
A HW/SW Co-design Methodology for Video

Compression Algorithms

Sungjei Kim
1
, Byoungho Kim

2
, Jaehwan Joo

1
, Yungho Choi

2
, and Yoonsik Choe

1

1
Electrical and electronic engineering department of Yonsei University, Seoul, Korea.

e-mail: {coldeyes, jhjoo80, and yschoe}@yonsei.ac.kr
2
 Electrical engineering department of Konkuk University, Seoul, Korea.

e-mail: tizimah@naver.com, yunghoch@konkuk.ac.kr

Abstract- Many hardware and software co-design

methodologies have been proposed to improve overall system

performance, reliability and cost-effectiveness of digital
systems for decades. This paper presented an efficient co-
design methodology using primitive instruction sets and a

dynamic out-of-order execution scheduler for a variety of video
compression algorithms. As a case study, this paper applies the
proposed co-design method to the motion estimation of H.264

video coding standard, which is one of the most time-
consuming parts in H.264. This case study shows that the
proposed methodology improves motion estimation speed by 13

times compared to naïve motion estimation with a minimal
design and coding effort.

I. INTRODUCTION

Recently, demands of various multimedia services have

been radically increased. Such service demands require

efficient video compression algorithms to efficiently and

economically store and transmit multimedia contents. For

this, many video compression standards such as MPEG-2

[1], MPEG-4 [2], and H.264 [3] have been proposed and

used, during last decades. However, since the high

compression efficiency of these standards is mainly due to

high computation complexity, it is very difficult to

implement them in software for real-time applications. To

resolve this problem and thus, to provide real-time video

compression encoding with a little quality degradation, full

hardware design solutions have been proposed [4], [5], [6].

However, these dedicated hardware architectures have a

problem of short flexibility and long time-to-market.

To overcome the problems described above, many

hardware and software co-design solutions have been

proposed, which can take advantages of both software and

hardware solutions, i.e., flexibility and performance [7], [8],

[9]. Jang et al. [7] presented a H.263 video compression

codec [10] which implements motion estimation and motion

compensation parts of H.263 codec in hardware and

processes the rest of H.263 in software. Choi et al. [8] also

presents a MPEG-4 hardware and software co-design

solution which proposes to design a codec in hardware

except for a variable length coding (VLC) part of MPEG4.

Even though the quality and performance of the proposed

algorithms given above are tolerable and acceptable, their

bulky-sized hardware IP blocks such as ME or MC parts,

degrade the benefits of software solutions, i.e., flexibility

This research was supported by the Seoul R&BD Program (10654),

Korea.

and low development cost.

In order to provide the design flexibility of previous

works, a co-design approach based on the UltraSONIC

reconfigurable platform is recently proposed [9], [11]. In [9],

Wiangtong et al. proposes an algorithm which automatically

partitions and schedules tasks for hardware and software,

respectively. Because run-time reconfigurable processing

elements (PEs) of UltraSONIC can contain any specific

data-dominated tasks, various combinations of PEs provide

flexibility and reusability to a hardware task design.

However, a sub-optimized partitioning algorithm by

automated tools degrades the performance of co-design

system compared to hand-made. In addition, task manager

algorithm which performs scheduling in task unit makes the

system limited in a parallel processing of instruction unit

and thus the performance degradation is occurred.

In this paper, we propose a hardware and software co-

design methodology for various video compression

algorithms. The proposed co-design methodology employs

primitive instruction sets and an out-of-order execution

scheduler and thus, can exploit the benefits of both software

and hardware solutions, i.e., flexibility and performance.

In the remainder of this paper, we describe the proposed

co-design methodology that consists of primitive instruction

sets and out-of-order execution scheme in Section II. In

Section III, a case study for the motion estimation part of

H.264 will be considered. Finally, we conclude this work

while giving future work directions in Section IV.

II. HW/SW CO-DESIGN METHODOLOGY

In this section, we present an efficient co-design method

for video compression algorithms. This method takes care of

two co-design issues. The first issue is how tasks are

partitioned for hardware and software. The other is how to

maximize system performance. To handle the first issue, this

work introduces a primitive instruction set which enables

parallel processing in instruction unit and thus, defines an

implementation boundary between hardware and software.

