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Abstract—Recently, we provided closed-form expressions
involving two-dimensional (2-D) joint Gaussian Q-function for the
symbol error rate (SER) and bit error rate (BER) of an arbitrary
2-D signal with 1/Q unbalances over an additive white Gaussian
noise (AWGN) channel [1]. In this paper, we extend the
expressions to Nakagami-m fading channels. Using Craig’s
representation of the 2-D Gaussian Q-function, we derive an exact
and general expression for the error probabilities of arbitrary 2-D
signaling with 1/Q phase and amplitude unbalances over
Nakagami-m fading channels.

Index Terms—error probability, Nakagami-m fading, two-
dimensional modulation, 1/Q unbalance

l. INTRODUCTION

In a practical coherent two-dimensional (2-D) modulation
scheme, the performance of the receiver is less than ideal:
imperfect components create 1/Q phase and gain unbalances,
and there are severe small- and large-scale variations in the
received signal strength. The I/Q unbalances arise from an
imperfect 90-degree phase shifter, and from mixers or filters
with different losses, and the variations of the received signal
strength are caused by multi-path and shadow fading.

A number of recent studies [1]-[2] have analyzed the
effects of these impediments on the error performances of 2-D
signaling. The exact expression for the error probability of
arbitrary 2-D signaling with 1/Q unbalances over an AWGN
channel was reported in [1]. Error probabilities of 2-D M-ary
signaling signal with 1/Q balance over fading channels for
Rayleigh, Nakagami-m, and Ricean distributions were
presented in [2].

In this paper, as an extension of our previous work [1], we
provide a new closed-form expression involving the 2-D
Gaussian Q-function for the error probability of arbitrary 2-D
signaling with 1/Q phase and amplitude unbalances over a
Nakagami-m fading channel. For this purpose, we first
transform the 2-D Gaussian Q-function into Craig’s form [3].
Then, using the moment generating function (MGF) of the
Nakagami-m distribution, we obtain the error probability
expression for a 2-D signal over the Nakagami-m fading
channel. Finally, we verify the provided expression through
comparison with the previous results of [2] and [4] in
Nakagami-m fading, and analyze the effect of 1/Q unbalances
on the performance.

Il.  SYSTEM MODEL

We assume that the received signal envelope A has a
Nakagami-m distribution with the probability density function

(pdf) given as [5]
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instantaneous signal-to-noise ratio (SNR), y = azEb/Nocan
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where 7 = QE, / N, is the average SNR per bit and I"(x) is

the Gamma function.
The 2-D joint Gaussian Q-function is defined by [6]
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From the Craig representation in [7], (3) is rewritten as
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where P, (E |7/) is the error rate expression which can be
expressed as the 2-D joint Gaussian Q-function for AWGN,
p, (¥) is a pdf of the flat fading, and M_(—s) is the MGF
of the fading pdf, which is defined as
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Then, the MGF of the Nakagami-m pdf of (2) can be obtained
as follows:
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Substituting (8) into (6), and using [4, eq. (5A.24)], (6)
becomes
2

1
Pea g (E) = EZ 1w,.z,] ©)

k=1

_%_i £+ 1 _ﬂk xrml 2|C|
|[ o k]— - ”ﬂk|:[2 tan (tan(wk)]J ;{4(]_+Zkz;//2m)}l

T

—-T<W <7 (10)
in which the parameters, g and T, are given as follows:
(zf;_/IZm) N 2 C
B2 | ——Lsgn(w,), Ty = i - .
‘ 1+(Zf7/2m) (W) T 2(I—i)C|—i -4 {Z(I _|)+l}
(1)

IIl.  CLOSED-FORM EXPRESSION FOR THE SER OF AN
ARBITRARY 2-D SIGNAL WITH I/Q UNBALANCES OVER
NAKAGAMI-M FADING CHANNELS

Typical decision regions for arbitrary 2-D signaling are of
two types: closed and open [8]. The error probabilities for the
two types of regions were presented in [1], where the SER and
BER for the arbitrary 2-D signals with 1/Q unbalances were
provided as a linear combination of the error probabilities for
the closed and open regions. In this section, using the results
obtained in section II and in [1], we present a closed-form
expression for the SER of an arbitrary 2-D signal in Nakagami-
m fading channels, where a priori probabilities of all the signal
points are supposed to be equally likely.

