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Abstract—This paper presents the use of higher order 

statistics and a neural network based multi-classifier system for 
gene and exon identification of a DNA sequence. Newly proposed 
higher order statistics features, combined with frequency domain 
analysis, are used to train three different neural networks. 
Classification results of the three individual neural networks are 
combined through an aggregation function, of which five variants 
are compared herein. An evaluation of the multi-classifier system 
on 117 sequences from the HMR195 database shows that when 
different opinions of more classifiers on the same input data are 
integrated within a multi-classifier system, a relative 
improvement in precision of 5% over the individual 
performances of the neural networks can be obtained. 

Keywords: Higher-order statistics, genomic signal processing, 
neural networks, multi-classifier systems. 

I. INTRODUCTION 
The gene identification problem, which requires the 

prediction of the protein-coding regions (exons) in DNA 
sequences through computational means, has attracted 
significant research attention for some time. Worldwide 
initiatives on genome sequencing have necessitated the 
development of new approaches to assess rapidly the potential 
of a given nucleotide sequence in a functional context. Despite 
the existence of various data-driven gene finding programs 
such as FGENES [1], GeneMark.hmm [2], Genie [3], Genscan 
[4], HMMgene [5], Morgan [6], and MZEF [7], improvements 
to the accuracy of gene prediction are still highly desirable [8, 
9]. 

A number of methods have been proposed for gene 
detection based on distinctive features of protein-coding 
sequences [10-12]. The different methods are based on a 
variety of contrasting characteristics of exons and introns. 
These methods employ for example differences in the patterns 
of codon usage [11], neural networks [12], or the discrete 
Fourier transform [13]. Furthermore, as higher order statistics 
(HOS) are able to reveal hidden information not found by 
normal statistics [14], the use of HOS for gene identification 
will be investigated. 

Neural networks have extensively been used in 
bioinformatics [10, 12, 15], especially for gene identification. 
In this paper, we propose a neural network-based multi-
classifier system for protein coding identification. The 
proposed system contains three neural networks that operate on 
feature vectors from Fourier transform and higher order 
statistics to deduce coding or non-coding region decisions. 

The objective of this paper is to investigate the use of 
higher order statistics for gene identification and to evaluate the 
performance of a neural network based multi-classifier system. 
Section II discusses the feature extraction, i.e. higher order 
statistics features, and periodicity-3 and periodicity-10.5 
features. Section III discusses the neural network based multi-
classifier system and the data set used for training and testing 
the system. The performance evaluation is presented in Section 
IV, while Section V concludes this paper. 

II. FEATURE EXTRACTION 
Higher order statistics (HOS) have been applied in many 

diverse fields, such as radar, plasma physics, biomedicine, 
array processing, and blind equalization [14]. These statistics 
not only reveal amplitude information about a process, but also 
reveal phase information. By using the HOS in a DNA 
sequence, we hope that we can reveal any hidden information 
that might be useful for the gene identification. In this section, 
the features from HOS analysis will be further investigated to 
determine whether it can be used as discriminative features in 
identifying the protein coding region of a DNA sequence. 

In this paper, we extract features from higher order 
statistics [14], i.e. mean, variance, skewness, and kurtosis, and 
signal processing based features, i.e. the periodicity 3 and 10.5 
[16] of the Fast Fourier Transform (FFT) spectrum of a DNA 
sequence. In order to apply digital signal processing techniques 
and higher order statistics for feature extraction, the character 
sequences of DNA should be first converted into four binary 
indicator numeric sequences. The simplest and most popular 
mapping of a DNA sequence is known as the Voss 
representation [17]. For example, for a DNA sequence 

[ ]nx =CGATGACGAA, the binary indicator sequence for each 
base type, [ ] { }TGCAnx ,,,, ∈∀ll , would be 
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where n  represents the base index. From a biological 
perspective, the Voss representation characterizes the 
frequency of occurrence of each individual base l  in the DNA 
sequence. Other popular DNA representations for genomic 
signal processing can be found in [18]. 



