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Abstract- Many hardware and software co-design 

methodologies have been proposed to improve overall system 

performance, reliability and cost-effectiveness of digital 
systems for decades. This paper presented an efficient co-
design methodology using primitive instruction sets and a 

dynamic out-of-order execution scheduler for a variety of video 
compression algorithms. As a case study, this paper applies the 
proposed co-design method to the motion estimation of H.264 

video coding standard, which is one of the most time-
consuming parts in H.264. This case study shows that the 
proposed methodology improves motion estimation speed by 13 

times compared to naïve motion estimation with a minimal 
design and coding effort.  

 

I. INTRODUCTION 

Recently, demands of various multimedia services have 

been radically increased. Such service demands require 

efficient video compression algorithms to efficiently and 

economically store and transmit multimedia contents. For 

this, many video compression standards such as MPEG-2 

[1], MPEG-4 [2], and H.264 [3] have been proposed and 

used, during last decades. However, since the high 

compression efficiency of these standards is mainly due to 

high computation complexity, it is very difficult to 

implement them in software for real-time applications. To 

resolve this problem and thus, to provide real-time video 

compression encoding with a little quality degradation, full 

hardware design solutions have been proposed [4], [5], [6]. 

However, these dedicated hardware architectures have a 

problem of short flexibility and long time-to-market.  

To overcome the problems described above, many 

hardware and software co-design solutions have been 

proposed, which can take advantages of both software and 

hardware solutions, i.e., flexibility and performance [7], [8], 

[9]. Jang et al. [7] presented a H.263 video compression 

codec [10] which implements motion estimation and motion 

compensation parts of H.263 codec in hardware and 

processes the rest of H.263 in software. Choi et al. [8] also 

presents a MPEG-4 hardware and software co-design 

solution which proposes to design a codec in hardware 

except for a variable length coding (VLC) part of MPEG4. 

Even though the quality and performance of the proposed 

algorithms given above are tolerable and acceptable, their 

bulky-sized hardware IP blocks such as ME or MC parts, 

degrade the benefits of software solutions, i.e., flexibility 
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and low development cost. 

In order to provide the design flexibility of previous 

works, a co-design approach based on the UltraSONIC 

reconfigurable platform is recently proposed [9], [11]. In [9], 

Wiangtong et al. proposes an algorithm which automatically 

partitions and schedules tasks for hardware and software, 

respectively. Because run-time reconfigurable processing 

elements (PEs) of UltraSONIC can contain any specific 

data-dominated tasks, various combinations of PEs provide 

flexibility and reusability to a hardware task design.  

However, a sub-optimized partitioning algorithm by 

automated tools degrades the performance of co-design 

system compared to hand-made. In addition, task manager 

algorithm which performs scheduling in task unit makes the 

system limited in a parallel processing of instruction unit 

and thus the performance degradation is occurred. 

In this paper, we propose a hardware and software co-

design methodology for various video compression 

algorithms.  The proposed co-design methodology employs 

primitive instruction sets and an out-of-order execution 

scheduler and thus, can exploit the benefits of both software 

and hardware solutions, i.e., flexibility and performance.  

In the remainder of this paper, we describe the proposed 

co-design methodology that consists of primitive instruction 

sets and out-of-order execution scheme in Section II. In 

Section III, a case study for the motion estimation part of 

H.264 will be considered. Finally, we conclude this work 

while giving future work directions in Section IV. 

 

 

II. HW/SW CO-DESIGN METHODOLOGY 

In this section, we present an efficient co-design method 

for video compression algorithms. This method takes care of 

two co-design issues. The first issue is how tasks are 

partitioned for hardware and software. The other is how to 

maximize system performance. To handle the first issue, this 

work introduces a primitive instruction set which enables 

parallel processing in instruction unit and thus, defines an 

implementation boundary between hardware and software. 

Regarding the second issue, this paper employs an out-of-

order scheduler for vector instructions or primitive 

instructions. Before these issues are covered in depth, the 

following section will cover the overview of the proposed 

co-design flow.  

