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ABSTRACT- This paper provides both the theoretical and 
practical results for Geo-stationary satellites orbit 
determination using both dual Ranging from Two (2) 
separate earth station locations and Classical orbit 
determination from an earth station. 

Orbit determination is performed through a generated 
Matlab program and is compared with a flight proven 
software tool. 

The program takes into account the dynamic model [1,5,6] 
of the satellite which takes orbit perturbations due to non_ 
spherical earth shape, the gravitational forces of the sun and 
moon, and the atmospheric drag. 

Acceptable results where foreseen in comparison to the 
flight proven software tool. 
 
 

1. INTRODUCTION 
 

To determine a spacecraft’s orbit, measurements such as range, 
angles are needed which can be obtained by a number of Earth-based 
systems tracking systems. 

These measurements are the means for calculating the trajectory of 
a satellite with the help of filtering algorithms and models of orbit 
evolution which always compare the real measurements with a 
theoretical quantity calculated from a pre-assumed trajectory. (Fig 1) [2]. 

 
Fig (1):  Orbit Determination problem 

Orbit determination could be determined by the utilization of both 
ranging and angular measurements or ranging measurements only, but 
using angular measurements have varies types of problems as: 
1. The mechanical precession which is required for the large 

equipments leads to very high operational costs. 
2. Azimuth-Elevation accuracy depends on the mechanical antenna 

system not on the electrical system as the ranging. 
3. The errors on the measurements are often biases, that are slowly 

evolving, like the alignment of the mechanical axes, or cyclic (due 
to day-night temperature fluctuations) or variable like the deviation 
between the targeted radio- frequency direction and the mechanical 
direction, which may be due to wind or to the dynamics of the 
displacement (servo control). 
Thus, due to these problems and due to the need for higher 

precession method, the paper provides a method for orbit determination 
based only on the ranging measurements. 

The paper is divided into several sections. The first section 
contains some basic definitions. The second section contains the orbit 
determination algorithm and dual ranging algorithm. The third section 
contains the simulation results performed. Fourth section contains the 
conclusion of this paper. The last section contains the future work and 
reference for this work.  
 
 

2. BASIC DEFINITIONS 
 
2.1 Orbital parameters 

The elements of an orbit [1,3] are the parameters needed to specify 
that orbit uniquely. Traditionally used set of orbital elements is called 
the set of Keplerian elements. The Keplerian elements are six: Semi-
major axis (a), eccentricity of the ellipse (e), inclination angle (i) , Right 
ascension of ascending node (Ω) , argument of perigee (ω), True 
anomaly (ϑ). 

 
Fig (2): Orbital angles 

 



 

For geostationary satellite orbit the inclination angle (i) nearly 
equal to zero, so the values of ω and ϑ can not be given with sufficient 
accuracy, as the position of the ascending node is not determined 
accurately. The parameters in the kepelerian set are slightly modified to 
include implicitly the parameters (i, ω, ϑ). The new sets of modified 
orbital parameters are given by definition as: 
 
Semi-major axis:  

a (1) 
  
Eccentricity vector in the x , y directions :  

⎯ex = ⎯e cos(ω+Ω) 
⎯ey = ⎯e sin(ω+Ω) 

(2) 

  
Inclination vector in the x , y directions :  

⎯ix = sin(i) cos(Ω) 
⎯iy = sin(i) sin(Ω) 

(3) 

 
Longitude :  

l = ω + ϑ + Ω - GAST (4) 
 
Where; GAST = Grinitch apparent sidereal time 
 
2.2 Orbit Perturbations 

The Keplerian orbit is ideal since it assumes that the earth is a 
uniform spherical mass. 

The dynamic model is introduced for a more realistic orbit. Thus 
we take into account orbit perturbations [2,3] which are due to: 

1. The forces due to the contribution of the non- spherical 
components of terrestrial attraction.  

2. The attraction of the sun and the moon (Third-Body 
Perturbations) 

3. Solar radiation pressure 
4. Aerodynamic drag , which is negligible for altitudes 

above 3000 Km 
Where items  1 and 2 are gravitational forces from perturbing 

potentials, and items 3, 4 are non conservative forces, they do not 
depend on the satellite mass, they depend on the satellite shape and 
geometry. 
 
2.3 State Vector 

Another way to determine the orbit rather than the set of orbital 
parameters is the state vector (position, velocity), where the orbit is 
determined through the definition of the position and velocity in 
cartesian coordinate system (X, Y and Z – directions). 

