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Abstract— In this paper, we propose the use of audio and 
visual biometric features for person authentication instead of 
traditional single factor passwords and pins for secure access. 
Experiments performed on different gender specific subsets of 
data from VidTIMIT and UCBN multimedia databases under 
clean and noisy conditions show that with multifactor fusion, 
about 22-30% improvement in performance can be achieved 
with as compared to single factor-audio only or visual only mode 
even under noisy acoustic conditions. 

 

I. INTRODUCTION 

Personal safety in public and private buildings has always 
been a concern, but since September 11, 2001 is receiving 
more attention. Authentication methods can be grouped into 
three classes: something you possess as in an ID card, 
something you know, and something unique about you, such 
as biometrics. Possessions (e.g. keys) can be easily lost, 
forged or duplicated. Knowledge can be forgotten as well as 
shared,  stolen, or guessed. The cost of forgotten passwords is 
high and accounts for 40% - 80% of all the IT help desk calls 
[8]. Resetting the forgotten or compromised passwords costs 
as much as 340$/user/year [9]. Biometrics, on the other hand, 
are inherently secure since they are some unique feature the 
person physically has. The science of biometrics is an elegant 
solution to identifying an individual and avoids problems 
faced by possession-based and knowledge-based security 
approaches.  

 
The aggregate security level of a system increases as these 

three authentication approaches are combined in various ways. 
The least secure approach is based on PINs (Personal 
Identification Numbers), which can be easily guessed. The 
system’s security level can be improved by adding some 
possession such as an identification card. An identification 
card with a single biometric improves security further. Finally, 
an identification card with multiple biometrics supports a very 
high security level as illustrated in Figure 1. In this paper we 
propose an approach for high level security using multiple 
biometrics. 

 
Recently there has been a lot of interest in multiple 

biometric authentication systems [5][10]. Each biometric 
modality has its own limitations, issues, and problems as 

discussed in the next section. Not all of these can be solved 
for a single biometric, even with the use of state of the art and 
the novel algorithms discovered through further research. 
Hence, a better approach to building a more robust biometric 
security system involves integrating multiple biometric 
sensors. 

 

Currently, the five most common biometric technologies 
are fingerprinting, iris scanning, hand geometry comparison, 
face recognition and voice verification. These techniques have 
significantly varying degrees of accuracy, ease of use, failure 
to enroll, failure to acquire, and universality. Each technology 
must perform four basic tasks: biometric acquisition, feature 
extraction, matching, and decision making. 

 
Face and voice based biometric traits enjoy better user 

acceptance as compared to other biometrics. There are several 
reasons for better acceptance of face and voice based 
biometrics in the society. Human beings have always 
naturally used face recognition for personal identification 
purposes. Applications like biometrics, content-based 
information retrieval, visual surveillance and human computer 
interaction necessitate successful automation of the 
recognition task. In automatic face recognition, computer 
systems are employed to match the test (newly acquired and 
unknown) face image against a collection of known face 

 

Fig. 1. Solutions to increasing security needs 



images (training faces) in the database. Although the 
recognition task seems to be easy and straightforward for 
people, automated face recognition system becomes 
challenging and difficult. This is primarily due to the inherent 
variations in the image acquisition process in terms of image 
quality, geometry, illumination effects, and occlusion (glasses, 
facial hair, etc.). These major problems currently limit the 
accuracy of face recognition. 

Face recognition is a very attractive as a biometric because 
the data is already made public by many of us in the form of a 
passport or driver’s license. Secondly, this biometric can 
easily be captured by an ordinary camera. Also, the 
surveillance systems can rely on capturing image without the 
cooperation of the user. There are many inherent qualities that 
make it beneficial to automate and improve face recognition. 

 Voice biometric based verification, like face 
recognition, is also attractive because of its prevalence in 
human communication, though its accuracy is currently 
limited. Voice biometric suffers considerably from variations 
in the microphone and/or the transmission channel. The 
performance deteriorates badly as enrollment and use 
conditions become increasingly mismatched. Background 
noise can also be a considerable problem. Variations in voice 
due to illness, emotion or aging are other problems requiring 
further research.  

Due to these limitations, the multifactor biometric fusion 
does not always lead to synergistic fusion and more often 
results in what is known as “catastrophic fusion”, where the 
performance of fusion leads to worst performance than the 
single mode case. This could be due to the focus of most of 
the research works in proposing novel algorithms and features 
that perform well under clean audio conditions but lead to a 
significant performance loss under  realistic noisy operating 
scenarios. Hence the focus of this work is  to evaluate the 
multifactor biometric fusion under clean and noisy acoustic 
conditions.  

