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ABSTRACT 

 
In this paper, we consider the problem of passive 
localization and tracking of multiple sources in near 
field. For high resolution source localization, the 
multiple signal classification (MUSIC) algorithm can 
be extended to its 2-D version by accounting for 
spherical curvature and spreading factors in the array 
manifold. For tracking the sources, simultaneous 
estimation of x and y coordinates of sources using the 
2-D MUSIC spectrum requires exhaustive two 
dimensional search in each snapshot. To reduce the 
computational complexity, an alternative Newton type 
algorithm is proposed for target tracking. Simulation 
results show good performance of the proposed 
algorithms. 
 

Index Terms— Source localization, near field, 
MUSIC algorithm, tracking algorithm. 
 

 
1. INTRODUCTION 

 
In the last three decades, considerable efforts have 
been made to estimate the parameters of the signals 
arriving at the sensors of an array. Estimation of the 
direction of arrival angles (DOAs) from the received 
signals has attracted considerable interest in wireless 
communication, radar, sonar, and mobile systems. The 
classical subspace methods such as MUSIC [1]-[2] and 
ESPRIT [3]-[4] are two of the most popular algorithms 
for DOA estimation. 

Localization of radiating sources by a passive 
sensor array is an important problem in various 
applications. The aforementioned methods and several 
other algorithms that have been proposed for DOA 
estimation assume that the sources are located in the 
far field so that the propagating waves emanated from 
them have planar wavefronts when reach the array. 
When sources are close to the array, these wavefronts 
can not be assumed to be planar anymore. Generally, 
the wavefront curvature is spherical in the near field 
region. So, the conventional DOA Estimation 
algorithms cannot be used in this case. 

For near field sources, Huang and Barkat [5] 
proposed a version of MUSIC algorithm which needs 
search in bearing-range domain. Weiss and 
Friedlander [6] proposed an algorithm which involves 
search in the range domain combined with polynomial 
rooting. Starer and Nehorai [7] developed an algorithm 
based on path-following which can be used only with 
uniform linear arrays. 

In situations that the sensors or the sensor arrays 
are distributed in a relatively vast region, it is better to 
use two-dimensional Cartesian coordinates instead of  
polar coordinates. In this paper, we use a two-
dimensional MUSIC algorithm for estimating the 
Cartesian coordinates of the sources. In addition, we 
develop a Newton type tracking algorithm for updating 
these estimates in each snapshot. Therefore, the two-
dimensional search in each snapshot is avoided. 
Simulation results are presented which show the good 
performance of the proposed algorithm. 
 

2. MODEL OF OBSERVATIONS 
 
We assume r near field omnidirectional sources at 
unknown locations. The sources are emitting spherical 
waves impinging on an array with n omnidirectional 
sensors (n>r) where the locations of sensors are 
arbitrary. Assume that the vector nC ∈ z  contains 
sensor outputs at each time instant. This vector 
satisfies the following model at time instant m: 
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where rC ∈ s  is the vector of complex signal 
amplitudes, nC  ∈n  is an additive noise vector, 
A(x,y)=[v(x1,y1),v(x2,y2),…,v(xr,yr)] rn×∈C  is the 
matrix of the steering vectors, and xj and yj , j=1,2,…,r 
are the coordinates of sources in Cartesian system. We 
assume that the elements of s(m) are stationary random 
processes, and the elements of n(m) are zero-mean 
stationary random processes which are uncorrelated  
with the elements of s(m). The v(xk,yk) elements in the 
steering vector, depend on the geometrical structure of 
the array and the sources. The complex response of the 



ith sensor to the kth impinging signal can be expressed 
as  
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where j is the unit imaginary number, λ is the 
wavelength of the impinging waves, and uik is the 
distance between the kth source and the ith sensor 
defined as  
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where ix~  and iy~  (i=1,2,…,n) are the coordinates of 
the sensors in Cartesian system. uik  also represents the 
spherical spreading factor. This factor is used for 
describing the fact that the amplitude of a spherical 
wave decays as the wave propagates away from the 
source and is inversely proportional to the propagating 
distance. We assume that both sensors and sources are 
omnidirectional. d0 defines the minimum distance 
between sources and sensors. Therefore, the SNR of 
each of sensors for each source in (dB) can be obtained 
as 
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where ikSNR)(  is the SNR of the signal of the kth 

source at ith sensor, }{ 2
kE s  is the power of kth source 

and }{ 2
iE n is the power of the noise of the ith sensor. 

We assume that the noises of sensors are uncorrelated 
and have equal powers.  
 
3. TWO DIMENSIONAL MUSIC ALGORITHM 

 
The one-dimensional MUSIC algorithm can be easily 
modified to estimate the location of sources in two-
dimensional Cartesian coordinate system. Let R̂ be the 
sample correlation matrix given by 
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where the transcript H denotes the conjugate 
transposition and M determines the number of 
snapshots. Let iλ and ui (i=1,2,…,n) be the 
eigenvalues and the corresponding orthonormal 
eigenvectors of R̂ respectively.  If the number of 
signal sources r is less than n, then the eigenvalues of 
R̂ which are sorted in descending order are given by: 
                 nrr λλλλλ ==>>>> + ...... 121            (6) 
The dominant eigenpairs ( ii u,λ ) for i=1,..,r are 
termed the signal eigenvalues and signal eigenvectors 
while ( ii u,λ ) for i=r+1,..,n are referred to as the noise 
eigenvalues and noise eigenvectors. The column spans 
of 
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are called as the signal and noise subspaces, 
respectively. 
The steering vector v(x,y) is defined as 
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where the transcript T denotes the transpose of a vector 
and ui is defined by 
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The MUSIC estimates of the source locations in 
Cartesian coordinate are calculated as the parameters 
which minimize the following expression  
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The estimates of the source locations can be obtained 
also by the following normalized cost function [8] 
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Using Q has the advantage that the level of 
background in MUSIC spectrum is equal for near and 
far sources. At the same time, using Q causes a far 
source to have a lower peak in the spectrum than a 
near source with equal power. As far sources usually 
produce high sidelobes in the spectrum, using P may 
cause these sidelobes to be greater than real peaks that 
are near to the sensors. The cost function Q reduces 
the risk of encountering such situation by attenuating 
peaks that are far from sensors. Thus, we use the cost 
function Q for source localization.  
 

