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Abstract—This paper examines the task of estimating the 3D
pose of a human subject acquired from multiple views within a
multiple camera surveillance network. We utilised a modified five-
point skeleton model with potential application in human action
recognition and gait recognition. This paper proposes automatic
initialisation and recovery of human pose. Feature tracking and
motion prediction are incorporated to increase the accuracy and
the robustness of the model. Although the model is tested within
the area of video surveillance, it has the potential to extend to
other areas such as Virtual Reality, content based retrieval and
compression of video. The proposed algorithm is evaluated with
the IXMAS database and is demonstrated to produce promising
results for 3D pose estimation from a multi-view camera network.
Outcomes are also evaluated using feature trackers.

I. INTRODUCTION

Automatic human pose estimation is an extremely complex
challenge facing the computer vision community. The ability
for a computer to automatically decompose and estimate the
structure and pose of the human body has various applications
such as human action recognition [1], gait recognition [2], and
virtual reality [3].

Human action recognition is performed by classifying parts
of a video sequence as a particular action. Systems need
to be ‘taught’ how to recognise actions by first showing
many examples of that particular action. Algorithms used for
recognition include template matching, hidden Markov models
(HMM), Bayesian networks and neural networks, along with
variants of these such as coupled HMMs and time-delay neural
networks [1]. HMMs and its variants are by far the most
common techniques currently used.

Gait recognition is an identification process that extends
action recognition and is often performed on walking or
running motions. Gait recognition can be categorised by
two distinct approaches: appearance-based and model-based
approaches [4]. The appearance based approach performs gait
recognition directly from the human silhouette. In general,
feature extraction for this approach is a simple process. The
common features include the prediction of position, velocity,
shape, texture and colour. These approaches are often limited
when dealing with large view variations, suffer from view
dependency, and are sensitive to changes in lighting, occlusion,
noise, and clothing. Model based approaches involve complex

model fitting and tracking frameworks. Constraints such as
symmetry and degree of freedom (DOF) are often employed to
minimise the computational cost. Common features include the
angles between body parts, and static length of the body parts.
These approaches are often not view dependent, but suffer
from poor tracking of the upper limbs due to self occlusion
and inconsistent movement.

A difficult issue still requiring significant development is
the robust estimation of pose in 3D which can be acquired
from multiple views. Current methods are often limited to
a single view, are constrained by view-dependent algorithms
which cannot operate on any arbitrary view, or they lack the
ability to effectively combine the required information from
multiple views. Recent work in this area is targeting these
issues and is summarised in the following section.

With the goal of human action recognition and gait recogni-
tion in the area of surveillance we are seeking a technique that
is simple to implement and has fast execution time for real-
time application. The reason for a multi-view approach is two
fold; to allow accurate 3D reconstruction and to minimise the
effects of occlusion. The modified five-point tracker has this
potential for pose recovery. We have implemented the tracker
using multi-view video sequences and construct a 3D model
to estimate human pose. Results illustrate the model is able to
recover pose using simple decision making rules.

This paper is outlined as follows. Section II provides an
overview of some related work in the field. Section III presents
the automatic pose estimation technique. Section IV presents
some experimental results which have been tested on the
IXMAS dataset [5]. Finally the paper is concluded with a
discussion and an overview of future work in Section V.

II. RELATED WORK

One of the simplest approaches for recovering human pose
within the 2D domain is often referred to as ‘star’ skeletoni-
sation. This approach traces the contour of the silhouette of a
person, calculating the distance to the centroid of the silhouette
and taking the five most prominent peaks of this distance
measure. These five points correspond to the head, hands and
feet, and when connected to the centroid, resembles a star
shape. Fujiyoshi and Lipton [6] use the lower two points, or



the feet, to distinguish between walking and running from its
periodic frequency. Slight adaptations to the algorithm have
since been made and utilised for other applications, such as
fence climbing detection [7] and also human action recognition
[8].