 
To be precise, we propose the fusion of face and voice 

biometric modalities captured from a video to achieve 
enhanced security under adverse noise conditions. 
Experimental results using GMM based speaker models 
indicate that using multimodal fusion provides significant 
performance improvement in the level of security. 
Experiments performed on different gender specific subsets of 
data from VidTIMIT and UCBN databases under clean and 
noisy conditions show that with audio-visual fusion, the best 
EER performance of 5% to 7% can be  achieved with  
multifactor fusion, an improvement of 22-30% as compared 
to single mode voice only or face only biometric trait.  

 
The paper is organised as follows: The details of audio-

visual databases used in the study is described next. The 
audio-visual fusion process is described Section 3. The 
Bayesian framework for building Gaussian models is 
described in section 4. The experimental set up for performing 
multifactor fusion experiments is described in section 5. The 

results of the experiments and conclusions derived are 
described in Sections 6 and  7. 

 

II. AUDIO VISUAL DATABASES 

The audio visual data from two different data corpora, 
VidTIMIT and UCBN was used for evaluating the 
performance of multimodal fusion features. The VidTIMIT 
multimodal person authentication database [16], [29], consists 
of video and corresponding audio recordings of 43 people (19 
female and 24 male). The mean duration of each sentence is 
around 4 seconds, or approximately 100 video frames. A 
broadcast quality digital video camera in a noisy office 
environment was used to record the data. The video of each 
person is stored as a sequence of JPEG images with a 
resolution of 512�384 pixels with corresponding audio 
provided as a 16-bit 32-kHz mono PCM file. 
The second type of data used is the UCBN database, a free to 
air broadcast news database. The broadcast news is a 
continuous source of video sequences, which can be easily 
obtained or recorded, and has optimal illumination, colour, 
and sound recording conditions. However, some of the 
attributes of broadcast news database such as near-frontal 
images, smaller facial regions, multiple faces and complex 
backgrounds require an efficient face detection and tracking 
scheme to be used. The database consists of 20-40 second 
video clips for anchor persons and newsreaders with 
frontal/near-frontal shots of 10 different faces (5 female and 5 
male). Each video sample is 25 frames per second MPEG2 
encoded stream with a resolution of 720 × 576 pixels, with 
corresponding 16 bit, 48 kHz PCM audio. Figure 2 shows 
some sample images from the VidTIMIT database (first two 
rows) and UCBN database (last two rows).  

III.  

Fig. 2. Audio Visual Databases 
 

IV. MULTIFACTOR FUSION 

For multifactor fusion, the audio features and visual 
features were extracted separately and fused together. The 
VidTIMIT database was used for experiments described in 
this paper. The audio signal was divided into frames using a 
Hamming window of length 20 ms, with a frame overlap of 
10 ms to give an audio frame rate, FA, of 100 Hz. MFCCs of 



dimension 12 were extracted from each frame [16]. The audio 
final audio feature vector consists of  these 12 MFCC features, 
1 energy component and difference of MFFC features(delta 
features), thus make it a feature vector of dimension 26. We 
refer to audio features with fa notation in the entire paper.  

 
Two types of visual features were extracted, one for the 

mouth region and one from the entire face. The details of 
visual feature extraction from mouth region are described in 
the next section. Similar to audio features, the final visual 
features comprised of actual visual features concatenated with 
difference features (delta features) thus capturing both static 
and dynamic variations in the speaking face. 

A. Visual Features 

 
Visual features were extracted from the mouth ROI by 
automatically segmenting the lip region from rest of the face 
[17], [18]. We refer to the visual features from the lip region 
in the entire paper with flip notation. This ROI is segmented 
manually by locating the two labial corners. A square NpxNp 
pixel block was extracted as the ROI; where Np = 98 pixels. 
Due to the lack of head motion of the subjects for the video 
recordings, manual segmentation was only carried out for 
every 10th frame, and the ROI coordinates for the 
intermediate frames were interpolated. Only the gray scale 
values of the Np x Np were considered. Even though the 
VidTIMIT and UCBN databases are of high quality, with 
controlled illumination conditions, the application of 
histogram equalisation and image demeaning (subtraction of 
the average pixel intensity values) to the ROI images, were 
both found to improve the performance of the visual features. 
Hence these were used to pre-process the images.  
 
