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Abstract- In this paper, we have compared three recently 

developed techniques for image enhancement and denoising. 

These methods are based on the use of partial differential 

equations, including second order, fourth order, and the complex 

partial differential. We consider various well-known measuring 

metrics used in image processing applied to standard images in 

this comparison. In this study, it is shown that the capability of 

the PDE-based approaches depends highly on the neighboring 

structure. Our investigations show that in an image where the 

energy of noise is low, the complex diffusion method offers a 

better result in image denoising compared to other methods. 

However, when the energy of the noise increases, performance of 

the complex diffusion method declines. In general, for the case 

when the energy of noise in an image is unpredictable, using the 

heat equation for image denoising is recommended.  

 

 

I. INTRODUCTION 

Noise reduction is usually the first process that is used in 

the analysis of digital images. In any image denoising 

algorithm, it is very important that the denoising process has 

no blurring effect on the image, and makes no changes or 

relocation to image edges. 

There are various methods for image denoising. Using 

simple filters, such as average filter, median filter and 

Gaussian filter, are some of the techniques employed for image 

denoising [1]. These filters reduce noise at the cost of 

smoothing the image and hence softening the edges.    

To overcome the above-mentioned problems, the partial 

differential equations (PDEs) –based methods have been 

introduced in the literature [2,3]. These methods assume the 

intensity of illumination on edges varies like geometric heat 

flow in which heat transforms from a warm environment to a 

cooler one until the temperature of the two environments 

reaches a balanced point. It was shown that these changes are 

in the form of a Gaussian function [3]. Consequently, sudden 

changes in edges might be due to the existence of noise. In 

fact, an image includes a series of regions in which different 

regions might have different standard deviations.  
The paper is organized as follows: Section 2 briefly describes 

the PDE-based approaches for image denoising. Section 3 

introduces various metrics used for performance measuring 

algorithms in this paper. The experimental results are provided 

in Section 4. Finally, the conclusion is given in Section 5. 

 

II. REVIEW THE PDE-BASED IMAGE DENOISING TECHNIQUES 

 
The capability of PDE-based methods in image denoising 

prompted many researchers to search for an improvement in 

the technique [2,11]. In this section we introduce three recently 

developed methods in image denoising.  

 
A.  The Second order PDEs  

 

In recent years the second order PDEs are widely used for 

image enhancement and denoising. Perona and Malik initially 

proposed the idea [4] which is based on heat diffusion 

equations. For an image I, the equation can be defined as 

follows :  
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Where ∇ is the gradient operator, ),,( tyxc is the diffusion 

factor, and ⋅∇  is the divergence operator. If c  has a constant 

value (independent to tyx ,, ), the obtained equation is called a 

diffusion equation with an isotropic diffusion factor. In this 

case, all points and edges would be smoothed as there is no 

difference between a pixel on an edge and other pixels. It is 

obvious that this is not an ideal solution. To resolve this 

deficiency, the diffusion factor could be considered a function 

of x and y . Hence, the above equation is changed to a linear 

and anisotropic equation. If c  is dependent on the image, the 

linear equation would be transformed to a nonlinear equation. 

This is the idea that was suggested in [5],[7]. In these 

researches two different equations for the diffusion factor were 

suggested as shown below: 

 

(2)    2

2

1
( , , )

| |
(1 )

c x y t
I

k

=
∇

+

    

    

(3)    

2

2

| |
( , , ) exp( )

2

I
c x y t

k

∇
= −     

In the above equations the diffusion factor c  changes at 

different points in the image. For those points where the 

gradient of the image is large, this factor has a small value. 

Consequently, the diffusion factor would be small around the 



edges, hence the edges are preserved from smoothing. In both 

(2) and (3) k  is used to control the diffusion factor.  

Equation (1) is considered an efficient tool for noise removal 

and scale space analysis of images. Although the method is 

thought to be comparably better than the other methods [6], it 

tends to cause blocky effects in images. These blocky effects 

are visually unpleasant and the possibility of detecting them as 

false edges by edge detection algorithms is high. Several 

papers [5]-[8] have noted that anisotropic diffusions with 

diffusion coefficients given by (2) and (3) are ill disposed in 

the sense that images close to each other are likely to diverge 

during the diffusion process. In [9] it is noted that even without 

noise, a stair-casing effect can arise around smooth edges. 