The state vector is shown in this section as the MATLAB program 
compute the optimum increment in the state vector – equation (25) – and 
add it to the initial state vector to produce a new state vector which is 
more precise. This new state vector is transferred back to the orbital 
parameters. 

Transformation from the orbital parameters to the state vector[2] 
position (X, Y, Z) and velocity (dX, dY , dZ) is done as shown: 
 

X = r*[cos(ω+ϑ)*cos(Ω) - sin(ω+ϑ)*sin(Ω)*cos(i)] (5) 
Y = r*[cos(ω + ϑ)*sin(Ω) + sin(ω + ϑ)*cos(Ω)*cos(i)] (6) 
Z = r*[sin(ω + ϑ)* sin(i)] (7) 

 
dX = -μ/H * [cos(Ω)*(sin(ω + ϑ) + e*sin(ω)) + 

sin(Ω)*(cos(ω + ϑ)+ e*cos(ω))*cos(i)] 
(8) 

dY = -μ/H * [sin(Ω)*(sin(ω + ϑ) + e*sin(ω)) - 
cos(Ω)*(cos(ω + ϑ)+ e*cos(ω))*cos(i)] 

(9) 

dZ = μ/H * [cos(ω + ϑ) + e*cos(ω)]*sin(i) (10) 
 
Where; 
r = Magnitude of the position vector (r) in the P-Q frame plane as shown 
in equation (11) 
μ = Earth Gravitational constant = 3.986005e5 km3 / sec2 
H = Magnitude of the angular momentum. 
 
 

2.4 Reference Frames 
Co-ordinate transformation systems are needed in order to 

determine the computed measurement (Range, Azimuth and Elevation) 
from the given orbital parameters. Thus, three co-ordinate systems[1,2] 
are introduced in this paper to define the satellite position relative to the 
ground tracking earth station taking into account the attraction effect of 
the motion of the sun and the moon. These coordinate systems are the 
following: 

- The Perifocal coordinate (p,q,w). 
- The Geocentric coordinate (I,J,K) , and  
- The Satellite in rotating frame coordinate (X,Y,Z), 

  

 
Fig (3): Coordinate systems transformations 

i.e. (1) Perifocal coordinate (2) Geocentric coordinate (3) Rotating frame 
coordinate  
 
Each of these reference frames are presented in details; 
 
2.4.1 Perifocal coordinate (p , q ,w) 

The position of a geostationary satellite as measured from the 
Earth station. The observer's horizon becomes the reference plane and 
his position, the origin.  

 

 
Fig (4): Perifocal coordinates 

 
From this coordinate system the magnitude of the position vector r 

in the P-Q frame plane is computed;  
 

r = a *(1-e*cos(E); (11) 
rp = r*cos(ϑ); rq = r*sin(ϑ); (12) 



 

2.4.2 Geocentric coordinate (I, J, K)  
The general Geocentric Equatorial Coordinate System (IJK) is also 

known as the Earth-Centered Inertial (ECI) system. ECI’s origin is at 
Earth’s center, and its fundamental plane is the equator. 

 

 
Fig (5):  Geocentric coordinate 

 
The I-axis (or +X-axis) points towards the vernal equinox; the J-

axis (or +Y-axis) is 90ο to the east in the equatorial plane; and the K-axis 
(or +Z-axis) points towards the North Pole.  

Computing the position components X, Y, Z, 
 

ri= [cos(Ω)*cos(ω)-sin(Ω)*cos(i)*sin(ω))*rp + (-cos(Ω)*sin(ω)- 
sin(Ω)*cos(i)*cos(ω)]*rq; 

 

(13) 

rj=[sin(Ω)*cos(ω)+ cos(Ω)*cos(i)*sin(ω) )*rp +(-sin(Ω)*sin(ω) + 
cos(Ω)*cos(i)*cos(ω)]*rq; 

 

(14) 

rk= [sin(i)*sin(ω) )*rp + (sin(i)*cos(ω) ]*rq; 
 

(15) 

 
This coordinate system is considered inertial, but the equinox and 

plane of the equator move over time. Thus in order to take into account 
the relative motion of the satellite with respect to the earth, introduce the 
following coordinate system; 
 
2.4.3 Satellite in rotating frame coordinate (X,Y,Z)  

Known as Satellite Radial coordinate system (RSW) , moves with 
the satellite. The radial, R-axis points from Earth’s center along the 
radius vector to the satellite as it moves through an orbit. The along-
track S-axis points in the direction of the velocity vector, and is 
perpendicular to the radius vector. The cross-track, W-axis is fixed along 
the direction normal to the orbital plane. 

