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Abstract

Artifacts in bioelectric signals can make bioelectric signals

unreliable. Spectral and temporal overlap can make the re-

moval of artifact or separation of different bioelectric signals

extremely difficult. Often, the sources of the bioelectric signals

may be considered as independent at the local level and this

makes an argument for separating the signals using indepen-

dent component analysis (ICA). This paper reports research

conducted to evaluate the use of ICA for the separation

of bioelectric signals when the number of sources exceed

number of sensors. The paper proposes the use of value of

the determinant of the global matrix generated using sub-

band ICA for identifying the number of active sources. The

results indicate that the technique is successful in identifying

the number of active muscles for complex hand gestures.

The results support the applications such as human computer

interface.

1. INTRODUCTION

Independent component analysis (ICA) [1],[15] has been a

widely accepted technique to solve the BSS problem. Although

the BSS problem involves two implications: source number

estimation and source separation, for conceptual and compu-

tational simplicity, most ICA algorithms employ the linear

instantaneous mixture model and assume that the number

of sources equals to the number of observations (so that

the mixing/un mixing matrix is square and can be easily

estimated). However, this equality assumption is in general not

the case in bio signal processing applications where number

of muscles can be activated for a simple hand gesture and the

number of sources (muscles) can easily exceed the number

of sensors. Hence, the number of sources has to be estimated

before any further calculation can be done.

Independent component analysis (ICA) is an important

method for blind source separation and unsupervised learning.

Recently, the method has been extended to the overcomplete

situation where the number of sources is greater than the

number of receivers. Most ICA algorithms assume that at least

as many sensor signals as there are underlying source signals

are provided. In overcomplete ICA however, more sources are

mixed to less signals. The ideas used in overcomplete ICA

originally came from coding theory, where the task is to find

a representation of some signals in a given set of generators

which often are more numerous than the signals, hence the

term overcomplete basis. Sometimes this representation is

advantageous as it uses as few ’basis’ elements as possible,

which is then called sparse coding. Olshausen and Fields

[2] first put these ideas into an information theoretic context

decomposing natural images into an overcomplete basis. Later

Olshausen [3] presented a connection between sparse coding

and ICA in the quadratic case. Lewicki and Sejnowski [4] then

were the first to apply these terms to overcomplete ICA, which

was further studied and applied by Lee et al [5]. Bofill and

Zibulevsky [6] treated delta-like source distributions for over-

complete case of source signals after Fourier transformation.

ICA has been successfully used for signal extraction tasks in

sound, bio medical and image processing [7],[8],[14]. A more

recent biomedical application of ICA concerns the processing

of Surface EMG signals. ICA has been proposed for unsuper-

vised cross talk removal from Surface EMG recordings of the

muscles of the hand [9]. Recently surface EMG with ICA has

been proposed for the Hand gesture identification [10].

Any hand movement is a result of a complex combination

of many flexors and extensors present in the forearm. Since

all these muscles present in the forearm are close to each

other, myo-electric activity observed from any muscle site

comprises the activity from the neighbouring muscles as well,

referred to as cross-talk. When the muscle activity is small

(subtle), the signal strength is small and the impact of cross

talk and noise is very high. This is further exaggerated when

considering different subjects since the size of the muscles,

presence of subcutaneous fat layer and also the training level

is different for different people. Extraction of the useful

information from such kind of surface EMG becomes more

difficult for low level of contraction mainly due to the low

signal-to-noise ratio. At low level of contraction, EMG activity

is hardly discernible from the background activity. Therefore



to correctly identify number of individual muscles (sources)

the EMG needs to be decomposed. There is little or no

prior information of the muscle activity, and the signals have

temporal and spectral overlap, making the problem suitable

for blind source separation (BSS) or ICA for the separation

of muscle activities. There are several muscles get activated

at the same time during the hand movement which makes it

typical overcomplete ICA problem (n > m).