Since anisotropic diffusion is designed such that smooth areas 

are diffused faster than less smooth ones, blocky effects will 

appear in the early stage of diffusion, even though all the 

blocks will finally merge to form a smoother image. When 

there is backward diffusion, however, any step image 

(piecewise level image) is a global minimum of the energy 

functional, so blocks will appear in the early stage of the 

diffusion and will remain as such [6]. 

 

B. The Fourth order PDEs 

 

In the past few years, a number of authors have proposed 

fourth order PDEs for edge detection and image denoising with 

the hope that these methods would perform better than their 

second order analogues [6,9]. Indeed there are good reasons to 

consider fourth order equations. Firstly, fourth order linear 

diffusion dampens oscillations at high frequencies much faster 

than second order diffusion. Secondly, there is the possibility 

of having schemes that include the effects of curvature in the 

dynamics, thus creating a richer set of functional behaviors. On 

the other hand, the theory of fourth order nonlinear PDEs are 

far less developed than their second order analogues. Also such 

equations do not possess a maximum principle or comparison 

principle, and the implementation of the equations could thus 

introduce artificial singularities or other undesirable behavior 

[11]. 

In this paper, we implemented and tested the fourth order 

PDEs proposed in [5] and [7]. For these methods, the fourth 

order PDEs, uses the L
2
 – curvature gradient flow method as 

below: 
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Where 
2∇ is the Laplacian of the image I . Since the 

Laplacian of an image at a pixel is zero if the image is planar in 

its neighborhood, these PDEs attempt to remove noise and 

preserve edges by approximating an observed image with a 

piecewise planar image. The equation (4) was associated with 

the following energy functional: 
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Where Ω is the image support and 
2∇ denotes the Laplacian 

operator. Since 
2( )f I∇ is an increasing function of 

2I∇ , 

its global minimum at 
2 0I∇ = . Consequently, the global 

minimum of ( )E I  occurs when: 

(6) 
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A planar image obviously satisfies (5)[10], hence is a global 

minimum of E(u). Planar images are the only global minimum 

of E(u) if : 

(7) 
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because the cost function E(u) is convex under this condition. 

Therefore, the evolution of (4) is a process in which the image 

is increasingly smoothed until it becomes a planar image. But 

in the case of second order anisotropic diffusion, ƒ"(s) may not 

be greater than zero, and as a result the image evolves towards 

a step image and that is why it suffers from blocky effects. So 

on image processed by fourth order PDEs will look less blocky 

than that processed by second order anisotropic diffusion. 

In [7] two different functions have been proposed to measure 

the oscillations in the noisy data and is given below:  

(8) 1( ) ( )
xx yy

E I I I x y
Ω

= + ∂ ∂∫  

or 

(9) 
2 2 22

2 ( )
xx xy yx yy

E I I I I I x y
Ω

= + + + ∂ ∂∫  

The main difference between the two functions is that E2 (u) is 

a rotational invariant while E1(u) is not. However the 

implementation with E1(u) is more simple for higher 

dimensional problems. Based on the above functions Lysaker 

proposed the following 4
th

 order PDE: 
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where: 
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This method offers similar results when compared with the 

method proposed in [6]. 

 

C.  The Complex Diffusion  

 

Complex diffusion is a comparatively new method and can be 

applied for image denoising. This is a generalization of 

diffusion and free Schrodinger equations. In various areas of 

physics and engineering, it was realized that extending the 

analysis from the real axis to the complex domain is very 

helpful, even though the variables and/or quantities of interest 

are real. Analysis of linear complex diffusion shows that the 

generalized diffusion has properties of both forward and 

inverse diffusion [12]. 



