is
used for the following analysis and simulations.

A. Equal BER Constraint

An even simpler set of characterizing optimization
expressions can be arrived at by providing equal BER
to all users. More specifically we set

BERi ≤ BERtarget for i = 1, ..., Nr (21)

where BERtarget is a design parameter. Substituting (20)
into (21) and rearranging, we obtain

ki ≤ log2

[
1− 1.6

ln (BERtarget/0.2)
· Pi ||hiwi||2

σ2
n

]

= log2

[
1 + K · Pi ||hiwi||2

σ2
n

]
(22)

with K := −1.6/ ln (BERtarget/0.2)

where 0 < K < 1 is known as the penalty factor due to
MQAM [7] [9]. The objective function (15) is updated
as

max ASEequal BER =
Nr∑

i=1

log2

[
1 + K · Pi ||hiwi||2

σ2
n

]

(23)
subject to

Nr∑

i=1

Pi = Ptotal; Pi ≥ 0 (24)

Recall a similar optimization problem exists for the
MIMO point-to-point channel, i.e. eq. (15) in [9]:

max ASEpoint−to−point =
Nr∑

i=1

log2

(
1 + K · λiPi

σ2
n

)

(25)
subject to

Nr∑

i=1

Pi = Ptotal; Pi ≥ 0 (26)

where Nr is the number of receive antennas and λi

is the channel gain of the ith branch of the parallel
non-interferring AWGN channels, which is obtained by
singular value decomposing (SVD) the MIMO point-to-
point channel. The closed form solutions for the branch

power and branch SE of the point-to-point system are:

Pi =
[
µ− σ2

n/Kλi

]+
(27)

ki =
[
log2

(
µKλi/σ2

n

)]+
(28)

where µ is a constant determined by the total power
constraint. Let us now examine (27) in detail. Assuming
appropriate scaling is applied, we can set λi = 1. If
σ2

n is large, i.e. when the channel quality is poor, the
resulting Pi will be small while a much larger Pi prevails
when the channel disturbance σ2

n is small, indicating
a much favorable transmission condition. This type of
power allocation has been called the water-filling strategy
in information theory literature [11].

Comparing (23) and (24) with (25) and (26), we
immediately see that they share a common structure. This
correspondence motivates us to conjecture that water-
filling the MIMO BC with joint power constraint can
also maximize (23). Thus, the solutions to the equal BER
constraint AM can be readily obtained as follows:

Pi = Tr
(
Σoptimal

i

)
(29)

where Σoptimal
i is the water-filling transmit covariance

matrix for the ith user. The ith user’s SE is subsequently
given by

SEi = ki = log2

(
1 + K · Pi ||hiwi||2

σ2
n

)
(30)

B. Equal-BER and Equal-Power Constraint

We now impose a further constraint on the opti-
mization problem by equally allocating the transmission
power among users. In this equal-BER and equal-power
scenario, the only transmission degrees of freedom (DoF)
is the number of active users denoted by r′. Once
a subset of users S is selected with |S| = r′, the
power is distributed equally as Ptotal/r′ and the SE is
obtained by (22) with Pi = Ptotal/r′. The characterizing
optimization problem in this case is

max ASEequal power =
∑

i∈S

log2

(
1 + K · Ptotal ||hiwi||2

r′σ2
n

)

S ⊂ {1, · · · , Nr} ; |S| = r′ (31)

We need to numerically evaluate (31) for all possible
|S| = r′ = 1, · · · , Nr and select the one achieving the
maximum ASE. We want to emphasize at this point that
the number of user subsets that the numerical search
needs to traverse is dependent upon whether (19) or (20)
is opted; clearly, order of users needs to be taken into
account when interference is included. As an example,
consider a system with Nt = Nr = 4. There are 64
subsets if (19) is used and only 15 subsets are required



to be visited for (20). Generally, the number of subsets
that needs to be considered for the (19) case is

Nr∑

i=1




i−1∏

j=1

(Nr − j)


 (32)

and
Nr∑

i=1

((
Nr

i

))
(33)

if (20) is used.
Let us now study the asymptotic behavior of the

equal-BER and equal-power AM. At high channel SNR,
the base-station has enough power to support all users,
therefore, S = {1, · · · , Nr} and |S| = r′ = Nr. Eq. (31)
becomes

ASEequal power

=
Nr∑

i=1

log2

(
1 +

Ptotal

Nr
· K ||hiwi||2

σ2
n

)