Despite the success of using standard ICA in many appli-

cations, the basic assumptions of ICA may not hold for some

kind of signals hence some caution should be taken when

using standard ICA to analyse real world problems, especially

in biomedical signal processing. Hence in this paper sub-band

ICA approach has been used to estimate the number of sources

in overcomplete ICA.

The aim of this research is to determine suitable signal

processing techniques where the system identifies muscles as

independent sources and extracts suitable features to classify

the recordings based on these features. This paper reports the

identification of number of sources (muscles) from the various

hand gestures using sub-band ICA. The paper also explains the

various issues involved in source separation problem in bio-

medical applications.

2. RELATED WORK

A. Sub-band decomposition ICA

ICA uses higher-order statistics of the data to minimize the

dependence between the components of the system output.

However, classical ICA algorithms do not work well for

separation in the presence of noise or when performed on-

line especially with bio-medical signal processing. In fact,

by definition, the standard ICA algorithms are not able to

estimate statistically dependent original sources, that is, when

the independence assumption is violated. The key idea in this

approach is the assumption that the unknown wide-band source

signals can be dependent, however some their narrow band

sub-components are independent. In other words, we assume

that each unknown source can be modelled or represented as

a sum (or linear combinations) of narrow-band sub-signals.

Sub-band decomposition ICA (SDICA), an extension of ICA,

assumes that each source is represented as the sum of some

independent subcomponents and dependent subcomponents,

which have different frequency bands.

Wide-band source signals are a linear decomposition of

several narrow-band sub components:

s(t) = s1(t) + s2(t) + s3(t), . . . , sn(t) (1)

Such decomposition can be modeled in the time, frequency

or time frequency domains using any suitable linear trans-

form. We obtain a set of un-mixing or separating matrices:

W1,W2,W3,. . . ,Wn where W1 is the un-mixing matrix for

sensor data x1(t) and Wn is the un-mixing matrix for sensor

data xn(t). If the specific sub-components of interest are

mutually independent for at least two sub-bands, or more

generally two subsets of multi-band, say for the sub band ”p”

and sub band ”q” then the global matrix

Gpq = Wp × W−1

q (2)

will be a sparse generalized permutation matrix P with special

structure with only one non-zero (or strongly dominating)

element in each row and each column [11]. This follows

from the simple mathematical observation that in such case

both matrices Wp and Wq represent pseudo-inverses (or true

inverse in the case of square matrix) of the same true mixing

matrix A (ignoring non-essential and unavoidable arbitrary

scaling and permutation of the columns) and by making an

assumption that sources for two multi-frequency sub-bands

are independent [11]. This provides the basis for separation

of dependent sources using narrow bandpass filtered sub-band

signals for ICA.

This paper reports the use of sub-band ICA to separate

the signals from different sources which may have a level of

dependency such as for biosignals. This paper also reports a

novel research conducted to identify the number of indepen-

dent and dependent sources. The work has been conducted

on sEMG of the forearm during hand actions to identify the

number of active muscles during each action.

3. THEORY

A. Bio sensors

To accurately and reliably capture clinically relevant episodes

in a pervasive health care monitoring system, multiple sensors

are required to measure both physiological and contextual

information. Since both intrinsic and extrinsic factors can

affect the sensor readings, it is important to perform source

separation before data. For example, typical ECG (Electrocar-

diogram) sensors can pick up not only the ECG signal, but also

respiration, motion artefact, and noise induced signal changes.

For Bio Sensor Network (BSN), the same physiological infor-

mation can also spread across a number of different sensing

channels. For instance, the heart beat signal can be sensed

by ECG sensors, pulse oximetry sensors, accelerometers, and

audio sensors. In other words, for a patient wearing these

sensors, it is necessary to extract the common sources of

these signals such that the derived signal characteristics are

immune to noise and artifacts. Similar scenario arises when

conducting the experiments with sEMG signals where the

adjacent muscles(sources) can be mixed during the recording.