In 1931, Schrodinger proposed the possibility of using 

diffusion theory as a starting point for the derivation of the 

equations of quantum theory. This idea was developed by 

Fuerth who indicated that the Schrodinger equation could be 

derived from the diffusion equation by introducing a relation 

between the diffusion coefficient and Planck’s constant, and 

stipulating that the probability amplitude of quantum theory 

should be given by the resulting differential equation [13]. It 

has been the goal of a variety of subsequent approaches to 

derive the probabilistic equations of quantum mechanics from 

equations involving probabilistic or stochastic processes. 

Complex diffusion-type processes are encountered in quantum 

physics and in electro optics. The time dependent Schrodinger 

equation is the fundamental equation of quantum mechanics 

[13] . In the simplest case for a particle without spin in an 

external field it has the form: 

(12) 

2

 ( )
2

i V x
t m

ψ η
η ψ ψ

∂
= − ∆ +

∂
        

Where ( , )x tψ ψ= is the wave function of a quantum particle, 

m is the mass of the particle, η is Planck’s constant, V(x) is the 

external field potential, ∆ is the Laplacian and 1i = −  . 

With an initial condition 0 0 ( )t xψ ψ= = , requiring that 

2(0, )t Lψ ∈ for each fixed t, the solution is 

0(0, ) ,
i
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= where the exponent is shorthand for the 

corresponding power series, and the higher order terms are 

defined recursively by 
1( )n nH H Hψ ψ−= . The operator:  
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called the Schrodinger operator, is interpreted as the energy 

operator of the particle under consideration. The first term is 

the kinetic energy and the second is the potential energy. The 

duality relations that exist between the Schrodinger equation 

and the diffusion theory have been studied in [13]. By solving 

equations (1) and (12) we will get the following two equations: 
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where IRT is the image obtained for the real plane and IIT is the 

image obtained for the imaginary plane at time T and 

cos( ), sin( )R IC Cθ θ= = . The relation 
Rxx Ixx

I Iθ�  holds 

for small theta approximation : 

(15) ;
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where IR is controlled by a linear forward diffusion equation, 

whereas II  is affected by both the real and imaginary 

equations. The above-mentioned method is a linear complex 

diffusion equation. A more efficient nonlinear complex 

diffusion can be written as in equation (16) : 
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In the above equation k is the threshold parameter. The phase 

angleθ  should be small ( 1θ � ). Since the imaginary part is 

normalized byθ , the process is hardly affected by changing 

the value ofθ , as long as it stays small [12]. 

 

III. PERFORMANCE METRICS 

In this paper four well known metrics are used to evaluate the 

algorithms, which are introduced here briefly. 

 

A: Figure of Merit Metric 

The figure of merit (FOM) the edge preserving measure that is 
defined as below [14]: 
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In this equation N
∧

and 
ideal

N are the numbers of detected and 

original edge pixels, respectively;
i

d  is the Euclidean distance 

between the i th detected edge pixel and the nearest original 

edge pixel; λ  is a constant typically set to 1/9. The dynamic 

range of FOM is between the processed image and the ideal 

image. We used the Canny edge detector [15] to find the edge 

in all processed results. 

B: Structural SIMilarity  Metric 

The structural similarity etric (SSIM)  proposed in [20] 

consists of three different metrics. Let  { }1,2,3,...,
i

x x i N= =  

, { }1,2,3,...
i

y y i N= =  be the original and the test images, 

respectively. The proposed quality index is defined as: 
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The dynamic range of SIMM is [-1, 1]. The best value 1 is 

achieved if and only if 
i i

y x= for all 1, 2,3,..., Ni = . The 

lowest value of -1 occurs when 2
i i

y X x= − for all 

1,2,3,...,i N= . This quality index models any distortion as a 

combination of three different factors: loss of correlation, 

luminance distortion, and contrast distortion. In order to 

understand this, we rewrite the definition of Q as a product of 

three components:  
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The first component is the correlation coefficient between x 

and y, which measures the degree of linear correlation 

between x and y, and its dynamic range is   [-1,1]. The best 

value 1 is obtained when 
i i

y ax b= + for all 

1,2,..., ,i N= where a and b are constants and a >0. Even if x 

and y are linearly related, there still might be relative 

distortions between them, which are evaluated in the second 

and third components. The second component, with a value 

range of [0, 1], measures how much the x and y are close in 

luminance. It equals 1 if and only if X Y= . 
X

σ and 
y

σ can 

be viewed as an estimate of the contrast of x and y, so the 

third component measures the similarities between the 

contrasts of the images. Its range of values is also [0,1], where 

the best value 1 is achieved if and only if 
X Y

σ σ= . 