From [1], when a signal point S that has a closed decision

region (Rjj) with n-sided polygonal shape is transmitted, we
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Similarly, the SER for a signal point S’ that has an open

can find that the SER for the signal point s° is
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In (12) and (13), z, =E[Y,]/{/Var[Y,]-» and Y, is a
random variable on the perpendicular axis to the decision
boundary of the closed or open regions. Then, Y, and Y, , have
the joint Gaussian distribution with
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where « and g are the gains of filters or mixers which
represent the amplitude unbalance; ¢ is a scale factor which

varies with the position of the signal point; y; is the phase of
the transmitted signal; d, is a distance between the origin and

the i-th decision boundary of the closed or open regions; ¢ is

the slope of the i-th decision boundary, respectively [1].
By combining (12) and (13), the average SER of an
arbitrary 2-D signaling with 1/Q unbalances can be obtained

[1]:
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where U is the number of the closed regions with n -sided
polygonal shape and V is the number of the open regions with
q -sided polygonal shape.

The result of (15) is expressed as a linear combination of
the 2-D joint Gaussian Q-functions. Thus, we can obtain the
average SER of an arbitrary 2-D signaling with 1/Q phase and
amplitude unbalances over Nakagami-m fading channels from
(6), (9), and (15):
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Note that fora = =1, ¢, =0° and m =1, (16) reduces to

the SER of an 1/Q balanced MPSK signal in Rayleigh fading,
which is equal to [4, eq. (8.113)].
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IV. SER oOF MPSK AND 16-STAR-QAM WITH I/Q
UNBALANCES OVER NAKAGAMI-M FADING CHANNELS

To verify the validity of the derived result, we consider
MPSK and 16-star-QAM. The decision regions for MPSK

have only open regions with two-sided polygonal shape. Hence,

from the result [9] of the previous research, the average
symbol error probability for MPSK over Nakagami-m fading
channels is obtained as follows:
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For 16-star-QAM, the decision regions have eight open
regions and eight closed regions with three-sided polygonal
shape. Similarly with MPSK, from the result in [1], the

average symbol error probability of 16-star-QAM with 1/Q
unbalances over Nakagami-m fading channels is rewritten as
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To compare the results in this paper with the results in
previous researches [2] and [4], we assume 8-PSK and 16-star-
QAM in Nakagami- m fading channel, and show the effect of
I/Q unbalances on the error performance. For this end, the

values of parameters, ¢, =0°,5" and a or g =1, 1.1, are used

P16 star— QAM
Na_ fading

since typical values achievable with careful design are ¢, =5
and « or f=11]10].

In Fig. 1 and Fig. 2, we have plotted the average SER for
8-PSK and 16-star-QAM with 1/Q unbalances corresponding to
several values of the fading parameter m. As shown in Fig. 1

and Fig. 2, the results for « = #=1 and ¢, =0° in eq. (18)

and (19) of this paper are exactly the same as the results of [4,
Fig. 8.4] and [2, eq.(12)], respectively. Fig. 3 shows the effects
of 1/Q unbalances on the SER performance of MPSK, and in

Fig 4, for m=1 a=1 =11 and ¢ =5° the SER of

several 16-APSK modulation schemes is depicted.

As shown in Fig. 1 and Fig. 2, as M increases, we can
confirm that the severity of fading decreases, but the effect of
1/Q unbalances on the SER performance becomes serious. And,
in Fig. 3, we can see that the SER performances are more
sensitive to the effect of 1/Q unbalances according to increasing
M. Also, we can observe that the 1+5+10 APSK outperform the
other 16-APSK modulation schemes through Fig. 4.
Consequently, for fading channel, one of the dominant causes
of performance degradation is multi-path fading rather than 1/Q
unbalances of the components.

V. CONCLUSIONS

In this paper, we have provided a new closed-form
expression involving the 2-D Gaussian Q-function for the SER
of arbitrary 2-D signaling with 1/Q unbalances over a
Nakagami-m fading channel. The BER is also easily obtained
from the provided result by using [1, eq. (14)]. We first
transformed the 2-D joint Gaussian Q-function into Craig’s
form. Then, using the MGF of the Nakagami-m distribution we
provided the error probability of arbitrary 2-D signaling with
I/Q unbalances over a Nakagami-m fading channel. Finally,
from the provided result, we analyzed that one of the dominant
causes of performance degradation is multi-path fading rather
than 1/Q unbalances of the components. The result can be
readily applied to numerical evaluation for various cases of



practical interest involving unbalanced 1/Q modulation systems

operating in a wide range of fading environments. o’
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