A more complex method which also labels the elbow and
knee joints, the hip and neck has been proposed by Thome et
al. [9]. A silhouette of a person is first skeletonised using a
method based on Voronoi diagrams and then the skeleton is
pologonalised. The skeleton is then decomposed into a directed
acyclic graph and matched against a human model to label the
points in the skeleton. Tracking was applied to each individual
point to help resolve ambiguities when matching and to assist
in dealing with self occlusion.

The Pfinder system [3] tackles the pose estimation problem
by modelling the human body as a series of 2D blobs, with
each corresponding to parts of the human body (head, hands,
feets, upper and lower body). It uses silhouettes extracted
from motion detection. The system has been used in various
implementations, such as a control mechanism to navigate
within a 3D virtual game environment, and was also the basis
for the American Sign Language recognition system.

Ren et al. [10] computes the edge map of the image and
then identifies parallel lines from the map. Pairwise constraints
between body parts are then used to assemble a human body
from these lines. Mori et al. [11] also uses an edge map
for their implementation. A normalised cut approach is then
used to segment the image with each of the segments passed
through various detectors in an attempt to identify limbs and
the torso.

The methods presented so far all deal with 2D recon-
struction of pose. 3D approaches have also been explored.
Peursum et al. [8] use multiple cameras to expand the star
skeletonisation algorithm into 3D. The standard 2D approach
is performed on each of the available views, and then the
detected points are matched, given the relative positions of
the cameras, to generate 3D locations for the points.

Agarwal and Triggs [12] used an example-based approach to
recover 3D pose from monocular video. Nonlinear regression
was used to learn mappings between silhouette shape descrip-
tors to a 3D pose. Sminchisescu and Triggs [13] used image
matching, joint limits and non-self-intersection constraints to
implement their 3D recovery system. Gavrila and Davis [14]
use a simple volumetric 3D model to represent the human
body. An iterative process matched the outline of the 3D model
to an edge map generated from the input image to estimate
pose.

As illustrated from the literature, the model based ap-
proaches generally involve complex model fitting and tracking
frameworks. These methods are often computationally expen-
sive and difficult to implement. The advantage of model based
approaches however, is their view independency and robust-
ness when dealing with occlusion. On the other hand the non-
model based approaches are relatively simple to implement
with faster performance, but they heavily rely on the viewing
angle and often fail when dealing with occlusions. We have
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Fig. 1. Flow chart of algorithm

chosen the modified five-point model due to its simplicity and
the potential ability to overcome issues such as viewing angle
dependency and occlusions.

III. POSE RECONSTRUCTION

A. Algorithm Overview

We attempt to reconstruct the human pose in 3D by perform-
ing 2D pose reconstruction independently in multiple views,
and then projecting them into 3D space. Motion detection is
employed on the raw image data to obtain silhouettes of the
subject. 2D pose reconstruction is then applied on these motion
masks. The result of the 2D pose reconstruction is then used to
reconstruct in 3D. Velocity based motion estimation is used on
the 3D points to help with tracking between frames. Feedback
is provided back to the 2D stage by projecting the final 3D
results and the motion estimation back into the different views.
Feature tracking is performed on the projected final points.
This process is illustrated in Figure 1. Each of these stages is
outlined in the following subsections.

B. Star Skeletonisation

The ‘star’ skeletonisation algorithm proposed by Fujiyoshi
and Lipton [6] was used as the basis for the pose estimation
in the 2D stage. This method involves tracing the boundary of
a silhouette and calculating the distance to the centroid of the
shape. Extremities are found by finding the maxima in these
distance values. Taking the five most extreme points results in
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a ‘star-like’ skeletal representation of the human body when
joined to the centroid, as can be seen in Figure 2.

Alterations to this algorithm have been made by Peursum
et al. [8] and Yu et al. [7]. Yu moves the ‘centre’ point from
which the distance is calculated from the centroid to the head.
Peursum also moves this centre point, this time to two thirds
the way to the head from the centroid. This change corrects a
problem faced with the original algorithm in which incorrect
points (Figure 3) are detected. In the case with Peursum, the
point also approximates the neck/shoulder and serves as an
anchor point for the arms.

