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Abstract 
 

In this paper we propose a dynamic approach for 
setting several parameters of the IEEE 802.16 
Coordinated Distributed Scheduling scheme (CDS), 
using an opportunistic fashion. In particular, we 
evaluate the impact of the dynamic tuning of the 
XmtHoldoffExponent over the CDS scheme. The main 
idea of the dynamic approach is based on the simple 
observation that, nodes in a network, need different 
resources allocation in function of its own traffic load. 
Our approach is based on the observation of the data 
queue size of each node. Nodes with larger data 
queues will be able to set an opportunistic value (the 
XmtHoldoffExponent) to reduce the acquisition latency 
of a new control slot. Control slots are used by each 
node to try to reserve new data slots and to send 
scheduling information to neighborhoods. Extensive 
simulation study shows how the dynamic approach 
permits to select the appropriate XmtHoldoffExponent, 
improving system performances evaluated in terms of 
end-to-end delay and throughput. 
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1. Introduction 
 

The IEEE 802.16 standard [1, 2], promoted by 
WiMAX (Worldwide Interoperability for Microwave 
Access) forum [3], will be the leading technology for 
the wireless provisioning of broadband services in 
wide area networks. IEEE 802.16 supports mesh 
connectivity in a distributed way, and can be 
implemented in WMNs. The MAC layer is based on 
time division multiple access (TDMA) to support 
multiple users. Furthermore, the MAC layer supports 
two kinds of modes, namely point-to-multipoint (PMP) 
mode and mesh mode (MM). There is a plethora of 
works about the IEEE 802.16 on the PMP mode [4, 5, 
6]. In PMP mode, communication is only possible 

between a base station (BS) and a subscriber station 
(SS). In mesh mode multihop communication is 
possible between mesh subscriber stations (M-SSs).  
A very important factor that influences the 
performance of mesh networks is the assignment of 
available network resources. The assignment of 
resources can be organized in centralized or distributed 
manner.  
In this work we focus on the Coordinated Distributed 
Scheduling scheme (CDS). The main idea of the 
coordinated distributed scheduling is to let nodes 
calculate the usage of transmission opportunities on 
the neighborhood scheduling information. To achieve 
this goal, nodes will exchange 2-hop neighborhood 
scheduling information with each other. Since nodes 
shall run the scheduling algorithm independently, a 
common algorithm is necessary for each node in the 
neighborhood to calculate the same schedule. This 
algorithm must be random and predictable. One feature 
for the contention in this protocol is the pseudo-
random election algorithm based on the transmission 
schedules of two-hop neighbors. Nodes in the network 
are allowed to send their own schedule in a control slot 
acquired through a pseudo-random algorithm called 
Mesh Election function. One key factor of this 
algorithm is that the node persistence for the control 
slot acquisition is related to a parameter called 
XmtHoldoffExponent (XHE). Currently, the standard 
does not give rules for XHE setting and users are free 
to choose this parameter as they like.  
Our work start from the assumption that the correct 
choosing of XHE values should permit better 
performance in terms of throughput and average end-
to-end data packet delay. In order to verify this 
assumption, we developed a probabilistic algorithm, 
based on the buffer data size of each node, that sets 
XHE values in a dynamic fashion. Through the use of 
a well-known simulation tool, ns2 [7], we will show 
how our algorithm permits to obtain higher throughput 
and lower data packet delays. Our experiments show 
that, an appropriate configuration of scheduling 
parameters, such as XmtHoldoffExponent (XHE), may 



potentially improve the overall scheduling 
performance in terms of throughput and delay. The 
remainder of the paper is organized as follows. In 
Section 2, we briefly review IEEE 802.16 Mesh mode 
and the details of coordinated distributed scheduling 
algorithm. We then give, in Section 3, details of the 
proposed dynamic approach. In Section 4, we provide 
extensive simulation studies on scheduling 
performance both when the dynamic algorithm is used 
and not. We conclude the paper in Section 5.  
 
2. IEEE 802.16 Mesh Mode 

 
In order to achieve efficient collision-free multi-hop 

data transmissions, the Mesh Mode defines three 
scheduling schemes:  Centralized,  Coordinated 
Distributed, and Uncoordinated distributed. Our 
attention will be focused in Coordinated Distributed 
scheme. The frame structure is subdivided in two parts, 
respectively, Control Subframe and Data Subframe. In 
other words, control message and data packets are 
allocated in the same frame structure but in different 
time slots (see Figure 1).  
 