Regarding the second issue, this paper employs an out-of-

order scheduler for vector instructions or primitive

instructions. Before these issues are covered in depth, the

following section will cover the overview of the proposed

co-design flow.

A. The Proposed HW/SW Co-design Flow

The proposed co-design flow iteratively partitions

hardware and software tasks by defining a primitive

instruction set until system requirements are satisfied. For

detail, as shown in Fig. 1, a primitive instruction set is

determined through analyzing system specifications and

application behaviors. Primitive instructions define which

tasks should be implemented in hardware and thus, result in

efficient HW/SW partitioning. After that, the system design

based on the primitive instruction set needs to be evaluated

in order to check whether system requirements are satisfied

Until given target requirements such as performance, chip

size, cost and power are satisfied, co-design system is

iteratively tuned. Therefore, the proposed co-design

methodology ensures a tight integration between software

and hardware, ending up with better performance and design

efficiency. More details about primitive instructions are

given in the following section.

B. Primitive Instruction design methodology

The key idea of the proposed co-design methodology is to

define primitive instructions which are a sort of small

function blocks. Each one of these primitive instructions

processes a complicated and time-consuming task while

being called frequently. Therefore, if these instructions are

implemented in hardware, the overall performance of a

target system can be easily enhanced. This methodology

also can provide a hardware implementation of small-sized

flexible task units and enables to efficiently partition

hardware and software tasks.

Furthermore, from the view of software engineers, they

are just a set of new powerful instructions and thus, enable

an easy software development by replacing corresponding

function calls by the newly-given primitive instructions.

Fig. 2 shows a primitive instruction determination process.

In this figure, A, B, C, ..., F are primitive tasks comprising a

video application. By clustering, partitioning or isolating of

these tasks, candidate primitive instructions can be

determined when one of the following conditions is satisfied.

(1) If an isolated task, like C task in Fig. 2, is an iteratively

called and data-intensive function block, the task can be

a candidate primitive instruction.

Examples: SAD or SATD
1

functions in motion

estimation.

(2) If a task, like B-C, B-D, or A-E tasks in Fig. 2, can be

generated by clustering some frequently called tasks, this

new task can be a candidate primitive instruction.

Examples: A set of scalar instructions, i.e. adders and

multipliers.

(3) If a task, like B task in Fig. 2, operates a regular-sized

block data access from main memory to register files,

and can be implemented in vector processing unit, this

task can be a candidate primitive instruction.

Examples: vector data-load instructions.

But, these candidate primitive instructions are finalized

and preferentially selected when one or more of the

following conditions are satisfied. If not, candidate primitive

instructions are iteratively split or merged until being

satisfied.

(1) If the candidate primitive instructions are a highly

critical bottleneck to implement real-time video coding

systems, they can be finalized as primitive instructions.

Examples: DCT or interpolation functions.

(2) If the candidate primitive instructions are applicable

and flexible to previous video codec, those candidate

primitive instructions can be primitive instructions.

Examples: SAD4x4 unit in SAD function.

1
 SAD and SATD are criteria to find a nearest one of

current macroblock in the view of distance.

N

i

ii yxSAD
1

,

N

i

ii yxTSATD
1

)(

, where N is the number of pixels of a macroblock,)(T is

Hadamard transform and ix , iy are current and candidate

macroblock respectively.

The best or nearest macroblock iy is chosen when the

criterion has a minimum SAD or SATD value.

A

B C

D E F

Candidate
Primitive Instructions

Fig. 2. Candidate Primitive Instruction Decision Procedure.

System
Specification

HW/SW
Partitioning

Evaluation

Co-Synthesis

Software Model
(Normal Scalar Instructions)

Hardware Model
(Primitive Instruction sets)

System Integration
Implementation

Design
Decisions

Primitive Instruction
Set Definition

Fig. 1. Proposed HW/SW Co-design Flow.

(3) If the candidate primitive instructions are defined as a

possibly dependency minimized set, they can be

primitive instructions.

Finally, selected primitive instructions can be implemented

in hardware by employing single instruction multiple data

(SIMD) or multiple instructions multiple data (MIMD)

structure. These structures enable one to process primitive

instructions in a short time, resulting in short execution time.

