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Abstract— Frequency-Invariant (FI) beamformer is a type of 
beamformer that has flat spatial response over a wide range of 
frequency. In most of the algorithms presented today, this FI 
characteristic is true for all angles including both main lobe and 
side lobe. In this paper, a novel uniform circular broadband 
beamformer with frequency-invariant characteristic is proposed. 
It attempts to optimize the FI beampattern solely for the main 
lobe where the signal of interest is from and relax the FI 
requirement on the side lobe. As a result, the beamformer 
achieves better FI response for the desired region and it is 
completed in one single step. In order to achieve this goal, a new 
objective function with a quadratic constraint is designed. In 
addition, the constraint function allows the FI character to be 
accurately controlled over the specified bandwidth at the 
expense of other parts of the spectrum which are not of concern 
to the designer. State-of-the-art optimization method such as 
Second Order Cone Programming (SOCP) is used to solve this 
complex optimization problem with high efficiency and accuracy. 
Simulation result shows that the proposed beamformer can 
obtain better performance in achieving FI for the main lobe.  

I. INTRODUCTION 

Systems that employ microphone arrays are very often 
involved in processing broadband signals, such as speech 
signal. In the literature presented today, there are several ways 
of designing a broadband beamformer [3] [5] [6]. One 
approach is to use narrowband decomposition [2]. In this 
technique, the signal received at each sensor is transformed 
into the frequency domain, and each frequency band is then 
treated as an independent narrowband beamformer. This 
approach is computational intensive. Alternatively, adaptive 
broadband beamformer is used for broadband signal [4]. It 
employs tapped-delay lines or linear transversal filters with 
adaptive coefficients to generate appropriate beampattern so 
as to suppress undesirable interference, one example is Frost 
beamformer. An adaptive array with K sensors can produce 
K-1 constraints on the beam pattern of the array at a single 
frequency. If each sensors have L-tap FIR filter, then the same 
constraints can be applied at L different frequencies. In order 
to have identical beampattern over a continuous range of 
frequencies, for adaptive beamformer, large number of 

sensors and taps are required. Hence high computational 
complexity is expected. The third approach of designing 
broadband beamformer is to design a beamformer with 
frequency-invariant beampattern (FIB). In FIB, the array has 
constant spatial response over a wide range of frequency 
bands. One advantage of them is that they are able to 
attenuate broadband interference with fewer number of 
adaptive filter coefficients, hence resulting in lower 
computational complexity. Among the existing available 
techniques, they can be classified into three categories. One is 
the FIB optimization based on FIR or IIR coefficients [7]-[10]. 
This technique employs some analytical relations between 
frequency responses of filters located on different sensor array 
elements of the FIB, with utilization of a differentiation filter 
at the beamformer output and with or without utilization of 
multi-rate techniques. A limitation pertaining to this group is 
that it restricts to only linear array configuration. Being linear 
array, the resolution at broadsight is better than that at its end-
fire position. The second category is beampattern 
optimization for single frequency [13]. In this approach, some 
desired beamformer response over angle and frequency is first 
defined, then the vector of the beamformer coefficients are 
optimized in order to minimize the error between the desired 
and real pattern. One weakness for this approach is the choice 
of the desired pattern has to be decided skillfully. The third 
type is FIB optimization based on array configuration. This 
type of beamformer makes use of array geometry specialty to 
remove the frequency dependency of the received signal [14].  
One example is the uniform circular array with frequency-
invariant characteristic proposed recently. Being a circular 
array, it receives signal from all direction with equal 
resolution. Hence it resolves the problem created by linear 
array. In paper [1], by exploiting the geometric advantage of 
the circular array, a frequency compensation network is 
designed to remove the frequency dependency of the received 
signal and the outcome are summed to produce a FI 
beampattern. To do so, the array snapshot is first transformed 
to phase modes via an Inverse Discrete Fourier Transform 
(IDFT), followed by applying spatial weights. The spatial 
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weights, which govern the far field pattern of the array, can be 
designed by conventional 1-D digital filter design techniques 
such as Parks-McClellan Algorithm. In this method, the FI 
beampattern is optimized for the entire band including main 
lobe and side lobes in two separate steps. Ideally, the 
compensation filter and the beam weight which determine the 
array beampattern can be optimized jointly. However, using 
the method presented in [1], large number of variables and 
constraints for this direct approach make it difficult to solve.  

As a result, in this paper, a novel algorithm with new 
objective function and a quadratic constraint is proposed. It 
aims to achieve an FI beampattern for the main lobe where 
the signal of interest is from and relax the FI requirement at 
the side lobes. In doing so, it is able to achieve FI 
characteristic in one single step optimization. Furthermore, 
the constraint function accurately controls the FI character 
over a specified bandwidth which may be an interest to the 
designer. By focusing the FI characteristic along the desired 
direction only, and relaxing the FI requirement at other 
direction, the free degrees of freedom make it possible to 
design an FIB array in single step procedure. This novel 
beamformer may find its application in vehicular environment, 
where the desired signal and the noise are both broadband. In 
such case, the spectrum of noise is much broader than that of 
speech, the proposed beamformer focuses on the spectrum of 
the desired speech signal at the desired direction, while 
attenuate the broadband noise coming from other direction 
and the undesired portion of the spectrum. 