Figure 1. Frame structure in Mesh Mode. 
 

Moreover, two complementary types of Control 
sub-frame are defined in Mesh Mode but each frame 
can only have one of them. One is the Network Control 
sub-frame, his transmission occurs periodically and it 
is used to create and to maintain the cohesion between 
different systems. The other, formerly the Schedule 
Control sub-frame, occurs in all other frames without a 
Network Control sub-frame. Every control sub-frame 
consists of 16 transmission opportunities and every 
transmission opportunity consists in seven OFDM 
symbols time. The Data Sub-frame is situated at the 
end of the Control Sub-frame and it is divided into 
mini-slots. The mini-slot is the basic unit for resource 
allocation. In Coordinated Distributed Scheduling all 
the stations shall indicate their own schedule by 
sending a MSH-DSCH regularly. Mesh Distributed 
Scheduling messages (MSH-DSCH messages) are 
transmitted in the Schedule Control sub-frame. 

 

2.1 Coordinated Distributed Scheduling 
 
In this sub-section, we briefly review the coordinated 
distributed scheduling method in IEEE 802.16 Mesh 
mode. The assignment of transmission opportunities in 
the data sub-frame is managed by a scheduling 
mechanism. As we already said, we focus on the 
coordinated distributed scheduling mechanism (C-
DSCH) which employs a three-way handshake to 
request, grant and confirm transmission opportunities 
in the data sub-frame. MSH-DSCH messages are used 
to carry these requests, grants and confirmations. 
MSH-DSCH messages are sent within the C-DSCH 
part of the Schedule Control sub-frame (Figure 1). The 
transmission timing of the MSH-DSCH messages 
plays key role in our work. The MSH-DSCH messages 
scheduling is based on a distributed election 
mechanism which supports distributed coordinated 
transmission timing of periodic broadcast messages in 
a multi-hop network without explicit schedule 
negotiation. It provides collision-free and fair 
transmissions within the two-hop neighborhood of 
each node. To avoid collisions of MSH-DSCH 
messages, every node must inform its neighbors about 
the next MSH-DSCH transmission time. In order to 
save network resource and to reduce the signaling 
overhead, mesh nodes do not broadcast the exact 
NextXmtTime Opportunity (NXTO), in which a node is 
able to transmit in a collision-free fashion, but only a 
time interval, the NextXmtTimeInterval (NXTI). A 
node computes the NXTO  during its Current 
Transmission Time (CTT). The standard imposes that a 
node has to wait a time interval (XmtHoldoffTime -
XHT ) after its CTT before to transmit. XHT is defined 
as:  
 

XHT = 2(XHE +4)               (1) 
 

Practically, a node, after its CTT, is not allowed to 
transmit for a time period equal to the XHT defined 
through its XmtHoldoffExponent (XHE).  
The XHE term must assume a value in the range 
between 0 and 7. After XHT, a node has to compete 
with all of its two-hop neighbors to acquire a new 
transmission opportunity NXTO. 
The next transmission interval to transmit is set as: 
 

2XHE * NXM < NXTI ≤ 2XHE * (NXM +1)  (2) 
 

The NXTI is established based on a parameter called in 
the standard NextXmtMx (NXM). In order to establish 
its competing neighborhood the node runs a mesh 
election function in its CTT (current transmission time) 
based on the information about the NXTI of its 



neighbors and as well as their XHE values. For 
example, if NXM = 2 and XHE = 4 the station would 
be eligible between 33 and 48 transmission 
opportunities. 
 
2.2 Distributed Election Algorithm 
 
Every node calculates its NXTI during the current 
transmission according to the distributed election 
algorithm defined in [1, 2]. In this algorithm one node 
sets the first transmission slot, formerly the NXTO, 
just after the XHT as the temporary next transmission 
opportunity. Let us to call the current node that is 
running the mesh election function in its CTT, node A. 
Node A is trying to find a new transmission time after 
its XHT is spent. In order to do that, node A sets the 
next slot after the XHT as temporary slot and it will 
check whether this slot can be reserved or not. In order 
to explain the mechanism we define three different 
types of two-hop neighbors that have to be included in 
the competing neighborhood of the current node A,  
for different reasons. Specifically, node B has a NXTI 
(remember that mesh nodes do not broadcast the exact 
NXTO but only the NXTI) that includes the temporary 
transmission slot, so we have to include B as potential 
competing node. Node C computes its 
EarliestSubsequenceXmtTime parameter (ESXT, equal 
to NXTI + XHT) and it is ≤ the temporary 
transmission slot, and C has to be included ad 
competing node. Concerning node D, it has to be 
included as competing node because node A did not 
receive any information about it. The three different 
types of competing nodes are shown in Figure 2 a.   
 