 

 



A.  The Proposed HW/SW Co-design Flow 

The proposed co-design flow iteratively partitions 

hardware and software tasks by defining a primitive 

instruction set until system requirements are satisfied. For 

detail, as shown in Fig. 1, a primitive instruction set is 

determined through analyzing system specifications and 

application behaviors. Primitive instructions define which 

tasks should be implemented in hardware and thus, result in 

efficient HW/SW partitioning. After that, the system design 

based on the primitive instruction set needs to be evaluated 

in order to check whether system requirements are satisfied  

Until given target requirements such as performance, chip 

size, cost and power are satisfied, co-design system is 

iteratively tuned. Therefore, the proposed co-design 

methodology ensures a tight integration between software 

and hardware, ending up with better performance and design 

efficiency. More details about primitive instructions are 

given in the following section. 

 

B. Primitive Instruction design methodology 

The key idea of the proposed co-design methodology is to 

define primitive instructions which are a sort of small 

function blocks. Each one of these primitive instructions 

processes a complicated and time-consuming task while 

being called frequently. Therefore, if these instructions are 

implemented in hardware, the overall performance of a 

target system can be easily enhanced. This methodology 

also can provide a hardware implementation of small-sized 

flexible task units and enables to efficiently partition 

hardware and software tasks.  

Furthermore, from the view of software engineers, they 

are just a set of new powerful instructions and thus, enable 

an easy software development by replacing corresponding 

function calls by the newly-given primitive instructions.  

Fig. 2 shows a primitive instruction determination process. 

In this figure, A, B, C, ..., F are primitive tasks comprising a 

video application. By clustering, partitioning or isolating of 

these tasks, candidate primitive instructions can be 

determined when one of the following conditions is satisfied. 

 

(1) If an isolated task, like C task in Fig. 2, is an iteratively 

called and data-intensive function block, the task can be 

a candidate primitive instruction.  

Examples: SAD or SATD 
1

functions in motion 

estimation. 

(2) If a task, like B-C, B-D, or A-E tasks in Fig. 2, can be 

generated by clustering some frequently called tasks, this 

new task can be a candidate primitive instruction. 

Examples: A set of scalar instructions, i.e. adders and 

multipliers. 

(3) If a task, like B task in Fig. 2, operates a regular-sized 

block data access from main memory to register files, 

and can be implemented in vector processing unit, this 

task can be a candidate primitive instruction. 

Examples: vector data-load instructions. 

 

But, these candidate primitive instructions are finalized 

and preferentially selected when one or more of the 

following conditions are satisfied. If not, candidate primitive 

instructions are iteratively split or merged until being 

satisfied. 

 

(1) If the candidate primitive instructions are a highly 

critical bottleneck to implement real-time video coding 

systems, they can be finalized as primitive instructions. 

Examples: DCT or interpolation functions. 

(2) If the candidate primitive instructions are applicable 

and flexible to previous video codec, those candidate 

primitive instructions can be primitive instructions. 

Examples: SAD4x4 unit in SAD function. 

                                                           
1
  SAD and SATD are criteria to find a nearest one of 

current macroblock in the view of distance.  
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, where N  is the number of pixels of a macroblock, )(T is 

Hadamard transform and ix , iy are current and candidate 

macroblock respectively.  

The best or nearest macroblock iy  is chosen when the 

criterion has a minimum SAD or SATD value. 
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Fig. 2. Candidate Primitive Instruction Decision Procedure. 
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Fig. 1. Proposed HW/SW Co-design Flow. 



(3) If the candidate primitive instructions are defined as a 

possibly dependency minimized set, they can be 

primitive instructions. 

 

Finally, selected primitive instructions can be implemented 

in hardware by employing single instruction multiple data 

(SIMD) or multiple instructions multiple data (MIMD) 

structure. These structures enable one to process primitive 

instructions in a short time, resulting in short execution time. 

Therefore, flexibly defined primitive instructions can 

provide compatibility to previous codec and higher 

performance in speed. 

  To boost up the performance of system based on 

primitive instructions, the following section will present an 

out-of-order scheduler for either normal scalar or primitive 

instructions.  