  The remaining paper is organized in the following 
way: In section II, problem formulation is discussed. In 
section III, the design of the beamforming weight using SOCP 
is presented. Numerical results are given in section IV and 
finally, conclusions are drawn in section V. 

 

II. PROBLEM FORMULATION 

In Fig 1, a layer of K microphones are distributed 
uniformly in a circle. Each omni-directional sensor is located 
at { cos , sinkr r kφ φ } where r is the radius of the circle, 

2 /k k Kφ π=  and . In this configuration, the 
inter-sensor spacing is fixed at

0, , 1k K= … −
/ 2λ , where λ  is the smallest 

wavelength of the array to be operated and is denoted as minλ . 
Half wavelength is chosen because it is widely used in linear 
array to avoid spatial aliasing. Hence the radius is given by 
[1]:  

min
4sin( / )r K

λ
π=  

Assuming the circular array is on a horizontal plane, the 
steering vector is  
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For notation convenience, let ω  denote the digital frequency, 

i.e. 2
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πω = , ε denote the ratio of the sampling frequency to 

the maximum frequency, i.e.
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fε = , and r denotes the 

normalized radius, i.e.
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min/r r λ=� , the steering vector can be 
represented as 

 
Fig. 1.  Uniform Circular Array Configuration 
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Fig 2 shows the system structure of the proposed uniform 

circular array beamformer. Assuming the sampled signal after 
the sensor is given by the 
vector [ ] ( ) ( ) (0 1 1, , k )X n x n x n x n−= ⎡ ⎤⎣ ⎦" , where n is the 
sampling instance and k is the number of sensor, this signal is 
first transformed into phase mode via Inverse Digital Fourier 
Transform (IDFT). A compensation filter network which is 
characterized by the filter coefficient [ ]mb  is then designed 
to remove the frequency dependency of the received signal 
X[n].  is the spatial weighting coefficient which governs 
the far field beampattern of the beamformer. L is defined as 
(M-1)/2, where M is the number of phase mode and it is 
assumed to be an odd number. The detailed derivation of the 
spatial response of the beamformer can be found in [1]. In this 
paper, the proposed beamformer consists of single layer, 
hence the spatial response of the beamformer is: 

n
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Where h is the spatial weighting, and [ ]mb  is the 

coefficients of the frequency compensation filter and 

n

( )mJ β  

is the Bessel function of the first kind of order m. ( )mB ω  and 

[ ]mb n  are a Fourier Transform pair which satisfied the 



following relationship: ( ) [ ]
0

Nn
jn

m m
n

B b n e ωω −

=

= ∑    (2), where 

Nn is the order of the compensation filter. 
 

III. PROPOSED NOVEL BEAMFORMER 

In order to achieve our goal, the following objective 
function is formulated for the proposed beamformer: 
                                       
          min 
                                                                                          (3)                                       
Subject to  

Fig. 2. The system structure of a uniform circular array beamformer  
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Where ( ,G )ω φ is the spatial response of the beamformer as 

shown in equation (1), lω and uω  are the lower and upper 

limit of the desired frequency range. 0φ  is the desired 
direction. 

In this objective function, the square of the overall 
beampattern across all frequency and all angles is minimized, 
while the beampattern pertaining to the specific angle is 
constrained to be approximately one. The main novelty is that 
it only restricts the FI character of the beampattern along the 
desired direction for a range of frequency band instead of 
across all directions. It is done by optimizing the coefficient 
of the compensation filter and the beam weight together. 
Cholesky factorization is later used to transform further the 
objective function into SeDuMi solvable min-max 
optimization problem. Simulation shows that as the angle 
deviates from the desired direction, the FI character becomes 
less obvious for different frequencies. The physical 
interpretation of the above objective function for being able to 
achieve FI in single step is that by focusing the FI 
characteristic at the desired direction for a range of frequency 
band only and relaxing the FI at other directions, more 
degrees of freedom are freed.  Comparing to UCCA, it has 
strict FI characteristic at all directions for a wide selection of 
frequency range. Hence the free degrees of freedom make the 
proposed beamformer possible to achieve FI in single step. In 
the next section, the numerical results also points out that with 
the same array configuration, the proposed beamformer can 
also yield better performance on achieving frequency 
invariant beampattern at the desired direction for a wide range 
of frequency.  