Therefore, flexibly defined primitive instructions can

provide compatibility to previous codec and higher

performance in speed.

 To boost up the performance of system based on

primitive instructions, the following section will present an

out-of-order scheduler for either normal scalar or primitive

instructions.

C. Out-of-Order Execution Scheduler

With an in-order scheduler, fetched instructions are

sequentially executed in a program order pattern. In this

case, a stalled instruction blocks the following instructions

which do not have to be blocked. For example, assume a

"multiplication" function unit which can multiply data in 10

cycle latency. In the case of in-order execution, any

following instructions cannot be issued and executed until

the multiplication instruction is completed. To resolve such

problem, an out-of-order execution scheduler rearranges

instruction execution order by dynamically tracking

instruction dependencies and checking whether functional

units are available. This increases processing resource

utilization and reduces execution time. With the example of

multiplication instruction given above, in the case of out-of-

order execution, if next "add" instruction has no dependency

with the prior multiplication instruction, it can be issued and

executed without waiting for the multiplication instruction

completion, enhancing system performance and utilization.

Generally, such out-of-order scheduler has been

employed for scalar instructions rather than vector

instructions. This is because it is difficult to track

dependencies among vector instructions consisting of many

data and variables. However, our primitive instruction is

confined to have only one output data, which makes

dependency tracking easy. By exploiting this, this work

proposes to employ an out-of-order scheduler for both

primitive instructions and normal scalar instructions.

Fig. 3 shows an architecture example employing

primitive instructions and an out-of-order scheduler. In this

figure, after fetching instructions from instruction memory,

the instructions will be dispatched and sent to reservation

station in the out-of-order hardware scheduler. At

reservation station, data dependency of instructions and

function unit availability are checked and, if there is no

problem, instructions are sent to execution units in any order.

Then, the results of executed instructions are written back

into either registers or buffers.

The proposed out-of-order execution scheduler checks

not only data dependency between primitive instructions but

also dependency between primitive instructions and normal

scalar instructions. Therefore, neither primitive instructions

nor scalar instructions block one another, maximizing

system utilization and performance.

III. A CASE STUDY: H.264/AVC MOTION ESTIMATION

To help understanding, in this chapter, we provide a case

study which applies the proposed design methodology to

H.264/AVC motion estimation. For this, this chapter

analyzes characteristics of H.264/AVC motion estimation

and defines primitive instructions for hardware and software

partitioning. Then, by exploiting the defined primitive

instructions, we design a hardware and software co-design

architecture. Finally, the performance of this architecture

employing primitive instruction sets and an out-of-order

execution scheduler is verified by using “SimpleScalar”

simulator.

A. Design Specifications of H.264 Motion Estimation

As a state-of-the-art video coding standard, H.264

provides gains in compression efficiency of up to 50% over

a wide range of bit rates and video quality compared to

previous standards. However, complexity of H.264 highly

increased about 10 times as complex as a corresponding

MPEG-4 standard [12]. Specifically, to reduce the temporal

redundancy between successive pictures, motion estimation

algorithm has improved by adopting variable block size for

Fetch Dispatch Scheduler

Primitive

Instruction

Exec 2

Writeback Commit

Memory

Scheduler

Mem

D-Cache

(DL2)
D-TLB

D-Cache

(DL1)

I-TLB

I-Cache

(IL2)

I-Cache

(IL1)

Virtual

Memory

Normal

Instruction

Exec

Primitive

Instruction

Exec 1

Out-of-order Issue

Scheduler & Dispatcher

Primitive & Normal

Instruction Execution Unit

Fig. 3. Out-of-order execution Scheduler.

016

16 168 8

8

8

8

8

8 8

16 0 1

0

1

10

32

(a) Macroblock partitions: 16x16, 8x16, 16x8, 8x8

08

8 84 4

4

4

4

4

4 4

8 0 1

0

1

10

32

(b) Macroblock sub-partitions: 8x8, 4x8, 8x4, 4x4

MB
partition

Sub-MB
partition

Fig. 4. Macroblock and Sub-macroblock Partitions for Motion Estimation.

motion compensation and higher motion vector resolutions.