Transform based features were used to represent the visual 
features based on the two dimensional Discrete Cosine 
Transform (2D-DCT), which was used, because of its high 
energy compaction and relative superior performance to other 
image transforms. The 2D-DCT was applied to the pre-
processed gray scale pixel blocks. The first 15 coefficients 
were employed, taken in a “zig-zag” pattern, as illustrated in 
Figure 3. 

 

 
 

Fig.3. The “zig-zag” manner by which the top 15 DCT features are 
selected 

However, the first coefficient is zero valued (due to the 
demeaning) and was discarded, leaving 14 static visual 
features per frame. Calculating the difference of the DCT 
coefficients across k video frames forms the visual feature 
vector. This was carried out for two values of k, and via 
concatenation, this gives a visual feature vector of dimension 
30. The values of k employed, depend on the visual feature 
frame rate. Since the frame rates for visual frames is not 
normally same as audio frame rates appropriate rate 
interpolation was done to match the frame rate.  

 
The second type of visual features is popular eigen face 

features investigated by several works in face recognition area 
[30]. The eigen face approach is based on principal 
component analysis, and with controlled illumination, pose 
and expressions in the face images of the database, it is 
possible to represent the entire face with 8-10 features, a 
significant reduction in dimensionality; yielding a satisfactory 
performance. We refer to eigen face features in the entire 
paper with  efface notation. 

 
 

V. BAYESIAN  FRAMEWORK  FOR  SPEAKER  MODELS 

To evaluate the performance of proposed multimodal fusion 
features, the gender specific GMM speaker models were 
obtained using text dependent and text independent data 
subsets of VidTIMIT and UCBN corpora. 
 

A, Gaussian Mixture Speaker Models  

 
 

For text independent modeling, the speaker does not speak the 
same utterance during enrolment (training) phase and testing 
phase, whereas for text dependent modeling, the speaker uses 
the same utterance during enrolment phase and testing phase. 
The speaker models were obtaining by building a large 
gender-specific universal background models (UBMs) first, 
and then adapting the UBMs to speaker models similar to the 
approach described [26].   The advantage of using UBM is 
that the impostor likelihood is now speaker independent. 
Moreover,  it was found by several researchers [26],[29] that 
instead of constructing the client models directly from the 
training data (using EM algorithm), lower error rates can be 
obtained (on a larger database)  when the client models are 
generated by adapting the UBM using a form of MAP 
adaptation [16],[26],[29]. A full description of MAP 
adaptation is out of the scope of this paper (the reader is 
encouraged to refer to [16][29]. The update equations are 
summarized as follows: 
Given UBM parameters, where NG is the number of Gaussian 
mixtures, and a set of training feature vectors for a specific 
client, , the estimated mixture weights ( km) ), means ( )ˆ kμ  , 

and covariances ( K∑̂  ) are found by iterative expectation 



maximization algorithm [Conrad]. The final parameters are 
obtained as shown below in Eqn. 1: 
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Where α    is a scale factor to make sure all weights sum to 

one. γ    is a data dependent adaptation coefficient (Lk and r , 
a fixed relevance factor is described in more  detail in 
[16],[29]). It must be noted that UBM mixture components 
will only be adapted if there is a sufficient correspondence 
with client training data. Thus to prevent the final client 
models not being specific enough (leading to poor 
performance), the UBM must adequately represent the general 
client population). This was the reason behind using separate 
male and female UBMs for our experiments here. 

 

VI. PERFORMANCE EVALUATION 

Since the verification system is inherently a two-class 
decision task, it follows that the system can make two types of 
errors.  The first type of error is a False Acceptance Error 
(FA), where an impostor is accepted. The second error is a 
False Rejection (FR), where a true claimant is rejected. Thus 
the performance is measured in terms of False Acceptance 
Rate (FAR %) and False Reject Rate (FRR %), can be defined 
as (Eqn. 2): 
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where IA is the number of impostors classified as true 
claimants, IT is the total number of impostor classification 
tests, CR  is the number of true claimants classified as 
impostors, and CT is the total number of true claimant 
classification tests. 
Since the errors are related, minimizing the FAR % increases 
the FRR % (and vice versa). The trade-off between FAR % 
and FRR % is adjusted using the threshold t, an 
experimentally determined speaker independent global 
threshold from the training/enrolment data. The trade-off 
between FAR % and FRR % can be graphically represented 
by a Receiver Operating Characteristics (ROC) plot or a 
Detection Error Trade-off (DET) plot [29]. The ROC plot is 
on a linear scale, while the DET plot is on a normal-deviate 
logarithmic scale. For DET plots,  the FRR% is plotted as a 
function of FAR %. To quantify the performance into a single 
number, Equal Error Rate (EER) is often used [29]. Here the 