≈
Nr∑

i=1

log2

(
Ptotal

Nr
· K ||hiwi||2

σ2
n

)

=
Nr∑

i=1

log2

(
Ptotal

Nr

)
+

Nr∑

i=1

log2

(
K ||hiwi||2

σ2
n

)

= Nr log2

(
Ptotal

Nr

)
+

Nr∑

i=1

log2

(
K ||hiwi||2

σ2
n

)
(34)

Since the water-filling power allocation in equal BER
scenario converges to the equal-power allocation scheme
at high channel SNR, i.e. (23) approaches

ASEequal BER

=
Nr∑

i=1

log2

[
1 + K · Pi ||hiwi||2

σ2
n

]

≈
Nr∑

i=1

log2 (Pi) +
Nr∑

i=1

log2

(
K ||hiwi||2

σ2
n

)

≈ Nr log2

(
Ptotal

Nr

)
+

Nr∑

i=1

log2

(
K ||hiwi||2

σ2
n

)
(35)

therefore, the additional power constraint brings insignif-
icant impact to the ASE of the system at high channel
SNR region. On the other end of the spectrum, we can
expect a similar convergence result since at the lower end
of the channel SNR, the base-station can only dedicate
all its transmit power to the strongest user.

C. Equal-BER and Equal-SE Constraint

So far we have studied AM systems that always adjust
the SEs of the users as a function of the channels. We
now shift our attention to the case where the SE is kept
at a constant level of k0. We are again left with a single

transmission DoF, which is the number of active users
r′. Once the base-station decides how many users to
receive transmission, the same SE k0 is assigned to every
user. The ith user’s transmission power is related to k0

as follows:

Pi =

(
2k0 − 1

)
σ2

n

K ||hiwi||2
; for i = 1, · · · , r′ (36)

and the overall transmission power is subject to the
constraint

r′∑

i=1

(
2k0 − 1

)
σ2

n

K ||hiwi||2
= Ptotal (37)

Rearranging (37) we can obtain the constant SE k0:

k0 = log2

(
1 +

KPtotal

σ2
n

∑r′
i=1 ||hiwi||−2

)
(38)

The optimization problem characterizing the equal-BER
and equal-SE constraint case is thus the following

max ASEequal SE = r′k0 = r′ log2

(
1 +

KPtotal

σ2
n

∑r′
i=1 ||hiwi||−2

)

for r′ = 1, · · · , Nr (39)

We evaluate (39) for all possible r′ and select the one
that achieves the maximum ASE.

Similar to the equal-BER and equal-power case, at low
channel SNR, the base-station can only concentrate its
transmission power to the user with the strongest channel
gain. Thus, we can expect the equal-BER and equal-SE
system to perform comparatively against the equal BER
system. At high channel SNR, transmission to all users
is possible and r′ = Nr. Following the same derivation
as [9], we can approximate (39) as follows

max ASEequal SE = Nrk0 ≈ Nr log2

(
KPtotal

σ2
n

∑Nr

i=1 ||hiwi||−2

)

≤ Nr log2


KPtotal

Nrσ2
n

(
Nr∏

i=1

||hiwi||2
) 1

Nr




=
Nr∑

i=1

log2

(
KPtotal ||hiwi||2

Nrσ2
n

)

= Nr log2

(
Ptotal

Nr

)
+

Nr∑

i=1

log2

(
K ||hiwi||2

σ2
n

)

(40)

with the last line of (40) being the maximum ASE
achieved by the equal BER AM.

The gap between ASEequal SE and ASEequal BER is

ASEequal BER−ASEequal SE =
Nr∑

i=1

log2

(
||hiwi||2 Nr∑Nr

j=1 ||hjwj ||2
)

(41)



k 0 2 4 6 8 10
SNR(dB) BER =
1× 10−3

N/A 9.97 16.96 23.19 29.27 35.30

SNR(dB) BER =
1× 10−6

N/A 13.59 20.58 26.81 32.88 38.92

TABLE I
SWITCHING THRESHOLDS FOR UNCODED MQAM

which is obviously independent of the channel SNR and
the target BER. In other words, a constant SE gap exists
between the equal-SE and the equal-BER AM at high
channel SNR region as well as at any target BER level.