 

C.  Out-of-Order Execution Scheduler 

With an in-order scheduler, fetched instructions are 

sequentially executed in a program order pattern. In this 

case, a stalled instruction blocks the following instructions 

which do not have to be blocked. For example, assume a 

"multiplication" function unit which can multiply data in 10 

cycle latency. In the case of in-order execution, any 

following instructions cannot be issued and executed until 

the multiplication instruction is completed. To resolve such 

problem, an out-of-order execution scheduler rearranges 

instruction execution order by dynamically tracking 

instruction dependencies and checking whether functional 

units are available. This increases processing resource 

utilization and reduces execution time. With the example of 

multiplication instruction given above, in the case of out-of-

order execution, if next "add" instruction has no dependency 

with the prior multiplication instruction, it can be issued and 

executed without waiting for the multiplication instruction 

completion, enhancing system performance and utilization.  

Generally, such out-of-order scheduler has been 

employed for scalar instructions rather than vector 

instructions. This is because it is difficult to track 

dependencies among vector instructions consisting of many 

data and variables. However, our primitive instruction is 

confined to have only one output data, which makes 

dependency tracking easy. By exploiting this, this work 

proposes to employ an out-of-order scheduler for both 

primitive instructions and normal scalar instructions.  

Fig. 3 shows an architecture example employing 

primitive instructions and an out-of-order scheduler. In this 

figure, after fetching instructions from instruction memory, 

the instructions will be dispatched and sent to reservation 

station in the out-of-order hardware scheduler. At 

reservation station, data dependency of instructions and 

function unit availability are checked and, if there is no 

problem, instructions are sent to execution units in any order. 

Then, the results of executed instructions are written back 

into either registers or buffers.  

The proposed out-of-order execution scheduler checks 

not only data dependency between primitive instructions but 

also dependency between primitive instructions and normal 

scalar instructions. Therefore, neither primitive instructions 

nor scalar instructions block one another, maximizing 

system utilization and performance. 

 

 

III. A CASE STUDY: H.264/AVC MOTION ESTIMATION 

To help understanding, in this chapter, we provide a case 

study which applies the proposed design methodology to 

H.264/AVC motion estimation. For this, this chapter 

analyzes characteristics of H.264/AVC motion estimation 

and defines primitive instructions for hardware and software 

partitioning. Then, by exploiting the defined primitive 

instructions, we design a hardware and software co-design 

architecture. Finally, the performance of this architecture 

employing primitive instruction sets and an out-of-order 

execution scheduler is verified by using “SimpleScalar” 

simulator.  

 

A.  Design Specifications of H.264 Motion Estimation 

As a state-of-the-art video coding standard, H.264 

provides gains in compression efficiency of up to 50% over 

a wide range of bit rates and video quality compared to 

previous standards. However, complexity of H.264 highly 

increased about 10 times as complex as a corresponding 

MPEG-4 standard [12]. Specifically, to reduce the temporal 

redundancy between successive pictures, motion estimation 

algorithm has improved by adopting variable block size for 

 

Fetch Dispatch Scheduler

Primitive 

Instruction 

Exec 2

Writeback Commit

Memory 

Scheduler

Mem

D-Cache

(DL2)
D-TLB

D-Cache

(DL1)

I-TLB

I-Cache

(IL2)

I-Cache

(IL1)

Virtual 

Memory

Normal 

Instruction 

Exec

Primitive 

Instruction 

Exec 1

Out-of-order Issue 

Scheduler & Dispatcher

Primitive & Normal 

Instruction Execution Unit

 
 
Fig. 3. Out-of-order execution Scheduler. 
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Fig. 4. Macroblock and Sub-macroblock Partitions for Motion Estimation. 



motion compensation and higher motion vector resolutions.  

Compared to previous video coding standards, H.264 has 

a variable block size motion estimation scheme to represent 

one macroblock. Fig. 4 shows the candidate macroblock and 

sub-macroblock partitioning from Inter16x16 to Inter4x4 

mode. A macroblock is composed of 16x16 pixels, and it 

can be divided into two 16x8 partitions, two 8x16 partitions 

or four 8x8 partitions. If the 8x8 partitions are selected, each 

of the four 8x8 sub-macroblocks within the macroblock may 

be split in a further 4 ways like (b) in Fig. 4. As results of 

iterative partition motion search to find the best mode, the 

complexity and computation load of motion estimation 

increased and consumed 60~80% of the total encoding time 

[13]. 