Compared to previous video coding standards, H.264 has

a variable block size motion estimation scheme to represent

one macroblock. Fig. 4 shows the candidate macroblock and

sub-macroblock partitioning from Inter16x16 to Inter4x4

mode. A macroblock is composed of 16x16 pixels, and it

can be divided into two 16x8 partitions, two 8x16 partitions

or four 8x8 partitions. If the 8x8 partitions are selected, each

of the four 8x8 sub-macroblocks within the macroblock may

be split in a further 4 ways like (b) in Fig. 4. As results of

iterative partition motion search to find the best mode, the

complexity and computation load of motion estimation

increased and consumed 60~80% of the total encoding time

[13].

To resolve this complexity of motion estimation, this case

study applies our proposed co-design methodology to

motion estimation unit design. For this, we assume the

followings.

(1) 4:2:0 YCbCr format and QCIF (176x144) resolution.

(2) Full search algorithm is used.

(3) Motion vector search range is 16 pixels.

(4) Motion vector resolution is 1/4 pixels per one block.

(5) Matching criteria: SAD for integer-pixel search,

 SATD for sub-pixel search.

(6) 5 reference frame number and “Foreman” test sequence.

B. Primitive Instruction Definition for Motion Estimation

To define primitive instructions for H.264 motion

estimation part as explained in section II, JM 10.1 reference

software and Intel Vtune performance analyzer 8.0 are used

for profiling [14]. The profiling result of motion estimation

is shown in Fig. 5. As shown, H.264 motion estimation

consists of four main functions, i.e., SAD for integer-pixel

search, SATD for sub-pixel search, interpolation for

multiple reference picture generation and miscellaneous

instruction part.

Since SAD function is an iteratively called and data-

intensive function block, it can be a candidate primitive

instruction. But, to support motion estimation scheme in

H.264, implementing of all variable size SAD blocks, 16x16,

16x8, 8x16, …, 4x4, are redundant. Moreover, 16x8 size

SAD function may not be applicable to motion estimation of

MPEG-2 or 4 standards based on 8x8 or 16x16 block

motion search. This can make a 4x4 SAD function block as

a good primitive instruction candidate because a 4x4 SAD

function block makes any kinds of SAD blocks for any

video compression standards. Therefore, we define 4x4

SAD function block as SAD4x4 primitive instruction (PI).

SATD is another frequently-called and data-intensive

function for sub-pixel motion search, making SATD a

primitive instruction candidate. Additionally, this primitive

instruction can be used to implement another important

H.264 function, i.e., DCT4x4.

Since the data size of the primitive instructions selected

above is 4x4 block, data from main memory to primitive

instruction registers should be 4x4 vectors. Furthermore,

before the SAD4x4 and SATD are calculated, their source

data should be loaded into cache as soon as possible.

Therefore, we define LoadLine4x4 and LoadLine4x4_2 PIs

as primitive instructions for high speed vector data accesses.

These LoadLine4x4 and LoadLine4x4_2 PIs can be used to

implement a miscellaneous instruction function in Figure 5.

There are many memory address pointers to calculate the

image blocks. Since the address of macroblocks or sub-

macroblocks in one picture is frequently operated and

moved to next on motion estimation process, we can cluster

those instructions, which are less dependency with each

other, at a distance in software program. These are the

NextAdrCalc PIs to calculate the addresses for next memory

pointer.

All of PIs mentioned above are listed in Table 1, and

some remarks are included for understanding. Interpolation

of reference pictures is omitted in this case study. This will

be covered in future works.

Table 1. Primitive Instruction sets for ME within H.264

Primitive

Instructions

Remarks

SAD4x4

- Minimized SAD unit

- Applicable to previous codec

- used in integer-pixel search

SATD

- Data-intensive function

- Flexible to DCT4x4

- used in sub-pixel search

LoadLine4x4
- Vector memory(VM) access unit

- used in integer-pixel search

LoadLine4x4_2
- VM access unit per 4 pixels

- used in sub-pixel search

NextAdrCalc

- Set of frequently called

instructions at a distance.

- for integer-pixel search

NextAdrCalc_2

- Set of frequently called

instructions at a distance.