Hence there is a need for identifying number of sources

involved in the bio signal experiments.

B. Surface Electromyogram

Surface EMG (sEMG) is a result of the superposition of a

large number of transients (muscle action potentials) that have

temporal and spatial separation that is pseudo-random. The

origin of each of the MUAP is inherently random and the

electrical characteristics of the surrounding tissues are non-

linear. Due to the nature of this signal the amplitude of the

EMG signal is pseudo-random and the shape of the probability

distribution function (PDF) resembles a Gaussian function.



Surface EMG is a non-invasive recording, requires relatively

simple equipment, and this opens it for numerous applications.

This technique has clear advantages over needle EMG. Most

importantly it avoids the use of needles and as a result is

painless for patients and avoids health hazards for patient and

doctor. Furthermore, sEMG is a quick and easy process that

facilitates sampling of a large number of MUPs. The close

relationship of surface EMG with the force of contraction of

the muscle is useful for number of applications such as sports

training and for machine control. The relationship of surface

EMG spectrum with muscle fatigue is also very useful for

occupational health and sports training. Unfortunately due to

a number of factors [12] sEMG is currently of limited use in

clinical testing.

Surface EMG may be affected by various factors such as:

• The muscle anatomy (number of active motor units, size

of the motor units, the spatial distribution of motor units).

• Muscle physiology (trained or untrained, disorder, fa-

tigue).

• Nerve factors (disorder, neuromuscular junction).

• Contraction (level of contraction, speed of contraction,

isometric/non-isometric, force generated).

• Artifacts (crosstalk between muscle, ECG interference).

• Recording apparatus factors (recording-method, noise,

electrode’s properties, recording sites).

Surface EMG recordings provide a practical means to record

from several muscles simultaneously but tend to be unreliable,

i.e. recordings from a subject performing the same movement

repetitively tend to have considerable trial-to-trial variability.

sEMG recordings are also affected by”cross-talk” whereby

several muscles may contribute to the recording of a given

electrode, making the source of the signal difficult to be

identified. Recently, Independent Component Analysis (ICA)

has been proposed as a method to analyze sEMG recordings,

which addresses many of these concerns. One property of

the sEMG is that the signal originating from one muscle can

generally be considered to be independent of other bioelectric

signals such as electrocardiogram (ECG), electro-oculargram

(EOG), and signals from neighbouring muscles. This opens

an opportunity of the use of independent component analysis

(ICA) for this application.

C. ICA model

It is often required to separate the original signals from the

mixture of signals, when there is little information available

of the original signals and there is an overlap of the signals in

time and frequency domain. Even if there is no or limited

information available of the original signals or the mixing

matrix, it is possible to separate the original signals using in-

dependent component analysis (ICA) under certain conditions.

ICA is an iterative technique that estimates the statistically

independent source signals from a given set of their linear

combinations. The process involves determining the mixing

matrix. The independent sources could be audio signals such

as speech, voice, music, or signals such as bioelectric signals.

The aim of source separation is to recover unobserved

signals or sources from temporally and spatially correlated

observations. Generally, a Blind Source Separation (BSS)

problem can be formulated as finding an inverse system that

recovers the original signal sources given an observed number

of sensor signals x(t) = [x1(t)+x2(t)+x3(t),. . .,xn(t)]. The

mathematical formulation of BSS is typically given in the form

of a statistical estimation problem. This model is generative,

which means that it describes how the observed data is

generated by a process of mixing the source components. By

assuming s(t) = [s1(t) + s2(t) + s3(t), . . . , sn(t)]T as the

unknown signal sources mixed according to a vector valued

non-linear function f [1],[13],[15].

For linear mixing models, ICA is a valuable tool for BSS,

and the mathematical formulation of the classical ICA is a

simplified form of the BSS problem

x(t) = As(t) (3)

where A is an N ×M scalar matrix representing the unknown

mixing coefficients and it is called transfer or mixing matrix.