A. Higher Order Statistics 
To extract the higher-order statistics features for gene 

identification, we calculate the mean, variance, skewness, and 
kurtosis of each representation of DNA sequence, [ ] [ ]nwnx ×l  
for a given window length N . The window size N  is chosen 
to be sufficiently large (in the order of few hundred, e.g. 351 as 
used in [4]). The Bartlett window [ ]nw  is utilized, as it 
removes the extraneous peaks introduced by the abrupt edges 
of the rectangular window [19]. The window is then moved by 
one nucleotide. For each frame, the first moment, the mean, for 
each base type l  is calculated as follows: 

 ( ) [ ] [ ]∑
=
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N
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1
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Variance, the second moment, is a measure of the statistical 
dispersion of a DNA sequence, defined as follows: 
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Skewness, the third moment, is a measure of symmetry. A 
DNA sequence is symmetric if it looks the same to the left and 
right of the center point of the frequency of occurrence. 
Skewness is defined as follows: 
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Figure 1.  The histogram of skewness features for  
coding and non coding region of DNA sequences 

Kurtosis, the fourth moment, is a measure of whether the 
data are peaked or flat relative to a normal distribution, i.e. a 
DNA sequence with high kurtosis tends to have a distinct peak 

near the mean, decline rather rapidly, and have heavy tails. It is 
defined as follows: 
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Figure 2.  The histogram of kurtosis features for coding and non coding 
region of DNA sequences 

Fig.1 and Fig. 2 show the distribution of skewness and 
kurtosis features on the HMR195 training sequences (see 
Section III.B). The figures show the discriminative nature of 
the skewness and kurtosis values to determine the coding and 
non coding region in a DNA sequence. Hence, it will be 
suitable to use the HOS features for gene identification. 

B. Periodicity 3 and 10.5 features 
The discrete Fourier transform (DFT) of a DNA sequence 

[ ]nxl  of length N  is defined as 
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where 1,,0 −= Nk K and { }TGCA ,,,∈l . The DFTs [ ]kX A , 
[ ]kX C , [ ]kX G  and [ ]kXT  for the above indicator sequences 

can thus be calculated using equation (5). The periodicity of 3 
and 10.5 in protein coding regions of a DNA sequence suggests 
that the DFT coefficients corresponding to 3

Nk = and 

5.10
Nk ≈ will be large [16, 20]. Thus if we take the window size 

N  to be sufficiently large (again, for example 351 base pairs), 
peaks in the magnitude [ ]kX l  will be observed at the 

frequency indices 3
Nk = and 5.10

Nk ≈  [13, 19], corresponding 
to coding regions (relatively low values will be found for non-
coding regions). However, the values of these peaks vary 



significantly even for different DNA sequences derived from 
the same organisms. To overcome this problem, a ‘signal-to-
noise ratio’ and a threshold were used in [19] to detect the 
protein coding. Here, the signal-to-noise ratio [ ]kSNRl  is used 
as a frequency domain feature and is calculated as follows [19]: 

 [ ] [ ]
[ ]2

2

2 kX

kX
kSNR

l

l
l =  (6) 

where [ ]2
kX l is the average magnitude spectrum for each 

base. Note that the window is then moved by one sample until 
all the DNA sequence has been processed. 

III. NEURAL NETWORK BASED MULTI CLASSIFIER SYSTEM 
The process of classification describes the allocation of 

previously unknown data into a number of predetermined 
groups or classes. Artificial neural networks are one of the 
more popular implementations of the computational 
intelligence based-classification paradigm [10, 12, 21]. In this 
paper, the input to the classifier is the extracted features as 
described in Section II. Moreover, the output of the classifier is 
“coding” (exon) and “non-coding” (intron) nucleotides. The 
main goal of learning in classification problems is 
generalization, i.e. how to accurately classify genes not 
included in the training set. 

 

Figure 3.  Neural network based multi-classifier system 
for gene identification 

In this paper, we propose a neural network based multi-
classifier system as shown in Figure 3. A neural network multi-
classifier system was used rather than single neural network. A 
single neural network approach requires a larger network size 

as the input feature vectors have dimension 24 rather than 8 for 
each three neural network multi-classifier system. So, it 
requires more memory and is slow to train. Informal 
experiments showed that a single neural network provides 
reduced accuracy compared with a multi-classifier system. 