system is configured with a threshold, set to an operating 
point when FAR % = FRR %.  
It must be noted that the threshold can also be adjusted to 
obtain desired performance on test data (data unseen by the 
system up to this point). Such a threshold is known as the 
aposteriori threshold. However, if the threshold is fixed 
before finding the performance, the threshold is known as the 
apriori threshold [38]. The apriori threshold can be found via 
experimental means using training/enrolment or evaluation 
data (data which has also been unseen by the system up to this 
point, but is separate from test data).  
Logically, the apriori threshold is more realistic. However, it 
is often difficult to find a reliable apriori threshold [16], [29]. 
The test section of a database is often divided into two sets: 
evaluation data and test data. If the evaluation data is not 
representative of the test data, then the apriori threshold will 
achieve significantly different results on evaluation and test 
data. Moreover, such a database division reduces the number 
of verification tests, thus decreasing the statistical significance 
of the results. For these reasons, many researchers prefer to 
use the apostereriori and interpret the performance obtained 
as the expected performance. For all the single-mode 
experiments in this paper, we have used apostereriori 
threshold (from test set) so that a comparison could be made 
with some of the existing approaches. 

A. Late Fusion vs. Feature Fusion 

The two main problems concerning multifactor fusion are 
when and how the fusion should take place. As reviewed in 
[10] on audio-visual approaches, three common levels to 
carry out the fusion, include; the early (feature-level), the 
middle-level, and the late (score-level) [14],[15],[17] fusion. 
Feature fusion and late fusion only for the proposed 
multifactor fusion approach  is examined in all experiments in 
this paper. 
 

• Feature Fusion 
 

The features extracted from the audio and visual modalities 
(implicit and explicit lip motion features) were concatenated, 
and then used for the training and testing of an audio-visual 
GMM speaker model. Eqn. (3) and 
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• Late  Fusion 

 
Late fusion requires two independent classifiers to be 

trained, one classifier for each modality. Due to independent 
processing of modalities it does not preserve the acoustic-
labial dynamics and correlation properties. However, some 
advantages of late fusion include; the ability to account for 
modality reliabilities, small feature vector dimensions, and 
ease of adding other modalities to the system. For late fusion, 
the two scores are weighted to account for the reliability of 
the modalities. The two scores may be integrated via addition 
or multiplication.  Eqn. (4) shows the use of weights for the 



case of additive integration, where Aβ   and )1( AV ββ −=   
are the weights placed on the audio and visual scores 
respectively. The audio and visual features need not be rate-
interpolated for late fusion as they are processed 
independently by separate classifiers. Prior to late fusion the 
audio and visual scores are normalized, so that each set of 
client and impostor scores fall into the range [0, 1]. 
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VII. EXPERIMENTAL SETUP 

 
In this section, different experiments conducted to evaluate 

the performance of proposed multimodal fusion features for 
the biometric system performance are described.  For 
performance evaluation, different subsets of data from 
VidTIMIT and UCBN were used. The gender-specific 
universal background models (UBMs) were developed using 
training data from two sessions, Session 1 and Session 2 of 
the VidTIMIT corpus and for testing stage session 3 was used. 
Due to the type of data available (test session sentences 
different from training session sentences), only text 
independent experiments could be performed with VidTIMIT 
database. This gave 1536 (2*8*24*4) seconds of training data 
for the male UBM and 576(2*8*19*4) seconds of training 
data for the female UBM. The GMM topology with 10 
Gaussian mixtures was used for all the experiments. The 
number of Gaussian mixtures was determined empirically to 
give the best performance. For UCBN database, similar 
gender-specific universal background models (UBMs) were 
obtained using training data from text dependent subset 1 and 
text independent subset 3 & 4.  Ten sessions of the male and 
female speaking face data from these subsets were used for 
training and 5 sessions for testing.  

