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Abstract

In this paper a novel appraoch to normalising 3D
face data is proposed. The aim of this normalisation
process is to retain as much of the raw data as pos-
sible and so it is imperative that no distortion occurs
to this data, for instance no median or mean filtering
is applied. The normalisation is a multi-stage approach
and is applied to the Face Recognition Grand Challenge
v1.0 database. Experiments show that this normalisation
process results in 3D face surfaces which are significantly
more discriminable compared to those surfaces used for
the FRGC experiments, when comparing surfaces using
the Manhattan distance the Equaul Error Rate improves
from 21.65% for the FRGC normalisation procedure to
13.81% for the proposed method.

I. Introduction

Research into face recognition has blossomed in the past
decade because the face is a socially accepted biometric
that is used to identify people for drivers licences and pass-
ports. However, traditional face recognition methods which
use intesity images (2D data) have several limitations. The
2002 Face Recognition Vendor Test (FRVT) [1] found
that the performance of state of the art face recognition
systems degraded significantly in the presence of both pose
and illumination variations. To overcome these limitations
researchers have examined alternate methods of capturing
face data.

The Face Recognition Grand Challenge (FRGC) [2]
examined the use of 3D face data to perform face recog-
nition. The 3D face data is considered to be robust to
both pose and illumination variations and so can alleviate
the limitations of the 2D face data. Robustness to pose
variation is obtained because the full set of 3D points are

available and so both in-plane and out-of-plane rotations
can be normalised; in-plane rotations are rotations that oc-
cur within the image plane of the camera (caused by tilting
the head from side to side) and out-of-plane rotations are
rotations about the image plane of the camera (tilting the
head up or down and turning the head to a profile view).
The 3D data is robust to illumination variation because
the underlying 3D strucutre is being captured. The largest
available 3D face database is the FRGC database and there
have been several methods proposed to normalise this data.

In [3], Chang et al. normalised the FRGC 3D face data
by performing a set of rotations along with median filtering
and linear interpolation; this is very similar to method used
to perform normalisation for the FRGC baseline experi-
ments [2]. The first step in their normalisation process is
to rotate the surface using three landmark points: left eye,
right eye and center of the lower lip. The angle between
these points on the 3D face are compared to predefined
reference points so that the angle between theX- and then
Y -axes are normalised. The angle around theZ-axis is
then normalised by calculating the angle between the two
eyes. A fourth landmark point, the nose, is then used to
define the largest range value in the depth image. Invalid
data is removed by applying hole and spike removal along
with median filter and linear interpolation of valid points.
Chang et al. recently outlined another normalisation for the
FRGC 3D face data which performs normalisation by first
generating a binary mask of valid and invalid data points.

In [4] a normalisation process is described which
utilises a three step process to remove invalid data points.
The first step considers the range image as a binary image
and isolated regions are removed using a morphological
opening operator. The variance of the remaining range
values are then calculated and those points which lie
outside a threshold are removed. The underlying 3D data
is then examined by removing those points which have an
angle to the optical axis which is greater than a threshold
value.



There are several issues with these two normalisation
methods. In [3] median filtering is applied to remove
invalid data, this results in a smoothed 3D face surface
which alters both invalid data points and valid data points.
The alternate approach in [4] uses empirically derived
threshold values (for variance and angle to the optical axis)
that are applied to every image in the database, this means
that the normalisation approach will need to be altered for
each 3D face data. Also, both methods identify invalid data
using the depth orZ values and so do not consider the full
3D face surface.

This paper examines a novel method for performing
normalisation of 3D face data using the full 3D data. The
aim of this procedure is to retain as much of the raw 3D
data as is possible and identifies invalid data using only
the statistics from the 3D face surface being normalised,
no database specific threhold values are derived. The final
output of this procedure consists of the raw 3D face data
points which are considered to be valid, no smoothing
functions are applied to this data.

II. 3D Data Normalisation

The 3D data for the FRGC database was captured using
a Konica Minolta Vivid 900/910 [5]. This sensor captures
the 3D using a laser light which takes approximately 2.5
seconds to capture a 3D image of size640 × 480, an
example 3D face capture is provided in Figure 1. An
issue that has been noted by several researchers is that the
3D face data captured using the Minolta Vivid 900 often
results in erroneous data from around the eye, eyebrow and
nostril regions.

Fig. 1. An example 3D face capture using the
Minolta Vivid 900.

Chang et al. [3] noted that regions such as the eyes
and eyebrows can have missing or invalid data. They
perform median filtering and linear interpolation to fill in

the missing points and remove the invalid data, however,
this appears to be done only on the range data (using the
Z data and not theX , Y andZ data). An example of the
erroneous data around the eye is shown in Figure 2.
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Fig. 2. An image of the raw 3D face surface,
highlighted are the invalid data points in the
eye region. It can also be seen that there are
invalid points at the near the cheek region.

III. Proposed Method

The aim of this normalisation procedure is to retain as
much of the valid 3D data as possible. This valid 3D data
is then registered so that comparisons between to 3D face
images can be easily performed. The three steps of this
procedure are:

1) cropping out a region of interest (ROI),
2) removing invaid data (noise removal), and
3) rotating and registering the data.