The proposed system contains three neural networks, to 
which three groups of features extracted from the same DNA 
sequence are presented. The outputs of the individual neural 
networks are then passed through a probability function or 
decision logic in order to provide an answer as to whether the 
presented sequence is a coding or non-coding. 

A. Neural Network Classifiers 
Neural networks have extensively been used in 

bioinformatics. Multi-layer neural networks trained using the 
back-propagation algorithm have extensively been used in 
bioinformatics [10, 12]. The configuration of neural network 
classifiers (NNC) and its input features is shown in Table I. For 
all networks, a multi-layer perceptron (MLP) with two hidden 
layers and a network size of 8-8-4-1 was chosen, as this 
configuration provides good classification and efficient 
network training. 

TABLE I.  CONFIGURATIONS OF THREE NEURAL NETWORK BASED 
CLASSIFIER AND THEIR INPUT FEATURES. 

Network Input Features ν  
NNC1 [ ] { }5.103 ,, NNkkSNR ≅l , { }TGCA ,,,∈l  

NNC2 lμ , 2
lσ , { }TGCA ,,,∈l  

NNC2 lγ , 2
lκ , { }TGCA ,,,∈l  

 
 All neurons in both hidden layers have tan-sigmoid transfer 

functions. The output neuron has a purely linear transfer 
function. Empirical work found that a further increase in the 
number of neurons in each layer did not improve the 
performance of the classifier. Increasing the number of neurons 
further increases the risk that the networks will overfit the 
training data. 

The output from the neural network classifier is then input 
to a transfer function that transfers the output of the network 
into an assertion of the form coding/non-coding region. This 
function can have various forms depending on the kind of 
output that the networks produce. In this paper, the networks 
were trained to produce the value of 1 when faced with a 
coding and the value of -1 when faced with a non-coding 
region. In this case the probability function is a simple hard 
limiter function as follows, 

 ( )
⎩
⎨
⎧ >

=
otherwise0

 if1
,

τ
τ

x
yhl  (7) 

where τ is the threshold value. 

All three networks were trained using the training set as 
defined in Section III.B. Training was said to be complete 
when the mean square error of the network fell below 0.001 of 
the training data. The resilient backpropagation algorithm [22] 



was utilized to train the networks. This algorithm allows timely 
training of the networks, because it is especially designed and 
adapted to work well with multilayered networks with sigmoid 
transfer functions. 

B. Data Sets 
The HMR195 dataset [8] contains 195 mammalian 

sequences with exactly one complete either single-exon or 
multi-exon gene. The dataset was developed to evaluate 
different gene-finding programs. All sequences contain exactly 
one gene which starts with the ‘ATG’ initial codon and ends 
with one of the stop codons, i.e. ‘TAA’, ‘TAG’, or ‘TGA’. 
There are no in-frame stop codons in coding genes, and introns 
of multi-exons genes start with dinucleotides ‘GT’ and end 
with dinucleotide ‘AG’. Sequences longer than 200,000 bp are 
not included in the set. In this dataset, the ratio of 
human:mouse:rat sequences is 103:82:10, with a mean length 
of 7096 bp. The set contains 43 single-exon genes, and 152 
multi-exon genes. The proportion of coding regions in the 
sequences is 14% and the mean exon length is 208 bp. 

In this paper, the HMR195 dataset was divided into 117 
training set sequences (60%) and 78 testing set sequences 
(40%). The single and multi-exon sequences and 
human/mouse/rat sequences were evenly and randomly 
distributed into the training and testing sets. The training set 
had length 786338 bp, while the testing set had length 603400 
bp. 

C. Implementation   of   Multi-classifier   System 
The basic concept of the multi-classifier system (MCS) is 

that the shortcomings of one classifier will be compensated by 
several others, so that the combined classification result will be 
more accurate than that of a single classifier by itself. The 
application of a multi-classifier system for DNA analysis has 
been exhaustively described in [15]. As shown in Figure 3, the 
decision logic takes all the probability output from three neural 
networks and combines them into the final result of the overall 
system. 

