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Abstract - Adaptive modulation techniques have been 
proposed to optimise Shannon's channel capacity in orthogonal 
frequency division multiplexing (OFDM) system. By adapting 
the modulation type (effectively changing the number of bits 
per symbol) at the transmitter end one could improve the bit 
error rate (BER) during transmission at designated SNR. Blind 
detection of the transmitted modulation type is desirable to 
optimise the band-width available. This in turn implies the 
need for an intelligent modulation classification engine at the 
receiver end. In this work, we review and investigate two well-
known modulation classifiers, as well as propose a new 
candidate classifier based on up to sixth order statistics. 

I. INTRODUCTION 

Orthogonal frequency division multiplexing (OFDM) has 
been proposed as the candidate modulation system for 
achieving high data rates in multi-path fading wireless 
communication environment. Its counterpart in wired 
communication is the discrete multitone (DMT) which was 
implemented in ADSL modem system. An example 
standard of OFDM is the IEEE 802.11a where the data 
throughput rate ranges from 6 Mbps to 48 Mbps, depending 
on which modulation type (BPSK, QPSK, 16QAM or 
64QAM) is used. In essence, OFDM is a multi-carrier 
modulation scheme in which the data symbols are 
transmitted in parallel using multiple carrier frequencies as 
in the case of frequency modulation (FM). Instead of 
deploying multiple carriers, this could be efficiently 
implemented using inverse discrete time Fourier transform 
(IDFT), and then transmitted using a higher frequency 
carrier. It is believed that OFDM system provides stronger 
resilience against inter-symbol interference (ISI) and multi-
path fading [8].  

 Adaptive modulation for OFDM system [9] was first pro-
posed by Steele and Webb [1] to exploit the time-variant 
Shannon’s channel capacity of fading narrowband channel. 
The main motivation is to mitigate the loss of system 
throughput (as a result of omitting subcarriers with severe 
fades) by employing higher order modulation types on 
subcarriers with high signal to noise ratio (SNR). When the 
number of subcarriers is large, one would normally consider 
the average SNR of a neighborhood of subcarriers and 
employ the same modulation type for these subcarriers. This 
is referred to as sub-band adaptive modulation.  

There are three main steps in adaptive modulation: 1) 
channel quality estimation, 2) modulation type adaptation 
for next transmission, and 3) blind modulation type 
detection of the employed modulation type at the receiver 
end. In this paper, we focus on the third step and assume 

that the channel information is available through estimation, 
possibly through a duplex communication link. Numerous 
techniques have been proposed for single carrier system, e.g. 
[2 – 5, 8 – 9]. In this work, we compare two well known 
modulation classifiers (MC) - the maximum likelihood (ML) 
MC [2, 6] and the higher order statistics (HOS) based 
hierarchical MC [3], adapted in the OFDM's setting. In 
addition, we also propose a new candidate MC based on up 
to sixth order statistics.  

In the next section we describe the system model for our 
investigations. Following this are the sections on maximum 
likelihood classification and hierarchical classification using 
up to fourth order statistics. Next we present investigations 
using sixth order statistics and propose a candidate method 
for sub-band OFDM modulation classification. Conclusions 
follow after this. 
 

II. SYSTEM MODEL 

 In OFDM, a serial stream of data is converted into 
parallel blocks of size N which we represents in vector form, 
X = [X1 X2 X3 … XN]. Each symbol is mapped to one of the 
candidate modulation types, mi. In this work, we consider 
four modulation candidate types only, namely BPSK, QPSK 
16QAM and 64QAM. X is then transformed using N-point 
inverse discrete Fourier transform (IDFT), to give the time 
domain sequence, x(n), [6, 7]:  
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Before transmission, x(n) is typically extended cyclically, 
or zero-padded, to avoid ISI from previous symbol, filtered, 
converted to analogue form, and transmitted through 
antenna over a wireless channel.  