The approach followed here resembles that by Peursum. The
distance to the boundary from the centroid is first calculated
and then smoothed slightly through the use of Fourier descrip-
tors. Extremities are found by searching for local maxima.
First, a temporary head point is located by taking the topmost
point. A point two thirds from the centroid toward this head
point is then found, and a second set of extremities are then
found based on this point instead of the centroid.

The subject is assumed as upright, and thus the head can be
taken as the uppermost extremity point. However, this does not
necessarily correspond as the highest point in the silhouette as
no assumptions are made on the camera locations. To identify
‘up’ in each of the views, the centroid is first identified in each
silhouette and its 3D location is estimated. An arbitrary point
directly above the 3D centroid is calculated and projected back
into each of the views to obtain a vector pointing ‘up’.

The head is re-identified by taking the topmost extremity
from the second set. As each new point is labelled, extremities
that are close are removed from both sets. The legs are
identified by locating the lowest 2 extremities detected that

lie within the lower 1/3 of the silhouette, with the set of
extremities calculated from the centroid given preference over
the other. The hands are found by taking the two further points
remaining from the second set. Should less than two points
be found, the remaining hand points are found by taking the
closest points in the first set.

No attempt at distinguishing between left or right hands
or legs is ever made. Each view is processed independently
for this stage so no correspondences are made between the
different hands and legs between the views so far.

C. Tracking

Feature tracking was was also incorporated, along with the
reprojected motion estimates, to track points as the subject
moves between frames. Two different feature tracking tech-
niques, namely local zero-mean normalised cross correlation
(ZNCC) [15] and the KLT feature tracker [16], were tested
to improve the accuracy and robustness of the system. It
was shown the cross correlation technique is more robust in
comparison to the KLT tracker in our particular application.
This was due to the KLT tracker proving more adept at
tracking corner points while the tips of the human limbs are
often blurred and the tracking points are easily lost. The cross
correlation technique overcame the problem by not tracking
single points, however, it is still sensitive to the selection of
the centre point for the feature window. Generally the points
are initialised to locate the tips of the limbs, and the edge
feature will dominate the tracking result therefore it is often
lost due to background edges.

A simple motion estimator based on previous velocity
information was applied on the final 3D points. These were
mapped back into 2D to help with the tracking process.
Correspondences between the correct hand/foot are now able
to be made due to tracking.

D. 3D Reconstruction

Given calibrated cameras, one is able to map a point in 3D
space to a coordinate in the camera view. To do the reverse,
at least two different views are need. A point in a 2D view
projects into a line in 3D space. Two corresponding points in
two different views will produce two intersecting (assuming
perfect accuracy) lines, where the intersection is the points’
location in 3D.

For every point of a given ‘type’ (head, hand, etc) we
triangulate with every point of the same type in another view,
calculating the point where the two projected lines are closest
and working out the separation. We then find correspondences
between points in different views. This is done by isolating
pairs of points with the smallest distance between them at
their closest approach. This way, we are able to discount
false detections in the 2D stage. It also allows us to use
multiple points, eg. having say 4 candidate ‘hand’ points
being extracted from 2D to hopefully include correct points
that may otherwise be missed. This however, allows for the
chance where two unrelated points happen to provide a good
correspondence.



This process is applied to every possible combination of
two camera views, resulting in numerous detected points in
space for each body part. Points are grouped by joining with
its nearest neighbouring point and the average of the closest
two points become the candidate point for that group. The
candidate points with the smallest separations are then labelled
as the final 3D points.

This 3D process is also applied again with the distinction
between the different hands and feet, giving a second set of
‘final’ points. This is combined with the first set to produce a
more robust result.