Figure   2: a) Competing Nodes for the Next 
Transmission time slot. B) Pseudorandom 
Mixing Function 
 

The mesh election algorithm used to establish whether 
a temporary slot can be reserved as NXTO is a pseudo-
random function which uses the slot number and the 
Node’s ID as the inputs and is executed at each node. 
It generates pseudo-random values depending on the 
input. The node wins when its result is the largest 
mixing value (Figure 2 b).  When any node wins, it 
sets the NXTO as its next transmission time and 
logically it shall communicate this information to all 
the neighbors by sending the corresponding packet. In 
the case a node has not won, it chooses the next NXTO 
and repeats the algorithm as many times as it needs to 
win. Since the exact scheduled NXTO of the 
neighborhood is unknown, as implementation issue, 
one may define NXTO to be the last NXTO within the 
interval when calculating EarliestSubsequentXmtTime. 
The holdoff exponent value decides the channel 
contention time of node so it is an important parameter 
that can affect the system performance. MSH-DSCH 
messages are transmitted regularly by every node 
throughout the whole mesh network to distribute nodes 
schedules. As we already said, in this paper we focus 
on the CDS and analyze the transmission timing of the 
MSH-DSCH messages because this has much 
influence on the overall network performance.  

 
3. A Dynamic Approach for setting 
parameter of the Coordinated Distributed 
Scheduling 
 
As we already seen, to avoid collisions of MSH-DSCH 
messages every node must inform its neighbors about 
the next MSH-DSCH transmission time (or 
transmission opportunity). To save network resources 
and to reduce the control overhead mesh nodes do not 
broadcast the exact NXTO but only the 
NextXmtTimeInterval (NXTI) which is a series of one 
or more transmission opportunities. Therefore the 
IEEE 802.16 standard defines the parameters NXM 
and XHE. Since each node includes the own 
parameters and the parameters of all one-hop 
neighbors, it is able to calculate the NXTI of all nodes 
in the two hop neighborhood. In practice, a node has to 
wait a minimum of XHT (as defined in the previous 
section) after the current XMT before it can send the 
next MSH-DSCH message. In [8] the authors 
developed an analytical model to evaluate the system 
performance of the distributed scheduler of the IEEE 
802.16 mesh mode. Specifically, they developed 
methods for estimating the distributions of the node 
transmission interval and connection setup delay. 
Based on their analysis, the nodes with real time traffic 
shall have smaller holdoff exponents because they can 



have more chance to obtain data channel. However, 
too many nodes with small exponent value generate 
intensive competition that wastes system resource. A 
good reservation scheme should guarantee the 
bandwidth allocation fairness, improve the channel 
utilization and should adjust the exponent values of the 
nodes adaptively according to the competition node 
number variation. Based on these considerations we 
developed a probabilistic dynamic algorithm based on 
the size of data queues of each node that in a dynamic 
way adjust their holdoff exponents. Loosely speaking, 
each node evaluates the size of the data queue and it 
adjusts its XHE according to the value of this size: the 
greater is the value of the size (the greater is the 
number of data packets a node has to send) the smaller 
will be the XHE because the node shall have more 
chance to obtain data channel. Vice-versa, the smaller 
is the size of data queue the greater will be the XHE. A 
pseudo-code that shows the fundamental operations of 
the Dynamic Approach is the following: 
  

const int Max_Buffer_Size; 
var    int queue_size; 
//Node A is in the current transmission opportunity 
Node A evaluates its queue_size; 
//The number of data packets in the queue of the node 
// A is higher than the half of the maximum of the  
// queue size 
if (queue_size  >  Max_Buffer_size/2) then 
    XHE (Node A) = 0; 
//The number of data packet stored in the A data  
//queue is less than the half of the maximum size of the 
//queue 
else XHE (Node A) = probabilistic value between 1, 
2 or 3; 
//the probabilistic value is evenly chosen between 1, 
//2and 3 