At the receiver, the transmitted signal is corrupted with 
noise. After pre-processing (synchronization, down 
sampling, and cyclic extension removal), the baseband 
model of the received symbols is written as:  

  kkkk VXHY +=    (2)  
where Hk and Vk is the subcarriers' frequency response and 
complex additive white and Gaussian noise in frequency 
domain. Without loss of generality, we can assume vk to be 
of zero mean and variance of σ2. It is also customary to 
assume that the received symbols are i.i.d. and normalized 
to unit power i.e.:  
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III. MAXIMUM LIKELIHOOD CLASSIFICATION 

Let mi and Mi denotes the possible modulation type and 
the total number of possible symbols with i = 1, 2, 3 and 4 
corresponding to the set of {BPSK, QPSK, 16QAM, 
64QAM}. The transmitted symbol, Xi, can take one of the 
Mi possible complex symbols, aj, j ∈ 1, 2,  …, Mi. The 
normalized constellations of QPSK, 16QAM and 64QAM 
are depicted in Figure 1. 

Given a sub-group of received symbols, G = [Y1, Y2 … 
YL], we can calculate the likelihood of the received group 
belonging to the modulation type, mi, using the following [6]: 
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where 

i
ja  refers to the symbol j in modulation type i and L 

denotes the number of carriers in the subband. Usually, it is 
more practical to take the natural logarithm of (4). As it is a 
monotonic function, taking the maximum of the logarithm 
achieves the same result as taking the maximum of 
likelihood function: 

∑ ∑
= ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=

L

n

M

j

i
jnn

i
i

i aHY
M

mP
1

2

2

2
|ˆ|

exp(1ln)|(ln
σ

G
 (5) 

Note we also drop the constant term resulting from (4) in 
(5).  

We carried out computer experiments in MATLAB 
environment to test the ML MC using the said modulation 
types. The numbers of carriers was set to 512 carriers and 
the probability of correct classification, Pc was calculated 
based on 30 trials. The result was then plotted in Figure 2.  

The ML Modulation Classification (MC) algorithm gives 
the theoretical optimum results when the SNR is high and 
known to users. However, as it can be deduced from 
Equations (4) and (5), the ML MC has a high computational 
requirement. In the case where SNR is not known a priori, 
we have to choose a suitable SNR estimation algorithm 
although this requirement can be somewhat relaxed as 
shown in [4, 5]. The other major drawback for ML MC is 
that it tends to favour highly dense modulation type 
(64QAM in our example) in low SNR region as shown in 
Figure 2.  

IV. HIERARCHICAL CLASSIFICATION USING 
HIGHER ORDER STASTICS 

Swami and Saddler [3] proposed a simple but efficient 
hierarchical classifier for a Single Carrier Classification in 
[3] using fourth order cumulants as feature sets. The two 
features, C40 and C42, could be calculated based on the 
following equations. We adopt the notation as in the 
previous section for uniformity.  
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with C20 and C21 define as follows: 
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Figure 1 Constellation diagrams of QPSK, 16QAM, and 64QAM. 
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We have adapted their algorithm to our chosen 

modulation classification problem using a set threshold 
values chosen based on the theoretical value shown in Table 
I. These theoretical values are calculated using the ideal 
noise-free constellation. 
From Table I, it appears that the values of C40 and C42 are 
the same for four modulation types that we have chosen in 
our study. Therefore one in theory could choose either. We 
have chosen values of C42 in this work as 

42C   ≤  -1.5 → BPSK, 

-1.5  < 42C  ≤  -0.84 → QPSK 

-0.84 < 42C  ≤  -0.6496 → 16QAM 

-0.6496 < 42C  ≤  -0.5 → 64QAM 

 

For ease of reference, we refer the above algorithm as HOS 
(C42) MC.  

We carried out an identical experimental setup as with the 
previous section and observed the following from the result 
shown in Figure 3: 

a. The HOS (C42) MC is much faster than ML MC. 
We await further numerical results to validate 
our observation.  

b. Unlike the ML MC, the HOS (C42) MC has no 
bias towards dense modulation at low SNR.  

c. On the contrary, the HOS (C42) MC shows 
confusion between 16QAM and 64QAM as the 



gap between the two theoretical values are too 
close.  

d. Even at 10 dB SNR, it is difficult to distinguish 
the 16QAM and 64QAM using C42.  