IV. EXPERIMENTAL RESULTS

The objective of our experiment is to test the accuracy and
usability of the modified five-point skeleton model for human
pose estimation. The algorithm was implemented in Matlab
and tested using the IXMAS database [5], which contains
multi-view video sequences from five calibrated cameras in
a controlled environment. The skeleton was extracted using
the silhouettes that where provided with the database. Other
motion detectors were also tested and resulted in similar
silhouettes. The results presented here are generated without
feedback from feature tracking as the feedback process often
introduced significant problems during periods of excessive
movements and did little to improve results during other
periods of normal motion.

An example frame is shown in Figure 4 with the five
synchronised camera views visible with a sixth image showing
the reconstruction in 3D. The labels are colour coded, with
red, blue and green corresponding to the head, hands and feet
respectively. The crosses in the camera views show the raw
detections from the 2D pose estimation, while the points in the
3D view shows the results of the point projections. The blue
crosses represent the centroid and yellow corresponds with
the point where the second set of extremities is calculated.
The circles represent the final 3D locations. For this particular
example, the legs were joined to the centroid with the hands
connected to the secondary point to form a more human like
stick figure.

Figures 5 and 6 illustrate the results on two sequences; one
showing the subject raising her arm to check her watch, while
the other shows her walking in a small circle. It can be seen
that the system is able to provide reasonable simple reconstruc-
tion of a person’s pose. Some problems can be seen however.
For example, in the watch checking sequence, tracking of the
left hand shifts to the elbow as the hand occludes with the
body and the elbow becomes more prominent. In the walking
sequence, incorrect 3D locations were detected in a few of the
frames. It can also be noted that the foot locations detected are
significantly lower than where they should be, appearing to be
below the ground. This is attributed to the effects of shadows
causing problems with the motion masks.

Figure 7 shows a case where the system fails. In this case,
our assumption that the head is the upper most point is broken
and the result is incorrectly labelled. The system is also unable
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Fig. 7. Failure example

to handle large amounts of occlusion, such as when a person
sits down.

V. DISCUSSION & CONCLUSIONS

In this paper we have presented a simple algorithm that
utilises a 3D modified five-point model for human pose
estimation. We have presented the result to show that it has
the potential for applications such as action recognition and
gait recognition. Future work will address the development of
improved decision making routines and the ability to include
feedback from feature trackers for more robust tracking. The
difficulty of estimating the human comes from the limited
information contained in the 2D silhouettes. One way of
improving the result is to compute the silhouettes to include
shadow removal and body part identification. We also aim
to adjust the flow of the algorithm by computing the 3D
silhouettes then identifying the five points. The five-point
model will also be extended to a full skeleton model in order
to recover more sophisticated human motions.

This paper has illustrated the effectiveness of the modified
five-point skeleton model for human pose recovery. It was
shown that the technique was capable of correctly locating the
5 points with only a few exceptions. This was predominantly
due to the heavy reliance on the silhouettes that were provided
with the database. One major problem with these silhouettes
are the shadows, which can be identified as local maximum
and be labelled incorrectly as hands or legs depending on the
viewing angle. The incorrect local maximum leads to incorrect
2D labelling. Triangulating the points from the 2D to 3D
skeleton produces results that are far from accurate. This can
be improved with shadow removal algorithms.

Another issue with the silhouette approach, similar to the
occlusion problem, is that the silhouettes do not contain
information visible in the scene. For example, when a person
is standing with arms close to the body, the shoulders are likely
to be detected as hands. Other improvements with calculating
the maxima can be implemented with different approaches
for calculating these distances. Instead of calculating the
straight line distance from centroid to the edge, such as when
traversing the line from the centroid to the candidate point,
only one crossing is allowed. Even though the modified five-
point skeleton model gives a somewhat realistic representation
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Fig. 4. Example frame showing the result of the algorithm
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Fig. 5. ’Check watch’ sequence

of the human pose, future work will concentrate on expansion
to a full skeleton model to capture more detailed features from
complex motions for more advanced human action recognition
and gait recognition applications.
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