To resolve this complexity of motion estimation, this case 

study applies our proposed co-design methodology to 

motion estimation unit design. For this, we assume the 

followings.  

   

(1) 4:2:0 YCbCr format and QCIF (176x144) resolution. 

(2) Full search algorithm is used. 

(3) Motion vector search range is 16 pixels. 

(4) Motion vector resolution is 1/4 pixels per one block. 

(5) Matching criteria: SAD for integer-pixel search, 

                                 SATD for sub-pixel search. 

(6) 5 reference frame number and “Foreman” test sequence. 

 

B. Primitive Instruction Definition for Motion Estimation 

To define primitive instructions for H.264 motion 

estimation part as explained in section II, JM 10.1 reference 

software and Intel Vtune performance analyzer 8.0 are used 

for profiling [14]. The profiling result of motion estimation 

is shown in Fig. 5. As shown, H.264 motion estimation 

consists of four main functions, i.e., SAD for integer-pixel 

search, SATD for sub-pixel search, interpolation for 

multiple reference picture generation and miscellaneous 

instruction part.  

Since SAD function is an iteratively called and data-

intensive function block, it can be a candidate primitive 

instruction. But, to support motion estimation scheme in 

H.264, implementing of all variable size SAD blocks, 16x16, 

16x8, 8x16, …, 4x4, are redundant. Moreover, 16x8 size 

SAD function may not be applicable to motion estimation of 

MPEG-2 or 4 standards based on 8x8 or 16x16 block 

motion search. This can make a 4x4 SAD function block as 

a good primitive instruction candidate because a 4x4 SAD 

function block makes any kinds of SAD blocks for any 

video compression standards. Therefore, we define 4x4 

SAD function block as SAD4x4 primitive instruction (PI). 

SATD is another frequently-called and data-intensive 

function for sub-pixel motion search, making SATD a 

primitive instruction candidate. Additionally, this primitive 

instruction can be used to implement another important 

H.264 function, i.e., DCT4x4.  

Since the data size of the primitive instructions selected 

above is 4x4 block, data from main memory to primitive 

instruction registers should be 4x4 vectors. Furthermore, 

before the SAD4x4 and SATD are calculated, their source 

data should be loaded into cache as soon as possible. 

Therefore, we define LoadLine4x4 and LoadLine4x4_2 PIs 

as primitive instructions for high speed vector data accesses. 

These LoadLine4x4 and LoadLine4x4_2 PIs can be used to 

implement a miscellaneous instruction function in Figure 5. 

There are many memory address pointers to calculate the 

image blocks. Since the address of macroblocks or sub-

macroblocks in one picture is frequently operated and 

moved to next on motion estimation process, we can cluster 

those instructions, which are less dependency with each 

other, at a distance in software program. These are the 

NextAdrCalc PIs to calculate the addresses for next memory 

pointer. 

All of PIs mentioned above are listed in Table 1, and 

some remarks are included for understanding. Interpolation 

of reference pictures is omitted in this case study. This will 

be covered in future works. 

 

 

 

Table 1. Primitive Instruction sets for ME within H.264 

Primitive 

Instructions 

Remarks 

SAD4x4 

- Minimized SAD unit  

- Applicable to previous codec 

- used in integer-pixel search 

SATD 

- Data-intensive function 

- Flexible to DCT4x4 

- used in sub-pixel search 

LoadLine4x4 
- Vector memory(VM) access unit 

- used in integer-pixel search 

LoadLine4x4_2 
- VM access unit per 4 pixels 

- used in sub-pixel search 

NextAdrCalc 

- Set of frequently called  

instructions at a distance. 

- for integer-pixel search 

NextAdrCalc_2 

- Set of frequently called  

instructions at a distance. 