 

 

Figure 4.  Multi-classifier system using various methods 

There are many ways to combine the results of the 
individual classifiers. In this paper, the most frequently used 
aggregation functions such as maximum, summation, average, 
majority voting, and neural network, are explained below. 
Suppose that we have M  classifiers and that 

( ) MmCm ,,1, K=ν  is the result of a single classifier, while ν  
is the input feature vector. 

Figure 4 shows the multi-classifier system using various 
aggregation methods. The final output is obtained by passing 
the output from MCS to a transfer function as described in 
equation (7) with the optimum threshold τ  evaluated 
empirically. 

1) Maximum 
In this method, the prediction result of the classifier with 

the highest score is chosen as follows: 

 ( ) ( ) ( )( )ννν MMMAX CwCwMCS ,,max 11 K=  (8) 

where ( )νMAXMCS is the prediction result of the multi-
classifier system using the maximum combination method, and 

mw is the confidence weight. For simplicity, we set 
mwm ∀= ,1 . 

2) Summation 
In this method, the sum of all scores achieved by a single 

classifier is used as follows: 

 ( ) ( )∑
=

=
M

m
mmSUM CwMCS

1
νν  (9) 

where ( )νSUMMCS is the prediction result of the multi-
classifier system using the summation method. 

3) Average 
In this method, the average of all scores achieved by a 

single classifier is chosen as follows: 

 ( ) ( )∑
=

=
M

m
mmAVG Cw

M
MCS

1

1 νν  (10) 

where ( )νAVGMCS is the prediction result of the multi-
classifier system using the average combination method.  

4) Majority Voting 
In this method, the combination of all scores is achieved by 

following the opinion of the majority of the classifiers. For this 
method, the output of the neural network classifier is 
transferred to coding/non-coding (“1” or “0”) assertion by a 
probabilistic function. The result obtained using majority 
voting is then obtained by 

 ( ) ( )∑
=

==
M

m

j
mm

J
jMV Cw

M
MCS

1
1

1maxarg νν  (9) 



where ( )νMVMCS is the prediction result of the multi-classifier 
system using the majority voting combination method, 
J denotes the number of classes, and ( )νj

mC  denotes the 
certainty of classifier m  that input ν belongs to class j . Note 
that, to avoid deadlock, the number of classifiers M should be 
an odd number.  

5) Neural Network 
In this method, another neural network is used to obtain the 

combined result from the output of neural network classifier. In 
this paper, the multi layer perceptron with a 3-3-1 configuration 
was utilized as shown in Figure 5.  

 

 

Figure 5.  Neural network configuration for the  
multi-classifier system 

The hidden and output layers have pure linear transfer 
function. The network is trained using the resilient 
backpropagation algorithm until a mean square error of 0.001 
is achieved. 

IV. RESULTS AND DISCUSSIONS 
In this section, the performance of each individual classifier 

and the multi-classifier system is evaluated. First, the 
performance metrics are described. Then, the performance 
evaluation of individual classifiers is presented. Finally, the 
performance evaluation of the multi-classifier system is 
discussed. 

A. Evaluation Measures 
 

 

Figure 6.  Nucleotide-level measures of prediction accuracy 

To evaluate the performance of gene identification, we used 
prediction accuracy measures similar to [23], as shown in 
Figure 2. True positive (TP ) is the number of coding 
nucleotides correctly predicted as coding. False negative ( FN ) 
is the number of coding nucleotides predicted as non-coding. 
True negative (TN ) is the number of non-coding nucleotides 

correctly predicted as non-coding. False positives ( FP ) is the 
number of non-coding nucleotides predicted as coding. The 
sensitivity ( Sn ) provides a measure of the proportion of coding 
nucleotides that have been correctly predicted as coding. The 
specificity ( Sp ) provides the proportion of predicted coding 
nucleotides that are actually from the coding region. Both Sn  
and Sp can be viewed as conditional probabilities. Finally, the 
precision ( P ) shows the recognition rate of the classifier. 