For most ICA applications, noise is either assumed to be white

Gaussian with variance σ2 or negligible. Apart from the source

signals, noise can also be assumed to be part of the sources. In

this case, the noise is assumed to be statistically independent

of other source components. The goal of ICA is to find a

linear transformation W of the dependent sensor signals x(t)
that makes the outputs as independent as possible:

ŝ(t) = Wx(t) = WAs(t) (4)

where ˆs(t) is an estimate of the sources. The sources

are exactly recovered when W is the inverse of A up to a

permutation and scale change. Since both the sources and

the mixing coefficients are unknown, it is impossible either

to determine the variances or the order of the independent

components. The block diagram approach of ICA for source

separation is shown in Figure 1.

The success of ICA to estimate independent sources is

dependent on the fulfillment of the following conditions.

• The sources must be statistically independent.

• The sources must have non Gaussian distributions. How-

ever, ICA can still estimate the sources with small degree

of non-Gaussianity

• The number of available mixtures N must be at least the

same as the number of the independent components M .

• The mixtures must be (can be assumed as) linear combi-

nation of the independent sources.

• There should be no (little) noise and delay in the record-

ings.

ICA also suffers from the following unavoidable ambigui-

ties.

• The order of the independent components cannot be

determined (it may change each time the estimation

starts)

• The exact amplitude and sign of the independent compo-

nents cannot be determined.



Fig. 1: Source recovery process in Blind source separation (ICA). Here s(t) are the sources. x(t) are the mixtures, A is mixing matrix, W is un-mixing

matrix and ˆs(t) are the estimated sources.

While standard ICA requires that the number of signals

be less than or equal to the number of recordings, number

of researchers have attempted to overcome this limitation by

developing techniques to separate over-complete (sources are

more than recordings) recordings [5],[6]. In some of these

papers, the quality of separation has not been objectively

measured. The other concern with these techniques is that

these are based on the assumption that the signals are sparse.

This is not always possible, and in some cases this may require

pre-processing of the data.

D. Relevance of ICA methods for sEMG signals

The aim of this section is to demonstrate that there is a strong

theoretical basis for applying ICA methods to sEMG signals.

The assumptions that underpin the theory of instantaneous ICA

- discussed in the previous section - indicate that ICA/BSS

methods are ideally suited to separating sources when

• The sources are statistically independent.

• Independent components have non-Gaussian distribution.

• The mixing matrix is invertible.

These assumptions are well satisfied to sEMG data as

MUAPs are statistically independent, have non-Gaussian dis-

tributions and we can be (virtually) certain that the mixing

matrix will be invertible. There are, however, two other

practical issues that must be considered. Firstly, to ensure that

the mixing matrix is constant, the sources must be fixed in

space (this was an implied assumption as only the case of a

constant mixing matrix was considered). This is satisfied by

sEMG as motor units are in fixed physical locations within a

muscle, and in this sense applying ICA/BSS methods to sEMG

is much simpler than in other biomedical signal processing

applications such as EEG or fMRI in which the sources can

move [16]. Secondly, in order to use ICA technique it is

essential to assume that signal propagation time is negligible.

Volume conduction in tissue is essentially instantaneous [14].

Hence this assumption is also well satisfied.

Based on the above discussion of the ICA assumptions as

they apply to sEMG, it is reasonable to be confident that ICA

can be effectively applied to sEMG data.

E. Number of Sources Exceed Number of Recordings:

When Surface EMG is recorded, most of the times the number

of recording channels correspond to the active muscles being

measured, with no spare recording to account for the artefact.