- for sub-pixel search  
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Fig. 5. Profiling Results for Motion Estimation by Intel Vtune Analyzer 



 

C. Implementation of HW/SW Co-design Architecture 

To implement a HW/SW co-design architecture, we 

choose a general purpose RISC processor, out-of-order 

scheduler, main memory (SDRAM), L1/L2 Cache (SRAM), 

common data and control bus, hardware modules, 

instruction buffers (Queue) and register files to support 

primitive or normal scalar instructions. All of separated 

modules mentioned above are mixed and designed in one 

architecture platform as Fig. 6.  

The hardware and software co-design architecture 

employing primitive instruction sets and out-of-order 

execution scheduler is shown in Figure 6. This architecture 

has a RISC (Reduced Instruction Set Computer) structure 

including an out-of-order scheduler based on Tomasulo’s 

algorithm for scalar instructions [15]. To support an out-of-

order execution for primitive instructions, reservation 

stations and original scheduler are improved. 

 

As shown in Fig. 6, instructions are sent from L1 I-Cache 

into the instruction queue, which they are issued in FIFO 

order, by instruction memory controller. The reservation 

stations include information used for detecting data 

dependencies for predefined primitive instructions 

(hardware tasks), as well as general instructions (software 

tasks). This information enables both primitive instructions 

and normal scalar instructions to schedule in out-of-order 

pattern. The load buffers and store buffers make memory 

data reorders in a program order pattern and read or write. 

The data and controls needed to load, execute and store are 

communicated through the common data and control bus. 

This target architecture template can be easily extended 

and customized for a range of video applications allowing 

the primitive instruction sets to be reformed. Fig. 7 shows 

the example of how the proposed architecture can be easily 

adapted to various video applications such as MPEG-2, 

MPEG-4 and H.264. The combination of some primitive 

instruction sets can be a specific video codec. H.264, for 

example, consists of SAD4x4, LoadLine4x4, DCT4x4 and 

Intra Prediction implemented and executed in hardware 

parts and Syntax Encoder, Entropy Coding, VLC and other 

instructions processed in software. Since the out-of-order 

execution scheduler accelerates a system, by selectively 

choosing the primitive instruction sets from codec function 

library like in Fig. 7, software engineers do not need to fully 

understand a specific hardware architecture using MMX or 

VLIW technology to optimize the software implementation 

for a target specification. 
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Fig. 6. An implementation of the proposed system architecture. 
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Fig. 7. Combinations of Codec Function Library for video applications. 



D. Simulation Results 

To verify and evaluate performance of the proposed 

hardware and software co-design methodology, that was 

modeled by using SimpleScalar simulator, which is 

developed and supported by T. Austin at SimpleScalar LLC 

[16]. 

SimpleScalar is one of the execution-driven simulators 

and supports out-of-order execution and user-extensible 

instruction format [17]. Therefore, our proposed PIs and 

out-of-order execution scheduler are tested well in this 

simulator. Fig. 8 (a) shows the procedure of simulation and 

analysis with proposed primitive instructions in the 

SimpleScalar simulator. Fig. 8 (b) shows a specific example 

of primitive instructions, NextAdrCalc and SAD4x4, written 

in inline assembly codes. 

To verify performance of proposed co-design architecture, 

we set following 3 test conditions and performed them in 

SimpleScalar simulator. The first condition performs motion 

estimation of in-order scheduling without primitive 

instruction sets. The second one performs motion estimation 

of an in-order execution structure with primitive instruction 

sets. The last one performs motion estimation of out-of-

order scheduling with primitive instruction sets. In 

simulation process, predefined primitive instruction sets are 

assumed that execution is processed in one cycle unit by 

fully allocating the hardware resources. 

Simulation results of H.264 motion estimation are as 

following Table 2. In the original H.264 with in-order issue 

structure, the total cycles are 22.57 billion cycles, but after 

partial function blocks of motion estimation are replaced by 

proposed primitive instructions, the performance is 4.93 

times increased within in-order execution. The cause of this 

improvement is that the primitive instructions enable to 

process the complicated and time-consuming tasks in short 

time.   