For testing if the numbers of subjects are R, the impostors 
are generated by the leave-one-out scheme, with each subject 
being the impostor for the remaining R-1 subjects. For all the 
experiments, the threshold was set using test data. For male 
only subset for VidTIMIT database, there were 48 client trials 
(24 male speakers x 2 test utterances in session 3), and 1104 
impostor trials (24 male speakers x 2 test utterances in session 
3 x 23 impostors/client), and for the female VidTIMIT subset, 
there were 38 client trials (19 male speakers x 2 test 
utterances in session 3), and 684 impostor trials (19 male 
speakers x 2 test utterances in session 3 x 18 impostors/client). 
For male only subset for UCBN database, there were 25 client 
trials (5 male speakers x 5 test utterances in each subset), and 
100 impostor trials (5 male speakers x 5 test utterances x 4 
impostors/client), and for the female UCBN subset, there 
were similar number of client and impostor trials as in male 
subset as there we used 5 male and female speakers from 
different subsets.  Different sets of experiments were 
conducted to evaluate the performance of the multimodal 

fusion features in terms of DET curves and equal error rates 
(EER).  

To examine the effects of background acoustic noise, 
additive white Gaussian noise was applied to the clean audio 
data at SNRs ranging from 48dB to –12dB in steps of 6dB. 
The audio/audio-visual models were trained using the original 
clean audio data and tested on audio data with the various 
SNR levels. The best fusion weight (βA) values for the late 
fusion were determined empirically by exhaustive search for 
each audio SNR test level. This was achieved by testing βA 
values ranging from 0 to 1 in steps of 0.01. The βA value was 
chosen such that the speaker verification performance at the 
given test set SNR test level was maximised. 

 

VIII. EXPERIMENTAL RESULTS 

 
The experimental results are presented with the following 

organisation. First we compare the results of single mode and 
multifactor fusion for clean audio case. Next we compare the 
performance of the multifactor fusion features across various 
audio SNR levels. 

 

A. Evaluation of Multifactor Fusion Features for Clean 
Audio Case 

Table 1 and DET curves in Figure 3 to 6 show the EER 
performance with late fusion of audio and visual features. As 
can be seen in Table 1, and the DET curves in Figure 3,4,5 
and  6, the best EER performance of 6.53 % is achieved with 
late fusion of audio, lip and face features (fa+flip+fface) for the 
VidTIMIT male subset. 
 
 

Table 1: EER performance for late fusion of audio, face and lip features 
 

 
 
 
 



 
 

Fig,3. DET curves for evaluating audio visual late fusion: VidTIMIT 
male dataset 

 

 

Fig,4. DET curves for evaluating audio visual late fusion: VidTIMIT 
female dataset 

 
B. Evaluation of Multimodal Fusion Features for Noisy 

Audio Case 

The EER performance shown in Table 1 and Table 2 is for the 
clean audio case. As can be seen in the first row of Table 1 
and 2, the EER performance with clean audio is better than 
audio-visual fusion case. The “clean” audio refers to the 
original VidTIMIT/UCBN acoustic speech data, prior to the 
application of any degradation. It can be expected that the 
audio modality would perform well for the clean speech. To 
examine the effects of background acoustic noise, additive 
white Gaussian noise was applied to the clean audio at SNRs 
ranging from 48 dB to -20 dB in steps of 6 dB. 
 

 

Fig,5. DET curves for evaluating audio visual late fusion: UCBN  male 
dataset 

 

 

Fig,6. DET curves for evaluating audio visual late fusion:UCBN 
female dataset 

 
 

Table 2: EER performance for late fusion of audio, face and lip features 
 

 



 
 

Fig. 7. DET curves for evaluating audio visual feature fusion male 
VidTIMIT dataset 

 

 
 

Fig. 8. DET curves for evaluating audio visual feature fusion female 
VidTIMIT dataset 

 
 

The EER performance achieved with feature level fusion of 
audio and implicit and explicit lip motion features is shown in 
Table 2 and the DET curves in Figure 7 to 10.  It can be 
observed that the feature level fusion leads to similar 
performance improvement as late level fusion, though it is 
cited in some audio visual fusion literature [21,22], that 
feature level fusion leads to performance loss as compared to 
late fusion. 

 
Moreover, the fusion of audio, face and lip features 

performs better as compared to the fusion of audio and face, 
audio and lip features for VidTIMIT male subset. This could 
be due to the ability of fusion of all three features to  model 
the person identity better.  