 
This approach is probabilistic in the sense that after a 
node evaluated its data queue_size whether this size is 
less than the half size of the entire capability of the 
queue (i.e., if the queue size is 100 and the number of 
data packets is less or equal than 50), the node will set 
a XHE parameter between different values 1, 2 and 3 
in an evenly distributed fashion, that is a node will 
choose the value equal to 1 with a probability equal to 
0,333333. The same probability a node will choose the 
value equal to 2 and equal to 3.  We adopted this 
probabilistic technique in order to avoid all the nodes 
that have a small number of data packets to transmit to 
set the same value. When adopting a probabilistic 
approach it is possible to “spread” the competing 
nodes. In practice, we tried to have smaller 
competition area when considering the probabilistic 
approach.  Otherwise, when the number of data 

packets is higher than the half of the queue size, this 
means that a node need more data slots in a lesser time 
than other nodes. For this reason this node will set the 
XHE equal to 0.  The Max_Buffer_Size is the 
maximum number of data packets a node is able to 
store. This means that if we set Max_Buffer_Size equal 
to 50 (this is the actual value of buffer size we used in 
simulations)  and the buffer is full a node will drop 
next data packets. The parameter queue_size is the 
number of data packets stored at the current instant a 
node (Node A) has to send. We already said that this 
information is available at network layer. MAX_XHE 
is the maximum value of XmtHoldoffExponent that a 
node can acquire in our network. In [8] the authors 
argue that on choosing the MAX_XHE, 4 is large 
enough; otherwise, the connection setup latency will 
become too long. The threshold value of 
Max_Buffer_Size/2 has been heuristically chosen. 
Further study will be conducted to optimize this 
choice. We set MAX_XHE equal to 3 because higher 
values introduce an excessive latency for a node and, if 
a node does not have data packets to send, the 
information about its condition has to be known from 
its neighborhood. In practice, if a node has to wait 
longer time before to acquire a new opportunity to 
transmit it is not able to send its schedule information 
to the neighborhood. This implies that its neighbor 
nodes will include him as competing nodes because 
they do not have update information.  

 
4. Performance Evaluation 
 
In this section, we provide ns-2 [7] simulation results 
for various scenarios. We deal simulations to 
investigate the performance of the CDS when our 
dynamic scheme for setting XHE is applied and the 
CDS scheme in which static values of XHE are chosen 
at beginning. It is worth to note that the choice of this 
parameter has been left un-standardized in the 802.16  
and the main scope of this work is to show how  
different choices of XHE conduct to different 
behaviors of the network in terms of throughput and 
delay. Moreover, it is worth to note that we relate the 
setting of the XHE with data queue size because our 
feeling is that the latency of a node that needs to send 
more data packets than another one, should be smaller 
in order to avoid loss of data (overflow) or traffic 
congestion or at least reduce them. Note that our 
scheme does not introduce any starvation as nodes 
with smaller traffic to send are allowed to reserve data 
slots even if they are delayed compared to other nodes. 
In practice the inherent fairness policy of the standard 
is kept.   



4.1 Simulation Network Model 
 
The reference network architecture is a WiMAX mesh 
cloud interconnected to a Wide Area Network (WAN) 
through only one gateway node (Fig. 3). The Gateway 
node provide WAN connectivity to all other Mesh 
nodes. Practically, we suppose that all the data traffic 
is directed from a generic source node to the Gateway 
one. Nodes can act as traffic source node, traffic relay 
node or both. In other words, a Mesh node could be a 
direct traffic source, could have data packets to 
forward for other nodes in the network (Relay) or 
could be a direct traffic source while it is also 
forwarding traffic for other nodes. Nodes are randomly 
positioned in a square grid of 1000 meter x 1000 
meter.  
 

             MESH Cloud

WAN
GATEWAY

Figure 3. Network architecture. 
 
The performance evaluation of our proposal was made 
utilizing the well-known simulation tool ns2. We first 
outline that the current MAC modules of ns-2 include 
802.11, Ethernet, TDMA and satellite; however, no 
802.16 MAC module is available. In our work, we 
implemented a new MAC module for the IEEE 802.16 
mesh mode and use it to study the system performance. 
There is a logical component, the scheduling part, that 
handles the signaling channel contention and data 
allocation. During the holdoff time of a node, the 
MSH-DSCH messages  received from PHY module 
are sent to the scheduling component. In the 
transmission slot, the scheduling component contends 
the next transmission time using the election algorithm 
defined in the standard based on the collected 
neighbor’s information. The data channel component 
receives and transmits data packets in the allocated 
time slots. The XHE value determines the node 

transmission interval and holdoff time. We made 
simulations for both static and dynamic management 
of XHE parameter. In the static case, that is the case in 
which identical holdoff exponents have been assigned 
to every node in the network, we considered different 
values (0, 1 and 2) for the XHE value. Furthermore, 
we evaluated the CDS scheme with our probabilistic 
dynamic approach. In this work we are interested on 
evaluating the impact of the distributed scheduling 
scheme on the performance of the network. 
Specifically, we evaluate some significant parameters 
for wireless mesh networks:  
1) Throughput: is the number of data packets 

correctly delivered to the destination over the 
number of data packets sent; 