In primitive instruction sets and out-of-order structure 

case, the total cycle is reduced to 1.7 billion cycles. This 

condition is approximately 13 times faster than naive motion 

estimation algorithm, and 2.62 times faster than primitive 

instruction sets with in-order execution. Because the out-of-

order scheduler boosts up the performance of system based 

on primitive instructions, the amount of resource usages in 

each pipe stage have increased and this result caused the 

reduction of total cycles.  

Instruction Per Cycle (IPC) in Table 2, is a measure to 

know how the amount of parallelism among instructions 

exists. The higher IPC value means that the number of 

instructions performed per one cycle is higher. Therefore, 

the parallel processing of instructions in this case is 

performed well. IPC results with in-order execution 

scheduler in Table 2 show the less difference between 

original and primitive instruction sets, but the result with 

out-of-order execution scheduling shows that the IPC is 

largely reduced and the parallel processing is performed 

well. 

 

 

Table 2. Simulation Results of H.264 ME part. 

 Total Cycles IPC 

Original + In-order execution. 22565476649 0.8070 

PI sets + In-order execution. 4579174158 0.8444 

PI sets + Out-of-order exec. 1747285199 2.2129 

 

 

 

 

IV. CONCLUSION AND FUTURE WORK 

In this paper, the co-design methodology based on 

primitive instruction sets and out-of-order execution scheme 

is proposed, which can take the advantages of both software 

and hardware; flexibility, low development cost, 

compactness and adequately high performance.  

By properly defining of primitive instruction sets, the 

proposed methodology can provide the flexibility to 

previous video coding standards and low cost to system 

development. Since the primitive instruction sets 

implemented in hardware units are reordering with general 

instructions by out-of-order execution scheduler, the 

proposed co-design method sufficiently accelerates any 

video coding algorithms in the encoding speed view. 

Moreover, since the primitive instruction sets can support 

a powerful codec function library, software engineers do not 

need to fully understand the specific hardware architecture 

using MMX or VLIW technology to optimize the software 

implementation for a target application. 

In a case study for H.264 motion estimation part, our 

proposed co-design method has increased the effect of time 

saving more than 13 times to the original motion estimation 

system. This result can be more improved by how efficiently 

defining of primitive instruction sets. In the light of view, 

the generalization of primitive instruction sets is still the 

main subject of our ongoing study. 

In a future work, we will apply the proposed design 

methodology to other parts of H.264 video codec standard 

such as reference picture interpolation, intra prediction, rate-

distortion optimization mode decision. In addition, a 

prototype system of this easily extended and customized co-

design methodology for a range of video coding standards 

will be implemented in FPGA and verified. 
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for (y=0, abort_search=0; y<blocksize_y && !abort_search; y+=4)

{

    for(x=0; x<blocksize_x; x+=4)

    {

        // NextAdrCalc

        __asm__ __volatile__ (

                   "add/15:0(11)  $10, $8, $9\n\t" // nextaddrcalc.pi $pr10, $pr8, $pr9

                    :"=r"(pOrig_pic), "=r"(pRef_pic)

                    :"r"(img_width), "r"(img_height),"r"(cand_x),"r"(cand_y),

                      "r"(x),"r"(y),"r"(orig_pic[y]),"r"(ref_pic)

                    :"8", "9", "10"

        );

           

        // SAD4x4   

        __asm__ __volatile__ (

                   "add/15:0(3)    $3, %1, %3\n\t" // ll4x4.pi $pr3, pOrig_pic, 16

                   "add/15:0(3)    $4, %2, %4\n\t" // ll4x4.pi $pr4, pRef_pic, img_width

                   "add/15:0(1)    %0, $3, $4\n\t"   // sad.pi   t_mcost, $pr3, $pr4

                    :"=r"(t_mcost)

                    :"p"(pOrig_pic), "p"(pRef_pic), "r"(16), "r"(img_width)

                    :"3", "4"

         );   

         mCost += t_mcost;

    }

}

(a) (b)
 

Fig. 8. (a) Simulation and Analysis Procedure in SimpleScalar architecture. 

           (b) Primitive Instruction Example in one part of H.264 ME. 
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