4. A TRACKING ALGORITHM FOR NEAR 
FIELD SOURCES 

 
For localization of sources, one can search in two 
dimensional (Cartesian coordinate system) once and 
find the nulls of the normalized spectrum. But for 
tracking the sources, simultaneous estimation of x – 
coordinate and y – coordinate of source using the 
normalized 2-D MUSIC spectrum, requires exhaustive 
two dimensional search in each snapshot. To reduce 
the computational complexity, an alternative Newton 
type algorithm is proposed.  

Suppose that the kth source exists in ith snapshot 
and we want to track the source in (i+1)th snapshot. 
Thus, according to the Newton algorithm, the 
estimation of source location in (i+1)th snapshot can 
be achieved by 
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where )(ˆ ixk and )(ˆ iyk are the estimated coordinates 

of the kth source in ith snapshot, P∇  and P2∇  are the 
gradient vector and Hessian matrix of P respect to x 
and y. After some manipulations, we have 
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. Equations (12)-(20) describe the 

recursive adaptive algorithm for tracking the kth 
source. For initialization, one can use the proposed two 
dimensional MUSIC algorithm for estimation of the 
primary locations of the sources. 
 

5. SIMULATION RESULTS 
 
We consider two uniform linear arrays where the 
number of sensors in each array is n=20 and the 
distance between adjacent sensors in each array is 
equal to half wavelength. We assume that the 
wavelength is equal to 2. The first array is located 
between the points (40,0) and (59,0) and the second 
array is located between the points (0,40) and (0,59) in 
Cartesian coordinate system. The noise processes of 
sensors are uncorrelated white Gaussian processes 
with equal powers. In all scenarios in this section, the 
number of simulation runs used for obtaining each 
point is equal to 100 and the step size used in 
searching for peaks is 0.3. 

In the first scenario, we investigate the 
performance of the proposed two dimensional MUSIC 
algorithm in estimating the source locations. To do so, 
we consider two sources with equal powers that are 
located at (50,50) and (45,20) in Cartesian coordinate 
system. The SNR of the first and second sources at the  
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Figure 1. Two dimensional MUSIC spectrum 
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Figure 2. Mean square error of each source vs. SNR of 

that source at the origin 
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Figure 3. Mean square error vs. number of  

snapshots for each source 
 
origin is equal to -6.98 dB and -3.84 dB respectively. 
Figure 1 shows the normalized MUSIC spectrum 
(inverse of Q) for this scenario. It can be seen that two 
sharp peaks appear in the spectrum that their locations 
determine the estimated locations of the sources. To 
evaluate the performance of the algorithm in each 
SNR, the  first  scenario  is  repeated  for various SNRs  
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Figure 4. Two dimensional MUSIC spectrum 
 
and the mean square error in each SNR is evaluated. 
Figure 2 shows mean square error of the localization 
algorithm for each source versus the SNR of that 
source at the origin. The number of snapshots used in 
figures 1 and 2 is equal to 1000. 

To investigate the effect of number of snapshots 
on the performance of the MUSIC algorithm, the mean 
square localization error for each source is shown in 
figure 3 versus number of snapshots. In this figure, the 
SNRs of the two sources at the origin are equal to -
6.98 dB and -3.84 dB, respectively. 

In the second scenario, the performance of the 
proposed tracking algorithm has been investigated. To 
do so, we consider a constant velocity source that 
changes its location from (20,20) to (50,50) in 
Cartesian coordinate system. In this test, the source has 
constant power but the SNR in origin changes from 10 
dB to 3 dB during the motion. Number of snapshots 
used in each run of the MUSIC algorithm was equal to 
100. All 2-D MUSIC spectra obtained during this 
location change are shown in figure 4. In figure 5, the 
estimated trajectory of the source derived by the 
proposed tracking algorithm is depicted. This figure 
shows the high performance of the proposed algorithm 
in tracking the source in this scenario.  

Note that in the first scenario the MUSIC 
estimates are obtained using cost function Q but, in the 
second scenario cost function P is used for tracking 
,however, figure 4 which is depicted using Q. 

 
6. CONCLUSION 

 
In this paper, we used a two-dimensional MUSIC 
algorithm for source localization in Cartesian system. 
This 2-D MUSIC algorithm is suitable for cases where 
sources are in near field and sensors are distributed in 
a relatively vast region. For tracking the sources, 
finding the peaks of the two-dimensional MUSIC 
spectrum is time consuming. To reduce the 
computational  complexity,  a  Newton  type algorithm  
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Figure 5. Estimated trajectory of the source 

 
was proposed that recursively estimated the positions 
of the sources in Cartesian coordinate system. Two 
scenarios were used to evaluate the performance of the 
proposed estimation and tracking algorithms. 
Simulation results showed that the algorithms are 
successful in locating and tracking the sources. 
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