2) Average end-to-end data packet delay: the time  
that takes into account all the delay encountered 
in the network as buffering delay, transmission 
delay and propagation delay of data packets; 

3) Latency: the average interval between an 
opportunity to transmit and the next opportunity 
to transmit for each node or, in other words, the 
average time interval that occurs between the 
transmission of a MSH-DSCH and the next 
transmission of a new MSH-DSCH (remember 
that the opportunity to transmit is used both for 
updating the neighborhood with the current 
schedule and for the reservation of data slots so 
the latency is an important parameter that can 
affect the performance of the network).  

These three parameters have been chosen because the 
biggest challenge in building a wireless backhaul is to 
provide performance (throughput and delay) similar to 
those typically offered by a wired backhaul.  
Simulation Parameters are given in Table I. The 
considered network scenario consists of a variable 
number of mesh nodes (specifically we considered a 
number of nodes equal to 30, 40, 50, 60, 70 and 80 
nodes) and one Gateway node. The Gateway 
interconnects the mesh network with other networks 
that could be potentially wired or wireless. We 
differentiate data rates for different sources in order to 
create scenarios in which data traffic is heterogeneous. 
Notice that a node can activate simultaneously more 
than one data source. We simulated two scenarios, 
respectively a light data traffic scenario and a heavy 
data traffic scenario.  
In the light scenario we set 20 traffic sources: ten of 
these send data traffic at a rate of 5 pkts/sec, 5 sources 
that send at a rate of 50 pkts/sec and 5 sources that 
send data packets at a rate of 500 pkts/sec. The total 
number of data packets transmitted is 200000. In the 
heavy scenario we considered 40 traffic sources: 10 
sources that send data traffic at a rate of 5 pkts/sec, 15 



sources that send at a rate of 50 pkts/sec and 15 
sources that send data packets at a rate of 500 pkts/sec. 
The total number of data packets is 400000. 

TABLE I.  SIMULATION  PARAMETERS 

Input Parameters 
Simulation area 1000x1000 meter
Traffic sources CBR 
Number of traffic sources 20 (light scenario), 40 

(heavy scnenario)
Number of nodes 30, 40, 50, 60, 70, 80
Size of data packets 64 bytes 
Transmission range 250 m 
Simulation Time  500 s 
Data Buffer Size 50 
Light data traffic scenario  
Number of traffic sources 20 
Sending rate  5, 50, 500 pkts/sec
10 sources 5 pkts/sec 
5 sources 50 pkts/sec 
5 sources 500 pkts/sec 
Heavy data traffic scenario  
Number of Traffic sources 40 
Sending rate  5, 50, 500 pkts/sec
10 sources Rate 5 pkts/sec 
15 sources Rate 50 pkts/sec 
15 sources Rate 500 pkts/sec
     Simulator 
Simulator  NS-2 (version 2.1b6a)
Medium Access Protocol  802.16 (CDS) 
Link Bandwidth 1 Mbps 
Confidence interval 95% 
#run 10 

We will show that even though in some cases the 
average value of the latency increases when our 
mechanism to set the XHE is used, we obtain better 
performance in terms of throughput and data delay.  

 
4.2 Simulation Results 
 
In this sub-section we show simulations results.  
First of all, we analyze results concerning the scenario 
we called light data traffic scenario. Specifically we 
considered throughput and average end-to-end data 
packet delay varying the number of nodes in the 
network. Indeed, we considered scenarios with 30, 40, 
50, 60, 70 and 80 nodes in the network. Concerning 
the light scenario we also analyzed the average latency, 
that is the average interval time to obtain an NXTO 
and the next.  
After, we considered the “heavy” data traffic scenario 
in which 40 sources have been introduced during each 
simulation run. Once throughput and end-to-end delay 
have been presented, we consider a specific simulation 
scenario with 50 nodes and we draw for 1 and 2 hops 
neighbors of the gateway the average latency in a 
specific run and the total number of data packets a 
node managed during a simulation run. This 
representation is useful to understand how our 