If the artefact was to be removed using ICA, the source of

the artifact would be another independent source, and in such

a situation, the number of sources would exceed the number

of recordings. It is thus important to determine the conditions

under which standard ICA could be used to remove artifacts

from biosignal recordings when the number of sources may

exceed the number of recordings. To analyse this, consider

the set of recordings to be a vector x and the pure signals

(unknown) to be a vector s(t). Then x(t) = As(t), where A

is an unknown mixing matrix. The output of ICA algorithm

is an estimate of un-mixing matrix W so that

s(t) = Wx(t)

s(t) = WAs(t)

It is evident that WA = I , identity matrix. If the number

of recorded data is less than the number of true independent

sources A is not a square matrix), running standard ICA on

this kind of data will never give truly independent source. The

estimated independent components will be a mixture of those

true independent sources with element of W as the scale factor.

To prove the same, consider two channel recordings x(t) of

three independent sources s(t) and express it as:

x1(t) = a11s1(t) + a12s2(t) + a13s3(t)

x2(t) = a21s1(t) + a22s2(t) + a23s3(t)

Consider the estimated un-mixing matrix,

W = [w11w12;w21w22]

generated using standard ICA algorithm on that data. The



Fig. 2: Placement of Electrodes for Hand gesture Experiment.

estimated independent components can be written as:

es1(t) = w11x1(t) + w12x2(t)

= w11(a11s1(t) + a12s2(t) + a13s3(t))

+ w12(a21s1(t) + a22s2(t) + a23s3(t))

es2(t) = w21x1(t) + w22x2(t)

= w21a11s1(t) + a12s2(t) + a13s3(t))

+ w22(a21s1(t) + a22s2(t) + a23s3(t))

If none of the coefficient of mixing matrix A is zero means

that all three sources are present in both mixtures x1(t) and

x2(t) As A is a full rank matrix, then there is no column

or row dependency. Under these conditions, there is no W

that will be able to isolate one source from others. The only

possible way that the estimated output would look very similar

to one of the independent sources is when its corresponding

magnitude is higher than others. Since the number of actual

independent sources of sEMG signal recorded from electrode

is unknown (and is believed to be many), standard ICA will

not be suitable for applications except when the magnitude of

some of the sources is comparatively much higher.

To overcome the difficulty of separation of signals when

the number of sources exceeds the number of recordings, an

alternate to the entropy based ICA is the use of sub-band

ICA, where normal ICA concept will be applied to various

sub-bands to compute the mixing and un-mixing matrices.

This paper reports the identification/estimation of number of

sources (muscles) involved in different hand actions. The

paper explains the concept of dependency and independency

to identify number of sources in bio signals like EMG.

4. METHODOLOGY

Controlled experiments were conducted, where subjects were

asked to perform three different hand actions. Based on the

assumption that the muscle contraction is small during the

hand actions, ICA algorithm was used to estimate the sources

for each sub-band components:

A. EMG Recording

Five subjects (four males and one female) participated in the

investigation. For the data acquisition a proprietary Surface

EMG acquisition system by Delsys (Boston, MA, USA) was

used. Eight electrode channels were placed over four different

assumed muscles (two electrode channels on each muscle),

electrode placement diagram for the hand gesture experiment

is shown in Figure 2. A reference electrode was placed at

Epicondylus Medialis. Before placing the electrodes subject’s

skin was prepared by lightly abrading with skin exfoliate

cleaned with 70% v/v alcohol swab.

Three different hand actions were performed and repeated

12 times at each instance. Each time raw signal sampled at

1024 samples/second was recorded. Markers were used to

obtain the muscle contraction signals during recording. The

actions were complex to determine the ability of the system

when similar muscles are active simultaneously. The three

different hand actions are performed and are listed below:

• Wrist flexion.

• Finger flexion

• Finger and wrist flexion together but normal along centre

line.

These hand actions were selected based on small variations

between the muscle activities of the different digitas muscles

situated in the forearm. The hand actions were selected based

on small variations between the muscle activities of the

different digitas muscles situated in the forearm.

B. EMG signal processing

The experiments were conducted to obtain three sets of data-

independent sources, dependent sources, and double dependent

sources. For this purpose, eight channels of sEMG were

recorded during three hand actions. These eight channels

depicted six independent sources (refer Table 1).During the

recording the sensors can pick up the other source information,

hence in reality there were at least six or more muscles



TABLE 1: MUSCLES INVOLVED DURING THE HAND GESTURE EXPERIMENT.