In this optimization problem, Second Order Cone 
Programming (SOCP) is used to solve the above objective 
function due to the quadratic constraint [12]. SOCP is a 
convex programming problem and the global optimal solution 
is guaranteed if it exists. A standard form of SOCP can be 
written as follows: 

min Tb x                                                   (4) 
Subject to 

2
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Where x is the variable vector; b d , mR∈ , m
i R∈ m
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 are constant vectors; A  are constant 

matrices; and 

in m
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2
u denotes the Euclidean norm of the vector u, 

( )
1
2

2
Tu u u= . 

To convert to the standard form, the objective function has 
to be suitably modified. To start with, substitute (2) into (1),  
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Using the identity cos( ) sin( )jne n jω ω ω− = − , equation (5) 
becomes: 
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By stacking ( , )ω φC  and ( , )ω φS  together, the above 
equation can be rewritten in the following form: 
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Hence, the objective function can finally be written as: 
 

min  HX MX
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1
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Since in the standard SeDuMi form, the objective function 
must be a linear equation, hence to transform it into (4), 
Cholesky factorization is used. By definition, Cholesky 
factorization decomposes symmetric positive definite matrix 
into transpose of upper triangular matrix and the upper 
triangular matrix. HM U U=

)

, if M is hermitian and positive 
definite. Substitute the above relationship into (6), 

, where U=chol(M) is 
the cholesky factorization in Matlab function. Defining t as 
the maximum value of , min-max criterion is skillfully 
applied so as to convert the minimization of a quadratic term 
into minimization of a linear term. 
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Finally, (6) can be written in a matrix form as follows: 
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By dividing ω  uniformly within the frequency range with 

a sufficient number of points, says P=64, each continuous 
constraint above for each angle will yield P different 
constraints. The resulting problem is now in the form of a 
standard SOCP problem, which can be solved efficiently 
using optimization toolbox such as SeDuMi [11]. 

  

IV. NUMERICAL RESULTS 

Consider a single layer of circular array of 20 elements that 
are arranged as shown in Fig 1. The number of phase mode M 
is 17. Therefore we have 17 spatial weighting coefficients. 
We assume that the orders of the compensation filter are the 
same for all phases which is 16 in this experiment. The 
desired angle of direction of arrival is set to be at broadside. 
The range of frequency which achieves frequency invariant is 
from 0.3π  to 0.95π . δ is set to be 0.1. Due to the reason that 
the proposed beamformer adapts the same structure as UCCA, 
in this section, the performance of the two beamformers for 
the same array setting are compared. 

The simulated array beampattern for the proposed 
beamformer is shown in Fig 3. By dividing the frequency 
range from 0.3 π  to 0.95 π uniformly with 10 points, each 
frequency point corresponds to one blue curve. In Fig 3, it is 
shown clearly that at broadside, there is little frequency 
variance in the spatial response. The proposed beamformer is 
able to achieve frequency invariant at the desired direction. 
As the angle deviates from broadside direction, the frequency 
invariant characteristic relaxes for different frequencies. As 
shown in the figure, the blue curves are no longer overlapping. 
The sidelobe level is approximately -10 dB.  

In Fig 4, the normalized spatial response of UCCA 

Fig.3. The normalized spatial response of the proposed beamformer for 
[ ]0.3 ,0.95ω π π=  



beamformer is presented. In this experiment, instead of using 
concentric array, single layer of circular array is used. By 
dividing the frequency range from 0.3π  to 0.95π uniformly 
with 10 points again, each frequency point corresponds to one 
red curve. From the beampattern, we could see that for UCCA 
beamformer, at the broadside, there is some degree of 
frequency variance. It is not as smooth as the proposed 
beamformer. As the angle gets further from the desired 
direction, the beampattern differ more for different 
frequencies. The sidelobe level is approximately -15 dB. 
From here, we could see that for the same frequency range as 
stated in [1], the proposed beamformer achieves better 
frequency-invariant characteristic than UCCA beamformer 
for the same circular array setting.  

Fig.4. The normalized spatial response of the UCCA beamformer for 
[ ]0.3 ,0.95ω π π=  

In Fig 5, comparison between the proposed beamformer 
and the UCCA beamformer on FI characteristic across all 
frequency is presented. The blue line represents the proposed 
beamformer, while the red line represents the UCCA 
beamformer. It clearly shows that at the desired direction, the 
proposed beamformer obtain better performance on FI 
characteristic than UCCA beamformer.  

When the frequency range is modified from [0.3π , 0.95π ] 
to [0.2π , 0.3π ], the proposed beamformer achieves FI at the 
desired direction with narrower main beam but higher 
sidelobe as compared to UCCA beamformer. 

 
 

V. CONCLUSIONS 

In this paper, a novel beamformer that achieves frequency-
invariant characteristic for uniform circular array in single 
step is proposed. Simulations results show that the proposed 
beamformer performs well for both short range of frequency 
and wide range of frequency. More importantly, the 
optimization is done in single step. This is useful in many 
real-time applications, especially for speech capturing in 
vehicular environment. 
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