approach works, that is the effect of applying our 
algorithm.  
Finally, concerning this specific scenario with 50 
nodes, we give an instantaneous “snapshot” 
representing the simulation scenario of nodes at 1, 2 
and 3 hops away from the gateway. For each node we 
consider whether the node is at 1, 2 or 3 hops 
gateway’s neighbor, the total number of data packets 
involved this node during the simulation run we are 
considering and the average latency. This snapshot 
should be more useful to understand internal 
mechanism of our dynamic algorithm.  
In Figure 4 we can see the Throughput obtained when 
we considered static values of the XHE identical for 
each node and respectively equal to 0, 1 and 2. Higher 
values of XHE are not shown because they introduce 
an excessive latency and performance of the networks 
are worst in terms of throughput and delay. 
Furthermore, we evaluated our probabilistic dynamic 
approach called ProbApproach in each plot. It is worth 
to remember that our approach is based on the data 
queue size. In practice, the contention window of each 
node is modified based on the data traffic a node has to 
manage in a certain time. As we can see in Figure 4 a 
dynamic setting of the XHE allows to overcome in 
terms of throughput 802.16-XHE-0, 802.16-XHE-1 
and 802.16XHE-2.  
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Figure 4. Throughput (light scenario). 
 
This result is not surprisingly because we choose to 
modify the contention window of a node based on the 
need of each node to transmit data packets. It is worth 
to note that our approach is not optimal, in the sense 
that the choice of the data queue size fixed equal to the 
half of the maximum size of data buffer has been 
heuristically found. However, we believe that results 
obtained are encouraging and permit to trace some 
ideas to set the parameters in the distributed scheduling 
scheme in a dynamic fashion.   
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Figure 5. Average end-to-end data packet 
delay (light scenario).  
 
On the other hand, good results have been obtained 
also when the average end-to-end data packet delay 
has been considered as shown in Figure 5. It is worth 
to note that the average end-to-end data packet delay 
of our mechanism outperforms results of the others 
three schemes even though the average latency (Fig. 6) 
of our scheme is higher than the latency of the 802.16-
XHE-0 and 802.16-XHE-1. In Figure 6 the average 
latency of the light scenario is shown. Of course, we 
have to take into account that we estimated the average 
latency. This means that sources that have to send less 
data packets will be characterized with higher latency 
and sources that have to send more data packets will be 
associated with smaller latency values.  
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Figure 6. Average latency (light scenario). 
 
We can observe that when the XHE increases the 
average latency increases too. As we can observe in 
Figures 4 and 5 the increasing of the latency does not 
necessarily correspond  to worst behavior in terms of 

throughput or end-to-end delay. Our approach permits 
a more loaded node to contend in a more “aggressive” 
way than a node that has a smaller number of data 
packets to send, but this latter does not starve, in the 
sense that it is only delayed to reserve data slots. 
In order to confirm the effectiveness of the 
probabilistic dynamic algorithm proposed results for 
the heavy data traffic scenario are shown in figures 7 
and 8. This second scenario has been considered as the 
average latency should increase when an higher 
number of data packets involves nodes. 
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Figure 7. Throughput (heavy data traffic) 
 
The “strange” slope obtained in Figure 4 and 7 when 
passing from 40 nodes to 50 nodes is due to the fact 
that even if the number of competing nodes increases, 
the possibility to find different paths and to use 
different nodes to send  data traffic increases too.  
For this reason, when considering 50 nodes, 
performance in terms of throughput and end-to-end 
data packet delay are better than at 40 nodes. On the 
other hand, when the number of nodes increases the 
contention between  nodes increases too, but when we 
have 50 nodes in the network the average number of 
neighbors for each node is less or equal to the number 
of control slots (opportunities to transmit, that are 
fixed equal to 16 for each frame in the standard). 
Generally, when the density of the network increases 
the average number of neighbors for each node 
increases too. Hence, even though the possibility to 
find a path with a smaller number of hops increases in 
this case, the possibility to catch an opportunity to 
transmit decreases. In Table II we show the different 
number of neighbors when different scenarios of 
networks are considered. Specifically, we computed 
the number of neighbors N’ (1 and 2 hop) analytically 
and through the simulation scenarios created in ns2. 
Concerning the analytical scheme let N1 the number of 
1-hop neighbors (it is the number of nodes in the 
coverage area of a Mesh Router). N1 can be expressed 



as 21N rρπ= where ρ  is the network density and 

can be expressed as 2R
N

π
ρ = . N’ is the number 

of 1 and 2-hop neighbors and can be computed as 

2

2
' 4

R
rNN = , in which r is the radius of each node 

(in our simulation we supposed all the nodes have the 
same radius or transmission range equal to 250 meter), 
R is the range of the network and  N is the number of 
nodes in the networks. 