Channel Muscle Function

1
Brachioradialis Flexion of

forearm

2
Flexor Carpi Abduction and
Ulnaris(FCU) flexion of wrist

3
Flexor Carpi Abduction and

Radialis (FCR) flexion of wrist

4
Flexor Digitorum Finger flexion while

Superficialis (FDS) avoiding wrist flexion

5
Palmer longus Wristflexor

6
Pronator teres Pronation of forearm

involved which made it to typical overcomplete ICA problem.

The muscles that involved in different hand actions are listed

in table 1:

Three classes of recordings were identified using a combi-

nation of 4 channels at a time (refer Table 2). These data’s

were further analyzed using sub-band decomposition ICA.

TABLE 2: CHANNEL SELECTION FOR THREE DIFFERENT CLASSES (INDE-
PENDENCY, DEPENDENCY AND DOUBLE DEPENDENCY) FOR ICA MATRIX

ANALYSIS.

Channel Selection Classes Involved

(1, 3, 5, 7) Independent

(2, 4, 6, 8) Independent

(3, 4, 6, 8) Dependent

(5, 6, 3, 7) Dependent

(3, 4, 7, 2) Dependent

(1, 2, 3, 4) Double Dependent

(5, 6, 7, 8) Double Dependent

C. Analysis of mixing matrix

In order to measure the quality of the separation of hand

gesture muscle activities and to estimate number of sources,

we used the mixing matrix analysis.The surface EMG signals

(wide-band source signals) are a linear decomposition of

several narrow-band sub components:s(t) = [s1(t) + s2(t) +
s3(t), . . . , sn(t)]T where s1(t),s2(t),. . . ,sn(t) each are 2500

samples in length which are obtained from recorded signals

x1(t),x2(t),. . . ,xn(t) using ICA. Such decomposition can be

modelled in the time, frequency or time frequency domains

using any suitable linear transform. We obtain a set of un-

mixing or separating matrices, then the global matrix

Gpq = Wp × W−1

q (5)

will be a sparse generalized permutation matrix P with special

structure with only one non-zero (or strongly dominating)

element in each row and each column [11]. We investigated

mathematical properties of ICA mixing and un-mixing matri-

ces to estimate number of sources using the dependency and

independency of the sources.

D. Mathematical Methods

Mathematical properties of matrices were investigated to check

the linear dependency and independency of global matrices

(Permutation matrix P )

• Rank of the matrix

Rank of the matrix will be less than the matrix size for

linear dependency and rank will be size of matrix for linear

independency, but this couldn’t be assured yet due to noise in

the signal. Hence determinant is the key factor for estimating

number of sources.

• Determinant of the matrix

In real time Determinant should be zero for linear indepen-

dency (In our case the real time data gives the answer very

close to zero for the case, double dependency of hand gesture

experiments). Determinant value should be more than zero for

linear independency (Valid for hand gesture signals).

1
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3

4
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3
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−2

−1

0

1

2

Fig. 3: Three dimensional plot showing the individual matrix elements for
Global matrix (G) during Independent test case.

5. RESULTS AND OBSERVATIONS

The above mathematical analysis was performed for all the

cases. The determinant results were normalized using Frobe-



TABLE 3: FROBENIUS NORM DETERMINANT RESULTS OF FOUR CHANNELS USING ICA MATRIX ANALYSIS

Independency Dependency Double Dependency

0.6628 0.0678 0.0242

0.4475 0.0992 0.0195

0.6591 0.06397 0.0086

0.7937 0.07081 0.0077

0.6328 0.0632 0.0142

0.6071 0.0932 0.0195

0.6891 0.08397 0.0086

0.7992 0.06081 0.0077

0.7891 0.08397 0.0142

0.7292 0.04081 0.0132

Mean = 0.68096 Mean = 0.072774 Mean = 0.01374

StD = 0.107427 StD = 0.017413 StD = 0.005795

1
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Fig. 4: Three dimensional plot showing the individual matrix elements for
Global matrix (G) during Dependent test case.
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Fig. 5: Three dimensional plot showing the individual matrix elements for
Global matrix (G) during Double dependent case.

nius Norm. For hand gesture analysis we considered three

different classes of results.