IV. DISCRETE ADAPTIVE MODULATION

In the previous section we have investigated the effects
of power and rate adaptations on the average spectral
efficiency of a MIMO BC. We did not, throughout
the treatment, impose any restrictions on the levels of
modulation that could be used apart from demanding the
modulation technique to be QAM. In this section, we
introduce a practical constraint that limits the levels of
modulation to a finite set of numbers that are integer
multiples of two. More precisely, we assume the available
set of SEs B = [0, 2, 4, 6, 8, 10] is supplied to the base-
station and it can only use

[
20, 22, 24, 26, 28, 210

]
-QAM

to transmit user information. Due to the discrete natural
of the system, analytical expressions for the power and/or
rate adaptations are unavailable and numerical search
needs to be unertaken to obtain the optimal transmission
parameters.

A. Equal Power and/or Equal BER Constraint

Similar to the continuous adaptive modulation, we start
by considering the equal BER scenario. For continuous
adaptive modulation we performed a numerical search
over all possible user subsets for maximum ASE. The
same procedure must be undertaken for the discrete
counterpart with an additional modulation level down
coversion. More precisely, searching over the user sub-
sets returns a set of continuous SEs for a given r′

and S, we need to down convert those SEs to the
nearest member of the list B. The down conversion
requires us to first identify the switching thresholds for
the modulation levels. These switching thresholds can be
obtained directly from (18), simulation results or other
more accurate analytical expressions such as [12]. Table
I lists the calculated thresholds from (18)

For a given r′ and S, the base-station, after receiving
the channel parameters from users, computes the SNRs
using

γi =
Pi ||hiwi||2

σ2
n

(42)

where Pi = Ptotal/r′ for equal-BER and equal-power
case and Pi = Tr

(
Σoptimal

i

)
, with Σoptimal

i being
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Fig. 2. ASE for continuous adaptive modulation (Equal BER and
Equal BER and Equal Power cases)

the ith user’s water-filling transmit covariance matrix,
for equal BER scenario. These SNRs are compared
against the tabulated switching thresholds in Table I and
appropriate values of k are selected. Mathematically

if γα ≤ γ < γα+2; α ⊂ B = [0, 2, 4, 6, 8, 10]
ki = α (43)

V. SIMULATION RESULTS

Figure 2 shows the ASE for continuous adaptive
modulation under different system constraints. It clearly
shows the addition equal power constraint brings an
insignificant degradation in the ASE for the range of
channel SNRs considered. This result agrees with our
previous observations from Eq. (34) and (35). Further-
more, there is a constant gap of 5.2dB between the equal
BER case and the MIMO BC sum capacity for a target
BER of 1 × 10−3 and 8.8dB if target BER is lowered
to 1 × 10−6. This gap is independent of the channel
SNR and is quantified by the penalty factor K defined
in (22). Because channel coding was not considered in
the simulation, therefore, K can also be regarded as the
maximum possible coding gain for the system [7].

Figure 3 shows that imposing an additional equal SE
causes a slight reduction in the ASE. The ASE reduction
is more visible at higher channel SNRs, a result that
coincides with our observation in the previous section.
In additional, the simulation result also supports our
previous statement regarding the ASE gap between equal
BER and equal BER with equal SE cases, i.e. it is
irrelevant of the target BER.

We next present the simulation results for the discrete
adaptive modulation. Figure 4 compares the continuous
and discrete adaptive modulation under equal BER con-
straint. Limiting the SEs to a set of finite levels incurs
an ASE penalty and the severity of the ASE descent is
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independent of the channel SNRs. Eq. (22) reveals the
reason for the loss in ASE; the equality always holds
if the SEs are continuous while for discrete SEs, the
inequality is always true. Lastly we use Figure 5 to
justify our choice of (20) over (19); there is no noticeable
difference between the two curves which suggests the
results obtained by adopting (20) is equally indicative
for our purpose.

VI. CONCLUSION

In this paper we investigated AM techniques that can
maximize the ASE while maintaining an acceptable BER
for the MIMO BC system. We found that there was
an ASE penalty if we confined ourselves to MQAM.
The ASE penalty is a function of the target BER and
is constant for all SNR if the modulation sizes are
continuous. Our simulation results further showed that
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if only a finite set of discrete modulation sizes was
supplied to the transmitter, the ASE gap expanded and it
maintained the same distance from the continuous AM
case. In addition, we have identified that rate adaptation
is more important than power adaptation in maximizing
the ASE of the system.
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