A flowchart of this procedure is provided in Figure 3.

Fig. 3. A flowdiagram of the normalisation
procedure.

A. ROI Cropping

The first step in this normalisation procedure is to
extract the 3D face from the background. To do this two
landmark points, the left eye and the right eye, are used
to extract the face and exclude background as well as the
shoulder, torso and neck region.



The square ROI of the 3D face is extracted using the left
eye position (xl, yl, zl) and right eye position (xr, yr, zr).
These eye positions are used to define the eyewidth,

eyewidth =
√

(xl − xr)2 + (yl − yr)2 + (zl − zr)2,
(1)

which is then used to define a mask of dimensions
1 1

2
eyewidth × 1 1

2
eyewidth, an example of this mask

region is shown in Figure 4. This is a similar to process
to the one used in previous work by this author in [6].
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Fig. 4. An example of the cropping dimen-
sions used to extract the ROI for the 3D face.

The cropped region is assumed to contain only 3D
face data or the face surface. This assumption is used in
the following noise removal procedure to gather statistics
about the face surface to identify invalid data points.

B. Noise Removal

The 3D data that has been captured often contains
erroneous points, particularly around the eye and eyebrow
region. The noise removal procedure aims to remove all the
erroneous points so that only valid 3D data points remain.

The noise removal procedure is conducted in three steps
and each step uses the statistics of the entire 3D surface
(and not just the range values) to identify erroneous points.
The first two steps identify erroneous points based on a
distance transform and a face shell. The final step removes
the remaining erroenous points by examining the Gaussian
surface curvatures, a flow diagram showing these steps is
provided in Figure 5.

1) Distance Transform:This step aims to simultane-
ously cull oultying points and refine the region of interest
(ROI). To achieve this the mean of the face surface is
calculated and those points which lie outside a statistically
reasonable boundary are removed. The mean and standard
deviation of the cropped face region by considering each
set of coordinatesX ,Y and Z separately and so a mean
and standard deviation value is calculated for each grid

Fig. 5. A flow diagram showing the processes
used to remove erroneous points.

such thatµcrop = (µX,crop, µY,crop, µZ,crop and σcrop =
(σX,crop, sigmaY,crop, σZ,crop).

The statistics from each grid,µcrop andσcrop, are used
to remove invalid data from the 3D face surface. A point
on any grid which is four standard deviations from the
mean is considered to be invalid and so is removed, this
process is outline in Algorithm 1.

Algorithm 1 Distance Transform
Require: CroppedX , Y andZ data

1: µcrop = Mean(X, Y, Z)
2: σcrop = StdDev(X, Y, Z)
3: if abs((X, Y, Z)− µcrop) > 4 × σcrop then
4: discard 3D point
5: end if
6: return Valid X , Y andZ data

2) Face Shell: A smooth face shell is calculated by
applying a Gaussian filter (of size4 × 4). This face shell,
Fshell, is then used to calculate the distance at every point
to the raw data, resulting in a distance mapDshell. The
mean and standard deviation ofDshell, µshell andσshell,
are then used to identify invalid data points by discarding
those points which lie four standard deviations from the
mean, this process is described in algorithm 2.

Algorithm 2 Face Shell
Require: Valid data forX , Y andZ data

1: Fshell = GaussianSmooth(X ,Y ,Z)
2: Dshell = Fshell − (X, Y, Z)
3: µshell = Mean(Dshell)
4: σshell = StdDev(Dshell)
5: if abs(Dshell − µshell) > 4 × σshell then
6: discard 3D point
7: end if
8: return Valid X , Y andZ data

3) Gaussian Surface Curvatures:The Gaussian surface
curvature is an intrinsic measure of curvature. This mea-
sure can be calculated using the coefficients of the first
and second fundamental form of the surface such that,



κ =
eg − f2

EG − F 2
. (2)

The coefficients of the first fundamental form (E, F

andG) can be calculated by taking the dot product of the
partial derivatives,

E = Xu.Xu,

F = Xu.Xv, and
G = Xv.Xv,

(3)

where Xu is the partial differentation in the horizontal
direction andXv is the partial differentiation in the vertical
direction.

The coefficients of the second fundamental form (e,
f and g) can be calculated using the dot product of the
second partial derivatives with the unit normal,

e = Xuu.N,

f = Xuv.N, and
g = Xvv.N,

(4)

whereXuu is the second partial derivative in the horizontal
direction,Xuv is the partial derivative in the horizontal and
vertical direction andXvv is the second partial derivative
in the vertical direction.

The Gaussian surface curvatureκ is used to identify er-
roneous points by using the full 3D information available;
simultaneously incorporating information from theX-,
Y - and Z-grids. The erroneous points are highlighted by
identifying those points which lie more than four standard
deviations from the mean surface curvature. This step culls
the majority of obviously erroneous points, however, there
are often still points such as those around the eyes which
are erroneous but not detected using this procedure.