 

 
Fig (6): Rotating frame coordinate 

Computing the rotating system coordinates: 
 

Xr = cos(GAST)*ri+ sin(GAST)*rj (16) 

Yr = -sin(GAST)*ri+ cos(GAST)*rj (17) 

Zr = 1*rk (18) 

 
From this point, we calculate the sub-satellite points (sub-satellite 

longitude and latitude) as shown in equations (19) and (20) respectively: 
 
Ls =  π/2 – cos-1[Zr/(Xr

2+Yr
2+Zr

2)0.5] (19) 

-tan-1 (Yr / Xr ) Yr > 0 and Xr > 0 
π - tan-1 (Yr / І Xr І) Yr > 0 and Xr < 0 
π/2 + tan-1 (І Xr І / І Yr І) Yr < 0 and Xr < 0  

 
 
ls = 

-tan-1 (І Yr І / Xr ) Yr < 0 and Xr > 0 

(20) 

 
And finally, computing the Azimuth, Elevation (Look angles) and 

ranging data from the satellite coordinates (Xr, Yr, Zr) using the 
geographical coordinates of the sub-satellite point as intermediaries; 

As, distance from center of earth to the satellite (orbital radius) is; 
 

rs =  (Xr
2+Yr

2+Zr
2)0.5 (21) 

Thus, Azimuth (Az), Elevation (El) and Ranging (Rg) equations are:  
 

EL = cos-1 [ sin(δ) / (1+(Re/rs)2 - 2*(Re/rs)*cos(δ))0.5] (22) 

Rg = rs*[1+(Re/rs)2- 2*(Re/rs)*cos(δ)]0.5 (23) 

 
Where; Le , , le  are  Earth station latitude and longitude 

respectively,  & Re = Earth radius = 6378.13649 Km. 
 
δ = cos-1 [cos(Le)*cos(Ls)*cos((ls-le))+sin(Le)*sin(Ls)] (24) 

And the Azimuth is computed depending on position of the earth 
station latitude with respect to the satellite latitude. 

Thus, it is clear from the above equations that there exists a need 
for co-ordinate transformations in order to obtain the computed Azimuth 
and Elevation angles. 
 

 
3. DUAL RANGING ALGORITHM 

 
3.1 Orbit Determination Algorithm 

The algorithm presented in this paper is based on statistical orbit 
determination method - least squares (LS) method [9]. 

Based on the Goodyear relations [2,3,6,8] the best estimate increment 
in the state vector is given by: 

 
Δxk = (HT H)-1HTy (25) 

 
Where; y = difference between actual and computed 

measurements, and (HTH)-1 = Covariance matrix. The observation 
sensitivity matrix (H) equals: 

 
H = H″*Φ (26) 

 
Where; Φ = state transition matrix (linear transformation of the 

state vector) [1] = d(state vector)/d(orbital parameter) | at t0 * [d(state 
vector)/d(orbital parameter)]-1 | at t 

And, H″ (Observation-state mapping matrix) [1] is the relation 
between variation of the measurements and the state vector. 
 
3.2 Dual Ranging 

Orbit determination using only ranging measurements[10,11] 
approach is established to be independent from the Angular 
measurements  



 

Introducing in this work the precession and accuracy of Two (2) 
Station ranging as seen in the fig (7)[1] , and compare it with the standard 
single station configuration (range, Angular measurements).  
 

 
Fig (7): Dual ranging 

 
The next flow chart [1] shows the orbit determination algorithm for 

dual ranging measurement method; 
 

 
Fig(8) : Dual ranging Algorithm 

 
 
 

4. SIMULATION 
 

In this section we will provide two simulation results, which 
utilized two earth stations one located in Cairo with coordinates 29.5 N 
latitude, 31.2 E longitudes, and the other is located in Alexandria with 
coordinates 31.4 N latitude, 29.46 E longitudes. The implemented 
system for orbit calculations utilizes modern statistical method, using 
least square approach for minimizing the error. 

 
First: A comparison study for two (2) spacecraft between both 

nominal and dual ranging orbit determinations methods performed using 
a flight proven orbitoagraphy tool and using suggested program 
generated by MATLAB software. 