B. Performance Evaluation of Individual Classifiers 
The test sequences described in Section III.B were passed 

through the three neural networks (NNCn) individually, and the 
performance results are summarized in Figure 7. 

 

Figure 7.  True positives and true negatives recognised by  
the individual neural networks 

Table II shows the performance in terms of specificity (Sn), 
sensitivity (Sp), and precision (P). Note that the probabilistic 
function used for each neural network was hard limiter (see 
equation (7)), for which the optimum threshold values are 

54.01 −=τ , 49.02 −=τ , and 47.03 −=τ . From Table II, we 
can see that the higher order statistics features (NNC2 and 
NNC3) provide a comparable performance with the well-known 
Fourier analysis features (NNC1). Hence, the use of HOS 
features in gene identification is validated. 

TABLE II.  PERFORMANCE OF INDIVIDUAL NEURAL NETWORK 
CLASSIFIERS ON THE HMR195 TEST DATASET 

Network Specificity 
(Sp) 

Sensitivity 
(Sn) 

Precision 
(P) 

NNC1 0.457 0.451 0.854 
NNC2 0.310 0.302 0.813 
NNC3 0.275 0.276 0.808 

 
By combining the HOS features with Fourier analysis 

features, we expect that a higher recognition rate can be 
achieved. Two conditions need to be met in order for the 
application of multiple classifiers to be successful [15]. Firstly, 
the performance of all classifiers individually needs to exceed 
50%. Secondly, the individual classifiers need to be sufficiently 
different from each other. 



C. Performance Evaluation of the Multi-classifier System 
The classification performances on the HMR195 test set, 

including the specificity, sensitivity, correlation, and precision 
of the combined system, using various aggregation functions 
described in Section III.C are tabulated in Table III.  

TABLE III.  PERFORMANCE COMPARISON OF THE  MULTI-CLASSIFIER 
SYSTEM USING VARIOUS AGGREGATING METHODS 

Method Sp Sn P τ  
Maximum 0.427 0.436 0.847 -0.34 
Summation 0.443 0.444 0.852 -1.6 
Average 0.448 0.440 0.854 -0.53 
Majority Voting 0.300 0.340 0.830 n/a 
Neural Network 0.480 0.472 0.862 -0.51 

 
By comparison with Table II, the combination of these 

three neural networks provides an improved recognition rate in 
terms of precision. The MCS using a neural network 
aggregation function provides the best result, while MCS using 
majority voting provides the poorest result. The results 
obtained by the individual neural networks and the MCS using 
neural network are compared in Figure 8. Furthermore, the 
performance of the proposed MCS using neural network are 
compared with the NNPP algorithm [24]. Table IV shows that 
our algorithm outperforms the NNPP algorithm in terms of 
specificity, sensitivity, and precision. 

 

Figure 8.  Comparison of the specificity, sensitivity and precision of the three 
neural networks and the multi-classifier system 

TABLE IV.  PERFORMANCE  COMPARISON OF THE PROPOSED MULTI-
CLASSIFIER SYSTEM WITH NNPP ALGORITHM [24]. 

Method Specificity 
(Sp) 

Sensitivity 
(Sn) 

Precision 
(P) 

NNPP Algorithm 0.086 0.047 0.806 
MCS Neural Net 0.480 0.472 0.862 

 

V. CONCLUSION 
In this paper, we presented a novel approach for the 

recognition of protein coding and non-coding regions in 

mammalian DNA sequences. Higher order statistics and 
Fourier analysis features were utilized for the individual neural 
networks. Evaluation of the proposed system on the HMR195 
database revealed that the recognition accuracy of the multi-
classifier system can be increased by 5% over that of the 
individual neural networks. Future work will include the 
optimization of current neural networks, the application of 
other classifiers such as support vector machines (SVM), 
Gaussian mixture models (GMM), hidden Markov models 
(HMM), and the identification and use of other discriminative 
features. 
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