- for sub-pixel search

SATD

Miscellaneous

Instructions

Motion

Estimation

SAD

Inter-

polation

Fig. 5. Profiling Results for Motion Estimation by Intel Vtune Analyzer

C. Implementation of HW/SW Co-design Architecture

To implement a HW/SW co-design architecture, we

choose a general purpose RISC processor, out-of-order

scheduler, main memory (SDRAM), L1/L2 Cache (SRAM),

common data and control bus, hardware modules,

instruction buffers (Queue) and register files to support

primitive or normal scalar instructions. All of separated

modules mentioned above are mixed and designed in one

architecture platform as Fig. 6.

The hardware and software co-design architecture

employing primitive instruction sets and out-of-order

execution scheduler is shown in Figure 6. This architecture

has a RISC (Reduced Instruction Set Computer) structure

including an out-of-order scheduler based on Tomasulo’s

algorithm for scalar instructions [15]. To support an out-of-

order execution for primitive instructions, reservation

stations and original scheduler are improved.

As shown in Fig. 6, instructions are sent from L1 I-Cache

into the instruction queue, which they are issued in FIFO

order, by instruction memory controller. The reservation

stations include information used for detecting data

dependencies for predefined primitive instructions

(hardware tasks), as well as general instructions (software

tasks). This information enables both primitive instructions

and normal scalar instructions to schedule in out-of-order

pattern. The load buffers and store buffers make memory

data reorders in a program order pattern and read or write.

The data and controls needed to load, execute and store are

communicated through the common data and control bus.

This target architecture template can be easily extended

and customized for a range of video applications allowing

the primitive instruction sets to be reformed. Fig. 7 shows

the example of how the proposed architecture can be easily

adapted to various video applications such as MPEG-2,

MPEG-4 and H.264. The combination of some primitive

instruction sets can be a specific video codec. H.264, for

example, consists of SAD4x4, LoadLine4x4, DCT4x4 and

Intra Prediction implemented and executed in hardware

parts and Syntax Encoder, Entropy Coding, VLC and other

instructions processed in software. Since the out-of-order

execution scheduler accelerates a system, by selectively

choosing the primitive instruction sets from codec function

library like in Fig. 7, software engineers do not need to fully

understand a specific hardware architecture using MMX or

VLIW technology to optimize the software implementation

for a target specification.

Main Memory(SDRAM)

General & Primitive

Instruction Decoder &

Out-of-Order Scheduler

Primitive

Instruction

Execution

Unit 2

Primitive

Instruction

Execution

Unit 1

L1 D-Cache(SRAM) L1 I-Cache(SRAM)

Instruction Queue

Instruction

Memory Controller

Reservation

Station

Reservation

Station

Common Data Bus

Primitive

Register File

General

Instruction

Execution

Unit

Reservation

Station

Control

Registers

Store Buffers

General

Register File

Load Buffers 2

1

3

2

1

3

Control Bus

L2 D-Cache(SRAM) L2 I-Cache(SRAM)

Fig. 6. An implementation of the proposed system architecture.

SAD4x4 LoadLine4x4

DCT4x4
Convert Matrix

4x4to8x8

Intra Prediction OBMC

Entropy & VLC
for target

applications

Syntax Encoder
for target

applications

: Hardware Parts : Software Parts

: MPEG-2 : MPEG-4 : H.264

Miscellaneous
Instructions

Fig. 7. Combinations of Codec Function Library for video applications.

D. Simulation Results

To verify and evaluate performance of the proposed

hardware and software co-design methodology, that was

modeled by using SimpleScalar simulator, which is

developed and supported by T. Austin at SimpleScalar LLC

[16].

SimpleScalar is one of the execution-driven simulators

and supports out-of-order execution and user-extensible

instruction format [17]. Therefore, our proposed PIs and

out-of-order execution scheduler are tested well in this

simulator. Fig. 8 (a) shows the procedure of simulation and

analysis with proposed primitive instructions in the

SimpleScalar simulator. Fig. 8 (b) shows a specific example

of primitive instructions, NextAdrCalc and SAD4x4, written

in inline assembly codes.