The erroneous points which are not detected using this
procedure are those which are surronded by erroneous
points. Around the eye regions there are often points which
lie in clusters well outside the obvious face boundary, or
shell. Because these points lie as a cluster the use of a
surface curvature will not detect these points. Therefore,
the next two steps in this procedure aim to overcome this
limitation with surface curvatures.

C. Rotation and Registration

This process aims to bring two 3D face images into
alignment so that they can be compared using distnace
measures, such as the Euclidean distance. The 3D face
image is registered to a template image by first bringing the
two landmark eye points, left and right eye, into alignment
such that the points lie on the samey-line as well as the
same(x, y) plane.

To ensure that the left and right eyey-line as well as
the same(x, y) plane two rotations are performed. The

first rotation about theY -axis ensures that the eyes lie
upon the same(x, y) plane and the second rotation about
theZ-axis ensures that the eyes lie along the samey-line.
Performing these rotation coarsely aligns the 3D face data
to the template data, to obtain more accurate registration
the Iterative Closest Point (ICP) algorithm is employed [7].

The ICP algorithm is used to perform the final regis-
tration between the input 3D face image and the template
image. The template image is chosen to be the first image
in the database and so all images are registered to this.
Before performing ICP the mean of the input data is
removed, to ensure there are minimal translations between
the 3D face and the template image.

The normalisation processes yields raw 3D face data,
however, there are often different regions of the face that
are considered to be erroneous. For example in Figure 6 (a)
most of the face region is retained whereas in Figure 6 (b)
the chin and part of the cheek region has been removed.
To overcome this issue the upper face region is extracted
and the missing points are interpolated, the upper part of
the face is chosen as previous work by these authors [8]
showed that the upper face contains the most information.
The final face region is interpolated onto a common grid,
using the template image, and consists of108×108 pixels,
as shown in Figure 7.

Fig. 7. An example output from the normalisa-
tion and registration procedure, the two face
images are of the same ID.

IV. Analysis and Results

To analyse the performance of the proposed norm-
lisation procedure a baseline normalisation method was



(a) (b)

Fig. 6. In (a) a normalised face image is shown where most of th e face surface has been retained,
whereas in (b) the chin and parts of the cheek region have been removed.

chosen. The basline method chosen is the normalisation
process used to obtain baseline results for the FRGC,
which is very similar to the normalisation process proposed
in [3]. This method process produces full face images of
size150× 130 and so a cropped region, of size108× 108
pixels, was extracted so that there could be a direct
comparison between the baseline method and proposed
method, an example of the full face and cropped face
images is provided in Figure 8.

The normalised images should well represent each 3D
face surface. Therefore the 3D surface of the same ID
should be close to one another whereas the 3D surface
for different IDs should lie further away. To measure this
performance the Manhattan distance,

dL1 =

M
∑

x=1

N
∑

y=1

|F1(x, y) − F2(x, y)|, (5)

between each 3D face surface (F (x, y)) is calculated;
each face surface is of sizeN = M = 108. Using
these distances a Detection Error Tradeoff (DET) plot was
generated, DET plots are often used to examine verification
performance [9].

The DET plot for the baseline and proposed normalisa-
tion procedures, Figure 9 show that proposed normalisation
procedure outperforms the baseline system. This is a
significant increase in discriminability with the Equal Error
Rate (EER) improving from 21.65% for the baseline
to 13.81% for the proposed method. This increase in
performance was attributed to improved data normalisation

and data registration, however, further analysis showed
that there are several images for which the data is not
registered.
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Fig. 9. A DET plot derived by using the Mana-
hattan distance of all the data using the nor-
malisation procedure used to derive base-
line FRGC 3D results (Baseline) compared
the proposed normalisation procedure (Pro-
posed).

The ICP algorithm is used to register the 3D face



(a) (b)

Fig. 8. An example of full face image and cropped face image ob tained by applying the normalisation
technique used to obtain initial FRGC 3D baseline results. I n (a) the full face region is supplied and
in (b) the cropped face region which is used for these experim ents is provided.

surface with a template image. There are several instances
when the ICP algorithm results in images which are not
registered, an example of inaccurate registration can be
seen in Figure 10. This failure to register two images is
a significant problem because in order to compare two
images a consistent basis of comparison is required. One
method for overcoming these registration errors is to have a
template image for each ID and so perform a client specific
registration.

V. Conclusions and Future Work

The normalisation procedure outlined in this work pro-
vides more accurate 3D face surfaces than the normal-
isation procedure used for the FRGC experiments. The
proposed normalisation procedure uses the statistics of the
available 3D face surface to identify invalid points and
performs registrations to a template image. This means
that this process can be readily applied to any 3D face
database to generate a 3D face surface consisting of only
valid data points.

Analysis of this normalisation procedure indicates that
there are several images which are not registered. This is
considered to be a significant problem and as such future
work would examine methods to derive client specific
templates, or several template images to improve the
robustness of the registration technique.
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Fig. 10. Two images of the second ID within the FRGC database. It can be seen that there is a
significant translation from the image in (a) to the image in ( b).