TABLE II.  NUMBER OF NEIGHBORS (1AND 2 HOP) CONSIDERING 
DIFFERENT SCENARIOS 

# Nodes in the 
Network 

N’ 
(Analytical) 

N’ 
(Simulation)

30 7,5 7,6 
40 10 11,3 
50 12,5 17 
60 15 20 
70 17,5 22 
80 20 24 

 
We can observe that when the number of nodes is 
smaller or equal to 50 the number of control slots 
(opportunities to transmit) is, in average, sufficient for 
each node in each frame. When the number of nodes in 
the network increases the average number of neighbors 
(1 and 2 hop neighbors) increases too and number of 
control slots is not sufficient to cover each node in 
each frame.  
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Figure 8. Average end-to-end data delay 
(heavy data traffic ). 
 
For this reason when we consider performance in 
terms of throughput and end-to-end delay and the 
number of nodes is higher than 60 the behavior is 

worst than in the case of 50 nodes or a smaller number 
of nodes. On the other hand this behavior is confirmed 
when the average end-to-end data packet delay is 
considered in Figure 6 and 8.  
In Table III and Table IV we reported the latency and 
the total number of data packets that a node managed 
during a simulation run at 1 and 2 hops respectively. 
We considered a simulation scenario with 50 nodes 
when heavy traffic is considered. In practice results 
reported in the tables refer to the same scenario 
considered to obtain results in Figures 7 and 8. Due to 
the lack of space we only reported results of nodes at 1 
and 2 hops away from the gateway but they are 
sufficient in order our algorithm to be explained. 
Generally, we can observe as the latency decreases 
while the number of data packets increases. This is a 
side effect of our algorithm, because the XHE 
parameter is set to smaller values when a node needs to 
send more data packets and vice-versa. 

TABLE III.  1-HOP NEIGHBORS (NETWORK WITH 50 NODES 
ANDHEAVY  DATA TRAFFIC) 

Node Latency 
(Prob-
App) 

#Data 
Packets 
(Prob-
App) 

Latency 
(802-16-
XHE-1) 

#Data 
Packet
s (802-
16-
XHE-
1) 

0 0,226046 10000 0,14505 10000 
3 0,209472 91185 0,14647 86982 
10 0,202951 29688 0,14442 83576 
12 0,238848 50999 0,14345 43508
21 0,241095 10000 0,13595 10000 
23 0,234214 0 0,13498 0 
25 0,224778 20000 0,13687 20000 
37 0,195972 51307 0,15136 1530 
44 0,229106 13046 0,15243 17488 
45 0,248828 10000 0,15235 10000 
47 0,250282 20000 0,15128 20000 
 Avg 

Latency 
Tot 
Data 
Pakts 

Avg 
Latency 

Tot 
Data 
Pakts 

0,22557 306225 0,14496 303084
 
Of course, the fact we assign smaller values to  XHE 
parameter does not mean that the latency always 
decreases. Indeed, smaller values of XHE correspond 
with smaller contention window, but a node needs to 
contend with its neighborhood and we computed the 
average latency taking into account the instant time a 
node reserves a new opportunity to transmit (control 
slot).  



TABLE IV.  2-HOP-NEIGHBORS (NETWORK WITH 50 NODES AND 
HEAVY DATA TRAFFIC) 

Node Latency 
(Prob-
App) 

#Data 
Packets 
(Prob-
App) 

Latency 
(802-
16-
XHE-1) 

#Data 
Packets 
(802-
16-
XHE-1) 

4 0,23271 10000 0,14519 27931 
14 0,23750 31076 0,14345 10000 
15 0,23901 10000 0,14324 10000 
20 0,23597 10000 0,13614 40331 
22 0,23196 10000 0,13516 30616 
24 0,22564 57919 0,13712 36270 
28 0,22306 10000 0,13514 10000
29 0,24620 13063 0,13502 7488 
30 0,20180 76461 0,13582 51879 
43 0,24987 0 0,15136 0 
 Avg 