To verify performance of proposed co-design architecture,

we set following 3 test conditions and performed them in

SimpleScalar simulator. The first condition performs motion

estimation of in-order scheduling without primitive

instruction sets. The second one performs motion estimation

of an in-order execution structure with primitive instruction

sets. The last one performs motion estimation of out-of-

order scheduling with primitive instruction sets. In

simulation process, predefined primitive instruction sets are

assumed that execution is processed in one cycle unit by

fully allocating the hardware resources.

Simulation results of H.264 motion estimation are as

following Table 2. In the original H.264 with in-order issue

structure, the total cycles are 22.57 billion cycles, but after

partial function blocks of motion estimation are replaced by

proposed primitive instructions, the performance is 4.93

times increased within in-order execution. The cause of this

improvement is that the primitive instructions enable to

process the complicated and time-consuming tasks in short

time.

In primitive instruction sets and out-of-order structure

case, the total cycle is reduced to 1.7 billion cycles. This

condition is approximately 13 times faster than naive motion

estimation algorithm, and 2.62 times faster than primitive

instruction sets with in-order execution. Because the out-of-

order scheduler boosts up the performance of system based

on primitive instructions, the amount of resource usages in

each pipe stage have increased and this result caused the

reduction of total cycles.

Instruction Per Cycle (IPC) in Table 2, is a measure to

know how the amount of parallelism among instructions

exists. The higher IPC value means that the number of

instructions performed per one cycle is higher. Therefore,

the parallel processing of instructions in this case is

performed well. IPC results with in-order execution

scheduler in Table 2 show the less difference between

original and primitive instruction sets, but the result with

out-of-order execution scheduling shows that the IPC is

largely reduced and the parallel processing is performed

well.

Table 2. Simulation Results of H.264 ME part.

 Total Cycles IPC

Original + In-order execution. 22565476649 0.8070

PI sets + In-order execution. 4579174158 0.8444

PI sets + Out-of-order exec. 1747285199 2.2129

IV. CONCLUSION AND FUTURE WORK

In this paper, the co-design methodology based on

primitive instruction sets and out-of-order execution scheme

is proposed, which can take the advantages of both software

and hardware; flexibility, low development cost,

compactness and adequately high performance.

By properly defining of primitive instruction sets, the

proposed methodology can provide the flexibility to

previous video coding standards and low cost to system

development. Since the primitive instruction sets

implemented in hardware units are reordering with general

instructions by out-of-order execution scheduler, the

proposed co-design method sufficiently accelerates any

video coding algorithms in the encoding speed view.

Moreover, since the primitive instruction sets can support

a powerful codec function library, software engineers do not

need to fully understand the specific hardware architecture

using MMX or VLIW technology to optimize the software

implementation for a target application.

In a case study for H.264 motion estimation part, our

proposed co-design method has increased the effect of time

saving more than 13 times to the original motion estimation

system. This result can be more improved by how efficiently

defining of primitive instruction sets. In the light of view,

the generalization of primitive instruction sets is still the

main subject of our ongoing study.

In a future work, we will apply the proposed design

methodology to other parts of H.264 video codec standard

such as reference picture interpolation, intra prediction, rate-

distortion optimization mode decision. In addition, a

prototype system of this easily extended and customized co-

design methodology for a range of video coding standards

will be implemented in FPGA and verified.

System
Specifications

Primitive
Instruction
Definition

Software Codec
Programming
And Compiling

Performing
Simulation
And Results

Analysis

Simulation
Complete

SW Algorithm
Debugging

Primitive Instruction
Redefinition

for (y=0, abort_search=0; y<blocksize_y && !abort_search; y+=4)

{

 for(x=0; x<blocksize_x; x+=4)

 {

 // NextAdrCalc

 __asm__ __volatile__ (

 "add/15:0(11) $10, $8, $9\n\t" // nextaddrcalc.pi $pr10, $pr8, $pr9

 :"=r"(pOrig_pic), "=r"(pRef_pic)

 :"r"(img_width), "r"(img_height),"r"(cand_x),"r"(cand_y),

 "r"(x),"r"(y),"r"(orig_pic[y]),"r"(ref_pic)

 :"8", "9", "10"

);

 // SAD4x4

 __asm__ __volatile__ (

 "add/15:0(3) $3, %1, %3\n\t" // ll4x4.pi $pr3, pOrig_pic, 16

 "add/15:0(3) $4, %2, %4\n\t" // ll4x4.pi $pr4, pRef_pic, img_width

 "add/15:0(1) %0, $3, $4\n\t" // sad.pi t_mcost, $pr3, $pr4

 :"=r"(t_mcost)

 :"p"(pOrig_pic), "p"(pRef_pic), "r"(16), "r"(img_width)

 :"3", "4"

);

 mCost += t_mcost;

 }

}

(a) (b)

Fig. 8. (a) Simulation and Analysis Procedure in SimpleScalar architecture.