• Independency

• Dependency

• Double dependency

A. Independency

The independent results were evident from the global matrix

(G). The matrix results confirms with one of the dominant

values in each row and column. From the resultant matrix G

it is observed that there is clear source separation when the

sources are totally independent.

G =









-1.7555 −0.1522 −0.0608 −0.0665
−0.0806 0.1189 −0.0201 1.2224

−0.0760 0.9003 0.0124 0.0538
−0.1653 −0.0046 0.8451 −0.0054









Determinant (G) = -1.6490, Det. FrobeniusNorm = -0.6628

The Matrix results are clearly shown using 3 dimensional

plot (refer Figure 3).

B. Dependency

From the global matrix (G) it appears confirmed that there

exists more dependent values in the matrix. The matrix shown

the results with more than one dependent value in each row and

column. More dominant values can be seen in matrix G, which

shows the trend of dependency. The results also demonstrate

that there could be influence of sources (muscles) from the

adjacent channels during the sEMG recordings.

G =









−0.2130 -0.5643 0.5196 −0.0028
0.2245 -0.2497 -0.1832 0.1062
0.0621 −0.0753 −0.0213 -0.5959

0.0660 0.4147 0.5015 −0.1231









Determinant (G) = 0.0858, Det. FrobeniusNorm = 0.0678

The dependent values are shown using 3 dimensional plot

(refer Figure 4).
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Fig. 6: Plots showing the Frobenius norm determinant results for dependency, double dependency and independency case
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Fig. 7: Bar Plot showing the Frobenius norm determinant results for dependency, double dependency and independency case



C. Double Dependency

In this case, the global matrix (G) shown the results with more

than two dependent values in each row and column of the

matrix. The results indicates that there could be more cross-

talk between adjacent sources. The low determinant results

normalized with Frobenius norm justifies the argument.

G =









0.9955 -1.2131 −0.5903 0.9328

0.4400 0.2165 0.6893 -0.3979

-1.1664 0.9400 2.0976 -2.0100

−0.2226 -0.8282 −0.1252 0.1048









Determinant(G) = -0.0967, Det. FrobeniusNorm = -0.0242

The Matrix results for Double dependency are clearly shown

using 3 dimensional plot, which is shown in Figure 5.

The overall results for the above analysis are shown in Table

3. The same is well explained with line plot in Figure 6 and

using bar plot in Figure 7. Where the plot shows the low

determinant values for dependency and double dependency

which are well below the independency value results.

Hence if we consider threshold value of 0.4 for Frobenius

norm, we can clearly distinguish between independent and

dependent sources. A threshold of 0.04 separates between

dependent and double dependent sources.

6. DISCUSSION AND CONCLUSION

The overall results were summarized as follows:

• With the use of combination of 4 channels (from 8

recordings) representing three different classes of sources;

dependent, double dependent and independent sources it

is possible to determine the number of active sources

using sub-band ICA.

• The rank of the global matrix is an indicator of the

dependency within the matrix and did not indicate the

dependent or independent nature of the sources, and was

always 4 in the above examples making this unsuitable for

deciding dependency and independency of the sources.

• Determinant of the global matrix has been found to be

a reliable measure of identifying the linear dependency

and independency (refer Table 3).

• The value of the determinant is a good measure to identify

the number of dependent sources in the mixture. This

provides a measure of the number of active muscles from

sEMG.

• There are number of possible applications for such a

technique for biosignal applications such as identifying

the number of active muscles in overlapping muscles

during complex actions and gestures.
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