Latency 
Tot 
Data 
Pkts 

Avg 
Latency 

Tot 
Data 
Pkts 

 0,23233 228529 0,13916 224515 
 
Moreover, latency values reported in the table are 
averaged on the duration of a run, that is the latency is 
an average latency and so it takes into account smaller 
values of XHE and higher values of XHE based on the 
specific time the XHE value is considered. Let 
consider the following example: imagine a node A has 
to send a lot of data packets in a certain time, so its 
XHE will be a small value. On the other hand it will 
happen that this node A in a certain time does not have 
to send a large number of data packets, so in this 
instant time if we considere the XHE, we obtain an 
higher XHE value and the latency will increase. So, it 
can happen that even if a node managed more data 
packets than another node its average latency is 
slightly higher or close to the average value of another 
node.  
In order to verify this behavior we can consider nodes 
4 and 14 in Table IV. Nodes 14 manages more data 
packets than node 4 but its average latency is slightly 
higher than those of node 4. Generally, the effect of 
applying our algorithm is that more data packets 
correspond with smaller latency.  
This result is due to the dynamic mechanism 
introduced allowing to change in a dynamic fashion 
the probability to reserve data slots and so to transmit 
data packets. This means that a more loaded node (that 
is, a node that has the necessity to send more data 
packets) will contend in a more aggressive way in 
respect of a node that has a smaller number of data 
packets to send. 

In Figure 9, we give an instantaneous “snapshot” of 
the network when 50 nodes are considered and the 
scenario is those referred as “heavy” data traffic 
scenario. Due to the lack of space, we did not report all 
the nodes in the networks, but we plotted only some 
nodes. Specifically, we showed nodes at 3 hops away 
from the gateway (node 1) and for each node the total 
number of data packets that this node managed during 
a simulation run and the average latency have been 
shown. We can observe as the greater is the number of 
packets a node managed during a simulation run the 
lower is the average latency related with this node. 
Indeed, observe at the level of 1-hop node 37 and node 
21.  
 

Figure 9. Actual example of simulation results 
in which a network of 50 nodes in a 1000 
meter x 1000 meter has been considered with 
heavy traffic. 
 
The first one manages 51307 data packets (a node can 
manage some data packet as relay node for another 
node, for example 37 could be charged to send data 
packet for node 30 and it can send their own packets) 
and the average latency is 0,19507 sec. On the other 
hand the second one, node 21, manages 10000 data 
packets and its average latency is 0,2410 sec. This 
behavior is an effect of the application of our dynamic 
algorithm. In fact, our algorithm will set more times 



smaller values of parameter XHE in the schedule 
scheme for node 37 in respect of node 21. It is worth to 
observe that the average latency is not linearly related 
with the speed to send data packets. In fact, we already 
outlined that the scheduling frame is characterized with 
two kinds of frames, a control frame where we 
consider the latency expressed as the time occurring 
between a control slot reservation and the next control 
slot reservation. The other part of the frame is 
characterized with the data frame, in which the 
reservation of data slots takes place. In conclusion we 
can affirm that the effect of our algorithm is that the 
average latency of each node during a simulation run 
decrease when the total number of data packets the 
node has to manage increases. A positive effect of the 
application of this algorithm is the increasing of the 
data packets delivered to the destination and the time 
required to deliver these packets decreases. In practice, 
we show a simple way to set an un-standardized 
parameter. 
 

5. Conclusions 
 
In this paper we analyze the performance of the 
Coordinated Distributed Scheduler of the Std. IEEE 
802.16. In order to do that we implemented this 
scheduler in a well-known network simulation tool, 
ns2. We had to implement a MAC module for the 
802.16 because nowadays there is not an available 
MAC module for IEEE 802.16. Some results obtained 
confirm results known in literature. In fact, the latency 
increases when the number of nodes in the network 
increases too. In order to obtain a higher scalability we 
developed a simple dynamic and probabilistic queue-
size based algorithm that in a dynamic way permits to 
set the XmtHoldoffExponent (XHE). 
 

The setting of XHE is a critical point of the standard 
scheduler because it determines the contention window 
of each node. Furthermore, the contention window of 
each node in a distributed environment depends of the 
neighborhood. In this work we proposed a mechanism 
to set in a dynamic and probabilistic fashion XHE 
parameter. Of course this work is not at all exhaustive 
as far as the setting of parameter is concerned. Indeed, 
the contention window of each node strictly depends 
of the number of neighbors. As further work we would 
like to improve the parameters tuning taking into 
account other aspects like the number of neighbors or 
the presence of expiring packets into buffers.  
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