
Exact Error Probability Expressions for Arbitrary Two-
Dimensional Signaling with I/Q Unbalances over Nakagami-m 

Fading Channels 

Jaeyoon Lee, Dongweon Yoon, Sang Kyu Park, and Kyongkuk Cho 
Dept. of Electronics and Computer Eng., Hanyang University, Seoul, Korea 

E-mail: dwyoon@hanyang.ac.kr 
 
 

Abstract—Recently, we provided closed-form expressions 
involving two-dimensional (2-D) joint Gaussian Q-function for the 
symbol error rate (SER) and bit error rate (BER) of an arbitrary 
2-D signal with I/Q unbalances over an additive white Gaussian 
noise (AWGN) channel [1]. In this paper, we extend the 
expressions to Nakagami-m fading channels. Using Craig’s 
representation of the 2-D Gaussian Q-function, we derive an exact 
and general expression for the error probabilities of arbitrary 2-D 
signaling with I/Q phase and amplitude unbalances over 
Nakagami-m fading channels.  

Index Terms—error probability, Nakagami-m fading, two-
dimensional modulation, I/Q unbalance 

I. INTRODUCTION 
In a practical coherent two-dimensional (2-D) modulation 

scheme, the performance of the receiver is less than ideal: 
imperfect components create I/Q phase and gain unbalances, 
and there are severe small- and large-scale variations in the 
received signal strength. The I/Q unbalances arise from an 
imperfect 90-degree phase shifter, and from mixers or filters 
with different losses, and the variations of the received signal 
strength are caused by multi-path and shadow fading. 

A number of recent studies [1]-[2] have analyzed the 
effects of these impediments on the error performances of 2-D 
signaling. The exact expression for the error probability of 
arbitrary 2-D signaling with I/Q unbalances over an AWGN 
channel was reported in [1]. Error probabilities of 2-D M-ary 
signaling signal with I/Q balance over fading channels for 
Rayleigh, Nakagami-m, and Ricean distributions were 
presented in [2].  

In this paper, as an extension of our previous work [1], we 
provide a new closed-form expression involving the 2-D 
Gaussian Q-function for the error probability of arbitrary 2-D 
signaling with I/Q phase and amplitude unbalances over a 
Nakagami-m fading channel. For this purpose, we first 
transform the 2-D Gaussian Q-function into Craig’s form [3]. 
Then, using the moment generating function (MGF) of the 
Nakagami-m distribution, we obtain the error probability 
expression for a 2-D signal over the Nakagami-m fading 
channel. Finally, we verify the provided expression through 
comparison with the previous results of [2] and [4] in 
Nakagami-m fading, and analyze the effect of I/Q unbalances 
on the performance.  

II. SYSTEM MODEL 

We assume that the received signal envelope A  has a 
Nakagami-m distribution with the probability density function 
(pdf) given as [5] 
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where 0/bE Nγ = Ω  is the average SNR per bit and ( )xΓ  is 
the Gamma function.  

The 2-D joint Gaussian Q-function is defined by [6] 
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(3) 
From the Craig representation in [7], (3) is rewritten as  
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The error probability ( )fadingP E  in a flat fading channel can 
be obtained as 
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where ( )|SP E γ  is the error rate expression which can be 
expressed as the 2-D joint Gaussian Q-function for AWGN, 

( )pγ γ  is a pdf of the flat fading, and ( )M sγ −  is the MGF 
of the fading pdf, which is defined as  
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Then, the MGF of the Nakagami-m pdf of (2) can be obtained 
as follows: 
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Substituting (8) into (6), and using [4, eq. (5A.24)], (6) 
becomes 
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in which the parameters, kβ  and ilT  are given as follows: 
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III. CLOSED-FORM EXPRESSION FOR THE SER OF AN     
ARBITRARY 2-D SIGNAL WITH I/Q UNBALANCES OVER 

NAKAGAMI-M FADING CHANNELS 
Typical decision regions for arbitrary 2-D signaling are of 

two types: closed and open [8]. The error probabilities for the 
two types of regions were presented in [1], where the SER and 
BER for the arbitrary 2-D signals with I/Q unbalances were 
provided as a linear combination of the error probabilities for 
the closed and open regions. In this section, using the results 
obtained in section Ⅱ and in [1], we present a closed-form 
expression for the SER of an arbitrary 2-D signal in Nakagami-
m fading channels, where a priori probabilities of all the signal 
points are supposed to be equally likely. 

From [1], when a signal point 
1

c
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Similarly, the SER for a signal point 

1

o
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(13) 
In (12) and (13), [ ] [ ]/i i iz E Y Var Y γ= ⋅  and iY  is a 

random variable on the perpendicular axis to the decision 
boundary of the closed or open regions. Then, iY  and 1iY

+
 have 

the joint Gaussian distribution with  
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where α  and β  are the gains of filters or mixers which 
represent the amplitude unbalance; 

iζ  is a scale factor which 

varies with the position of the signal point; 1ψ  is the phase of 

the transmitted signal; id  is a distance between the origin and 

the i-th decision boundary of the closed or open regions; 
iθ  is 

the slope of the i-th decision boundary, respectively [1]. 
By combining (12) and (13), the average SER of an 

arbitrary 2-D signaling with I/Q unbalances can be obtained 
[1]: 
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(15) 
where U is the number of the closed regions with n -sided 
polygonal shape and V is the number of the open regions with 
q -sided polygonal shape. 