 
The audio/audio-visual GMM models were trained using the 
original clean audio data and tested on audio data with various  

 

Fig. 9. DET curves for evaluating audio visual feature fusion male 
UCBN dataset 

 

 

Fig. 10. DET curves for evaluating audio visual feature fusion male 
UCBN  dataset 

 
SNR levels. Late fusion was performed as in Eqn. (4). The 
best values were determined empirically by exhaustive search 
for each audio SNR test level. This was achieved by testing 
values ranging from 0 to 1 in steps of 0.01. The   values was 
chosen such that the identity verification performance at a 
given test set SNR test level was maximized (i.e. there was 
prior knowledge of the correct decisions).  
At higher noise levels, however, the audio only performance 
deteriorates significantly; whereas, the visual features (lip and 
face) features, and the fusion of audio and visual features 
perform better than audio performance. The results for the 
noisy acoustic data are now presented.  
Figures 11 and 12 compare the EER performance of late-
fusion and feature-fusion approach for VidTIMIT and UCBN 
datasets across various audio SNR levels.  For male 
VidTIMIT subset, the audio accuracy roll off with respect to 
test-set SNR level is high, with an audio EER of 4.38% at 
48dB which drops to around 100% EER at   –6dB. This steep 
audio performance roll off with respect to SNR is due to the 



mismatched audio testing conditions, i.e., training on noise-
free audio and testing on audio of a lower SNR. It is expected 
that the roll off would be less steep if matched testing was 
employed, i.e., training and testing using audio of the same 
SNR.  
 

 
 

Fig.11. Evaluation of late fusion and feature fusion under noisy 
acoustic test environment for VidTIMIT male subset 

 
However, multifactor fusion features perform better in noisy 
acoustic conditions, and in general, the EER performance of 
late fusion features is better than feature level fusion with 
both face and lip region visual features. As can be expected, 
the visual only features are unaffected by noisy test conditions 
with an EER of 6.8% for   features and 9.3% for   features 
even at low audio SNRs. 
 
With audio-visual multifactor fusion, both face and lip region 
fusion features yielded a similar performance. For male 
VidTIMIT subset, until 30 dB SNR, the late fusion of (fa +  
flip ) and (fa + fface), allows a synergestic fusion with EERs 
less than visual only EERs. However for feature fusion, the 
system is more sensitive to noisy test conditions and the 
fusion is synergestic for less than 42 dB SNRs as compared to 
30dB SNR threshold for late fusion. Also, at low SNRs, the 
feature fusion leads to a higher performance roll off, whereas 
for late fusion, the system continues to be more robust even at 
low SNR levels. Similar performance roll off can be observed 
for female data subset of UCBN, with the EER performance 
for all modes (audio, visual, and audio-visual fusion) 
relatively poorer, due to lesser training data available for 
female UCBN subset as compared to male VidTIMIT subset. 
 
There may be several reasons why the feature fusion, leads to 
catastrophic fusion irrespective of whether audio-face and 

audio-lip features are used. This could be due to adverse 
affect a corrupted audio feature vector can have on the audio-
visual fusion vector at very low audio SNRs. Another reason 
for poor feature fusion performance as compared to late 
fusion may be lack of sufficient training data for training the 
GMM speaker models trained with concatenated audio-visual 
feature vectors with larger dimensions.  This could also be 
due to the GMM topology used for modelling the speakers. 
Alternate topologies based on HMMs may allow building of 
better speaker models, with higher number of HMM 
states/mixes, and this would have boosted the performance. 
However, this would require more training data as compared 
to the training data available from VidTIMIT and UCBN 
databases used for experiments here. 
 

 
 

Fig.12. Evaluation of late fusion and feature fusion under noisy acoustic test 
environment for UCBN female subset 

 

IX. CONCLUSIONS 

 
The empirical results presented in this paper on multifactor 

fusion based on audio, face and lip region features are quite 
promising, particularly showing that the addition of the visual 
modality not only improve the performance at low SNR test 
levels but also enhances the performance for clean audio, 
resulting in the performance with higher robustness to audio 
noise. It was also shown that multifactor fusion of all three  
(audio, face and lip) features better than audio-face and audio-
lip features, and the late  fusion approach of acoustic and 
visual features  leads to better performance. This is due to 
better representation of person’ specific information with 
audio and two types of visual features. In conclusion, the 
results show that the multifactor fusion of biometric features, 
makes the identity verification system robust against acoustic 
noise degradations. 
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