 (b) Primitive Instruction Example in one part of H.264 ME.

REFERENCES

[1] ISO/IEC 13818-2: “Information technology – Generic coding of

moving pictures and associated audio information: video,” 1996.

[2] ISO/IEC 14496-2: “Information technology – Coding of audio-visual
objects- part2: Visual,” 1999.

[3] ISO/IEC 14496-10: “Coding of Audiovisual Objects-Part 10:

Advanced Video Coding,” Dec. 2003.
[4] M. Irfan, A. K. Khan, and H. Jamal, “FPGA based implementation of

MPEG-2 compression algorithm,” IEEE 17th Int. Conf. On
Microelectronics, pp 204-244, Dec. 2005.

[5] K. Denolf, C. D. Vleeschouwer, R. Turney, G. Lafruit, and J.

Bormans. “Memory centric design of an MPEG-4 Video Encoder,”
IEEE Trans. On Circuits and Systems for Video Technology, Vol. 15,

No. 5, May 2005.
[6] T. Chen, S. Chien, T. Huang, C. Tsai, C. Chen. T. Chen, L. Chen,

“Analysis and architecture design of an HDTV720p 30 frames/s

H.264/AVC encoder,” IEEE Trans. On Circuits and Systems for
Video Technology, Vol. 16, No. 6, Jun. 2006.

[7] S. K. Jang, S. D. Kim, J. Lee, G. Y. Choi and J. B. Ra, “Hardware-
software co-implementation of a H.263 video codec,” IEEE Trans. on

Consumer Electronics, Vol. 46, pp.191-200, Feb. 2000.

[8] J. Choi, N. Togawa, T. Ikenaga, S. Goto, M. Yanagisawa and T.
Ohtsuki, “An efficient algorithm/architecture codesign for image

encoders,” IEEE 47th Int. Midwest Symp. On Circuits and Systems.
Vol. 2, pp. 469-472, Jul. 2004.

[9] T. Wiangtong, P. Y. K. Cheung, and Wayne Luk,
“Hardware/Software Codesign – A systematic approach targeting

data-intensive applications,” IEEE Signal Processing Magazine, Vol.

22, No. 3, May, 2005.
[10] Draft ITU-T Recommendation H.263, “Video coding for low bit-rate

communication,” Mar. 1996.
[11] S. D. Haynes, H. G. Epsom, R. J. Cooper, and P. L. McAlpine,

“UltraSONIC: A reconfigurable architecture for video image

processing,” in Proc. Field-Programmable Logic and Applications,
pp. 482-491, 2002.

[12] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Lutha. “Overview
of the H.264/AVC Video Coding Standard,” IEEE Trans. On Circuits

and Systems for Video Technology, Vol.13, No.7, pp.560-576, Jul.

2003.
[13] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F.

Pereira, T. Stockhammer, and T. Wedi, “Video coding with
H.264/AVC: tools, performance, and complexity,” IEEE Circuits and

Systems Magazine, Vol. 4, pp.7-28, First Quarter, 2004.

[14] Reference Software: available at http://iphome.hhi.de/suehring/tml/
[15] R. M. Tomasulo, “An efficient algorithm for exploiting multiple

arithmetic units”, IBM Journal of Research and Development, Vol. 11,

No. 1, pp. 25`33, Jan. 1967.

[16] SimpleScalar LLC web Site at http://www.simplescalar.com/

[17] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure
for computer system modeling,” IEEE Computer Society Magazine,

Vol. 35, No. 2, pp. 59-67, Feb. 2002.

http://iphome.hhi.de/suehring/tml/
http://www.simplescalar.com/