Varies orbit determinations have been performed for around three 
(3) years, each determination was based on two (2) complete days of 
tracking data. 

The shown results provide the final modified orbital parameters 
(semi-major axis, eccentricity vector in the x and y directions, 
inclination vector in the x and y directions and longitude) for varies 
methods used, and show comparable results with each others. 

 
 

S/L1 - a - Semi-major axis (Km)
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S/L1 - ex - Eccentricity in x-axis
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S/L1 - ey - Eccentricity in y-axis
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S/L1 - ix - Inclination in x-axis
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S/L1 - iy - Inclination in the y-axis
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S/L1 - l - Satellite Longituide
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S/L2 - a - Semi-major axis (Km)
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S/L2 - ex - Eccentricity in x-axis
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S/L2 - ey - Eccentricity in y-axis
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S/L2 - ix - Inclination in x-axis
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S/L2 - iy - Inclination in the y-axis
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S/L2 - l - Satellite Longituide
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Second: Case study of one orbit (Date: 09/12/2004 12:53:17) to 

show the evolution of the state vector and the perturbation model. 
 
First the final State vector (Position and Velocity) propagation 

model 

  
i.e. the X-axis represent number of measurements, Y-axis represent the 
position and velocity propagation 

 
Second the propagation of the perturbation model during one 

complete day (12 measurements) 

 
i.e. the X-axis represent number of measurements, Y-axis represent 

perturbation model propagation  



 

And finally, the propagation of the orbital parameters due to the 
orbit propagation with time taking into account the effect of varies 
orbital perturbations. 

 

 
i.e. the X-axis represent number of measurements, Y-axis represent 
orbital elements model propagation 
 
 

5. CONCLUSION 
 
From the above complete Three (3) year analysis study, it appears 

that an Orbit determination using ranging data from two stations apart 
by around 250 Km and located within different longitudes from the 
tracking satellite, is feasible and produce acceptable results. 

This conclusion lead to accepting the orbit computed from only the 
ranging data using two stations, thus in case of problems in the limited 
motion antenna campaign could be performed only using the fixed 
motion antenna and provide accurate and acceptable results. 
 
 

6. FUTURE WORK 
 
Next we will try to introduce different approach for the orbit 

determination by using spread spectrum technique instead of the normal 
Pseudo-range technique, discussing its capabilities and potentials. 
 
 
 

REFRENCES 
 
[1] “Deep Space Orbit Determination”, Master of Science Thesis, 
Chalmers University, Sweden, December 2005. 
[2] “Orbit determination methods for deep space drag-free controlled 
laser interferometry missions, Master of Science, University of 
Maryland , USA , 2006 
[3]  “Satellite Orbit and Ephemeris Determination using Inter Satellite 
Links” PHD – Germany , 2000 
[4] “Intelligent tracking of geostationary satellite”, Master Thesis in 
Electrical engineering – University of Texas at Arlington, August 2000. 
[5] Text book; “Orbital mechanics for engineering students” Howard 
Curtis, Professor, Aerospace Engineering, Embry-Riddle Aeronautical 
University, Florida, USA , 2005 
[6] Text book; “Statistical orbit determination” Byron Tapley, 
University of Texas at Austin, U.S.A. Bob Schutz, University of Texas 
at Austin,U.S.A. George Born, University of Colorado, U.S.A, 2004. 
[7] Text book; “Handbook of Geostationary orbits” ,E. M. SOOP , 1994. 

[8] Paper; “Tracking systems, their mathematical models and their 
errors” by W. D. Kuhn und F. Vonbun Goddurd Space Flight Center 
Greenbelt, Md. , Dec 1966. 
[9] Sorenson, H. W., “Least-squares estimation: from Gauss to Kalman,” 
IEEE Spectrum, Vol. 7, July 1970, pp. 63-68. 
[10] P. Wauthier, Etienne Bishops ,”On the co-location of eight Astra 
satellites” , International Symposium on space Dynamics , Biarritz , 
June 26-30,2000 
[11] Paper:  “Operational Aspects of an Innovative, DVB-S based, 
Satellite Ranging Tool” , by G. Harles, J. Wouters, B. Fritzsche , F. 
Haiduk - SES ASTRA, Fraunhofer Institute for Integrated Circuits, 
Branch Lab EAS, Dresden/Germany - SpaceOps Conference  2004. 