 
TABLE I 

THEORETICAL NOISE FREE VALUE FOR C40 & C42 
Features BPSK QPSK 16QAM 64QAM 

C40 -2.000     -1.000 -0.680 -0.619 

C42 -2.000     -1.000 -0.680 -0.619 

 
TABLE II  

THEORETICAL NOISE FREE VALUE FOR C60 & C63 
Features BPSK QPSK 16QAM 64QAM 

C60 -16.000    0.000 0.000 0.000 

C63 16.000     4.000 2.080 1.797 

 
TABLE III  

CONFUSION MATRIX AT DIFFERENT SETTINGS OF L. 
Pc (%) at SNR = 10 dB 

L = 2046 L = 1024 L = 512 Mod. 
Type  

1 2 3 1 2 3 1 2 3 

1 100 0 0 100 0 0 100 0 0 

2 0 100 0 0 100 0 0 100 0 

3 0 0 100 0 0 100 0 0 100 
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Figure 2 Performance of the ML MC depicting problems in biasing 

behavior for 64QAM at low SNRs. 
 

The above observations have alerted us that C42 is not 
sufficient for practical modulation classification problem. In 
the next section, we investigate the possibility of using a set 
of sixth order cumulants as features for our modulation 
classification problem. 
 

V. 6TH ORDER CUMULANTS 

As with the calculation of the fourth order cumulants, the 
sixth order cumulants can be calculated using a set of 

formulae. Here, we are interested only in two particular 
sixth order cumulants, namely C60 and C63. These can be 
calculated as follows:  
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Figure 3 Performance of the HOS (C42) MC for individual modulation 

schemes, depicting problems for 16QAM and 64QAM even at high SNRs. 
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conjugate. Using Equations (10) and (11), we calculated and 
recorded the theoretical noise free value in Table II.  

From the above values, it is evident that C63 provides a 
bigger gap between 16QAM and 64QAM, bearing in mind 
that these are normalized values. We have also performed a 
Monte Carlo analysis on the effect of SNR on the expected 
values of C63 and the result is as depicted in Figure 4. It is 
also evident from the Figure that the feature value is stable 
above 10 dB SNR.  

Once again, we repeated the computer experiments using 
the sixth order cumulants by adopting the following 
thresholds. We refer hereafter this algorithm as HOS (C63) 
MC. 

C63 > 6.0 → BPSK, 
6.0 >= C63 > 2.75  → QPSK 
2.75 >= C63 → 16QAM/ 

64QAM 
In this preliminary study, we have focussed our interest in 

the stability of the feature at 10 dB SNR. We have also 
grouped 16QAM and 64QAM as one category for this 
preliminary study.  

Table III shows the confusion matrices at three different 
number of carriers, L = 2048, 1024, and 512. Regardless of 
L, the HOS (C63) MC achieves Pc of 100% in all 
modulation types.  

These preliminary results give a strong indication that 
C63 could be a better discriminating feature than C42 in our 
selected modulation classification task. We await further 



experimental result to make final conclusion about the 
performance of HOS (C63) MC.   

 

VI. CONCLUSIONS 

In this paper, we have proposed the use of up to sixth 
order cumulants for a candidate method for sub-band 
OFDM modulation classification. Furthermore we presented 
and investigated three digital modulation classifiers for the 
application in blind modulation detection stage of adaptive 
OFDM modulation. These were namely the ML MC, the 
HOS (C42) MC and the HOS (C63) MC. The ML MC 
provides the optimum performance when the SNR is known 
but requires high computational requirement. This 
requirement causes ML MC to be less attractive when 
implementing in realistic applications. The two HOS based 
hierarchical classification methods could be easily 
implemented but care must be taken in selection of 
discriminating feature(s). The HOS (C63) MC exhibits good 
potential as a candidate method for adaptive sub-band 
ODFM modulation classification.  
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Figure 4 Mean and variance of Re{C63} plotted against SNRs. 
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