The result of (15) is expressed as a linear combination of 
the 2-D joint Gaussian Q-functions. Thus, we can obtain the 
average SER of an arbitrary 2-D signaling with I/Q phase and 
amplitude unbalances over Nakagami-m fading channels from 
(6), (9), and (15): 

( ) ( ) ( )

[ ]( )

[ ]( ) ( )

1 1

1 1

_
0

, , 1
1 1

1

, , 1
1 1 1

|

1 1
, , ,

2

, , ,

i i i i

i i i i

Na fading S

U n

i z z i z z i
h i

q qV

i z z i z z i
j i i

P E P E p d

I z I w z I w z
U V

I z I w z I w z

γγ γ γ

π

π

+ +

+ +

∞

+

= =

−

+

= = =

=

= ⋅ − −
+

+ − +

⎧⎪ ⎡ ⎤ ⎡ ⎤⎨ ⎣ ⎦ ⎣ ⎦
⎪⎩

⎫⎛ ⎞⎪⎜ ⎡ ⎤ ⎡ ⎤ ⎟⎬⎣ ⎦ ⎣ ⎦⎜ ⎟⎪⎝ ⎠⎭

∫

∑∑

∑ ∑ ∑
  (16) 

where 
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Note that for 1, 0Rα β φ= = = °  and 1m = , (16) reduces to 
the SER of an I/Q balanced MPSK signal in Rayleigh fading, 
which is equal to [4, eq. (8.113)]. 

IV. SER OF MPSK AND 16-STAR-QAM WITH I/Q 
UNBALANCES OVER NAKAGAMI-M FADING CHANNELS 

To verify the validity of the derived result, we consider 
MPSK and 16-star-QAM. The decision regions for MPSK 
have only open regions with two-sided polygonal shape. Hence, 
from the result [9] of the previous research, the average 
symbol error probability for MPSK over Nakagami-m fading 
channels is obtained as follows: 
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(18) 
For 16-star-QAM, the decision regions have eight open 

regions and eight closed regions with three-sided polygonal 
shape. Similarly with MPSK, from the result in [1], the 

average symbol error probability of 16-star-QAM with I/Q 
unbalances over Nakagami-m fading channels is rewritten as 

( ) ( ) ( )

[ ]( )

[ ]( ) ( )

1 1

1 1

16
_

0

8 3

, , 1
1 1

8 3 2

, , 1
1 1 1

|

, , ,
1

2
, , ,

i i i i

i i i i

star QAM
Na fading S

i z z i z z i
h i

i z z i z z i
j i i

P E P E p d

I z I w z I w z

M
I z I w z I w z

γγ γ γ

π

π

+ +

+ +

∞
− −

+

= =

+

= = =

=

− −

=

+ − +

⎧ ⎫
⎡ ⎤ ⎡ ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪⎪ ⎪

⎨ ⎬
⎛ ⎞⎪ ⎪⎡ ⎤ ⎡ ⎤⎜ ⎟⎪ ⎪⎣ ⎦ ⎣ ⎦⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∫

∑∑

∑ ∑ ∑

      

(19) 
To compare the results in this paper with the results in 

previous researches [2] and [4], we assume 8-PSK and 16-star-
QAM in Nakagami- m  fading channel, and show the effect of 
I/Q unbalances on the error performance. For this end, the 
values of parameters, 0 , 5Rφ =  and α or 1, 1.1β = , are used 

since typical values achievable with careful design are 5Rφ =  
and α or β =1.1 [10]. 

In Fig. 1 and Fig. 2, we have plotted the average SER for 
8-PSK and 16-star-QAM with I/Q unbalances corresponding to 
several values of the fading parameter m . As shown in Fig. 1 
and Fig. 2, the results for 1α β= =  and 0Rφ = °  in eq. (18) 
and (19) of this paper are exactly the same as the results of [4, 
Fig. 8.4] and [2, eq.(12)], respectively. Fig. 3 shows the effects 
of I/Q unbalances on the SER performance of MPSK, and in 
Fig 4, for 1, 1, 1.1m α β= = =  and 5Rφ = °  the SER of 
several 16-APSK modulation schemes is depicted.  

As shown in Fig. 1 and Fig. 2, as m  increases, we can 
confirm that the severity of fading decreases, but the effect of 
I/Q unbalances on the SER performance becomes serious. And, 
in Fig. 3, we can see that the SER performances are more 
sensitive to the effect of I/Q unbalances according to increasing 
M. Also, we can observe that the 1+5+10 APSK outperform the 
other 16-APSK modulation schemes through Fig. 4. 
Consequently, for fading channel, one of the dominant causes 
of performance degradation is multi-path fading rather than I/Q 
unbalances of the components. 

V. CONCLUSIONS 
In this paper, we have provided a new closed-form 

expression involving the 2-D Gaussian Q-function for the SER 
of arbitrary 2-D signaling with I/Q unbalances over a 
Nakagami-m fading channel. The BER is also easily obtained 
from the provided result by using [1, eq. (14)]. We first 
transformed the 2-D joint Gaussian Q-function into Craig’s 
form. Then, using the MGF of the Nakagami-m distribution we 
provided the error probability of arbitrary 2-D signaling with 
I/Q unbalances over a Nakagami-m fading channel. Finally, 
from the provided result, we analyzed that one of the dominant 
causes of performance degradation is multi-path fading rather 
than I/Q unbalances of the components. The result can be 
readily applied to numerical evaluation for various cases of 



practical interest involving unbalanced I/Q modulation systems 
operating in a wide range of fading environments. 
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Fig. 1   Effect of I/Q unbalances on the SER of 8-PSK in fading channels 
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Fig. 2   Effect of I/Q unbalances on the SER of 16-star-QAM in fading 
channels 
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Fig. 3   Effect of I/Q unbalances on the SER of MPSK in fading channels 
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Fig. 4   Effect of I/Q unbalances on the SER of 16-APSK in fading channels 
 