Parameters , ,α β γ are used to adjust the significance of each 

of the three components. This metric can be implemented for 

an image as below: 
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where X and Y are the reference and the distorted images 

respectively, M is the number of local windows in the image, 

SSIM is the Structural Similarity Index Matrix, xj and yj are the 

image contents at the j
th

 local window. 
 

 

C. Mean Square Error (MSE) Metric 
 

This metric is frequently used in signal processing and is 

defined as follows 
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Here, originalI   is the original image and denoisedI  is the 

denoised image. In this metric, the smaller the MSE value, the 

better is the denoising performance. 

D: SNR Metric 

 

The SNR is well known in signal processing like MSE. Its 

definition is as follows: 
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Here, when the denoised image has a large SNR it will be 

closer to the original image and will have a better quality. 
    

IV.   EXPERIMENTAL RESULTS  

To compare the performance of the above-described 
techniques in image denoising, they have been implemented 
using Matlab. Then the algorithms were applied to 100 
standard images provided in [18].  

To find the numerical solution for the algorithms under 
comparison, we used two neighboring structures shown in 
Figure 1  [22].  
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Figure 1. The neighboring structures for numerical solution of 

PDEs 

In these experiments, to make the images noisy, the Gaussian 

noise and impulse noise have been used with 64 as the average 

value for both of the noises, and a variance of 400 for the 

Gaussian noise, respectively. These noises have been added to 

the images, once separately and then together.  

The implemented results on 5 images are shown in Figure 2.  

As can be seen from the figure, those algorithms that use the 

neighboring structure shown in Figure 1.b have a better 

performance.  

It may need to be mentioned that in those equations which use 

the structure shown in Figure 1.a, only horizontal and vertical 

edges are under consideration. In using this neighboring 

structure, the edges are considered sharp or sudden. 

Consequently, a single point is assumed to be the edge, and 

hence, preserved whereas in a real image the edges have a 

smooth nature. Therefore the neighboring structure shown in 

Figure 1.b can have a better performance when considering the 

smoothly changing structure of edges. The results of the FOM 

measure shown in Figure 2-a attest that the second neighboring 

structure has a better performance in preserving edges. 
 

The obtained results using the SSIM measure shown in Figure 

2-b indicate that the second neighboring structure offers more 

similar images to the original images.  

Our investigations show that in an image in which the energy 

of noise is low, the complex diffusion offers a better result in 

image denoising compared to the other methods. However, 

when the energy of noise increases, performance of the 



complex diffusion declines. In general, for the case where the 

energy of noise in an image is unknown, using the heat 

equation for image denoising is recommended.  

The results of applying different algorithms on one of  the 

images are shown in Figure 3 for visual comparison.  

 
Figure 2. Results of measuring performance of the compared algorithms on 5 different images have shown in Appendix I using: a) 

FOM, b) SSIM, c) MSE, and d) SNR. (Right chart using Gaussian noise and Left chart using Impulse noise) 
 



  
Figure 3: the results of using different algorithms respectively from up to down and left to right: original image, noisy image, the rest ones are respectively 

enhanced from of noisy image by using  second order PDEs using neighboring structure based on Figure 1.a, second order PDEs using neighboring structure 

based on Figure 1.b, fourth order PDEs using neighboring structure based on Figure 1.a, second order PDEs using neighboring structure based on Figure 1.b, 
Complex PDEs using neighboring structure based on Figure 1.a, Complex PDEs using neighboring structure based on Figure 1.b    

V.  CONCLUSION 

In this research various methods of PDE-based noise reduction 
have been analyzed. In the analysis, various well-known 
measuring metrics have been used. The results show that by 
using the heat equations noise reduction gives a better result 
compared to other methods.  In addition, by using this method 
the quality of the image is better enhanced.    
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