
A probabilistic approach for evaluating parameters of the Distributed
Scheduling Scheme of the 802.16

Valeria Loscri’, Gianluca Aloi

University of Calabria, D.E.I.S. 87036, Arcavacata di Rende (CS)
{vloscri, aloi} @deis.unical.it

Abstract

In this paper we propose a dynamic approach for
setting several parameters of the IEEE 802.16
Coordinated Distributed Scheduling scheme (CDS),
using an opportunistic fashion. In particular, we
evaluate the impact of the dynamic tuning of the
XmtHoldoffExponent over the CDS scheme. The main
idea of the dynamic approach is based on the simple
observation that, nodes in a network, need different
resources allocation in function of its own traffic load.
Our approach is based on the observation of the data
queue size of each node. Nodes with larger data
queues will be able to set an opportunistic value (the
XmtHoldoffExponent) to reduce the acquisition latency
of a new control slot. Control slots are used by each
node to try to reserve new data slots and to send
scheduling information to neighborhoods. Extensive
simulation study shows how the dynamic approach
permits to select the appropriate XmtHoldoffExponent,
improving system performances evaluated in terms of
end-to-end delay and throughput.

Key-words: Mesh networks, distributed scheduling,

dynamic approach, 802.16

1. Introduction

The IEEE 802.16 standard [1, 2], promoted by
WiMAX (Worldwide Interoperability for Microwave
Access) forum [3], will be the leading technology for
the wireless provisioning of broadband services in
wide area networks. IEEE 802.16 supports mesh
connectivity in a distributed way, and can be
implemented in WMNs. The MAC layer is based on
time division multiple access (TDMA) to support
multiple users. Furthermore, the MAC layer supports
two kinds of modes, namely point-to-multipoint (PMP)
mode and mesh mode (MM). There is a plethora of
works about the IEEE 802.16 on the PMP mode [4, 5,
6]. In PMP mode, communication is only possible

between a base station (BS) and a subscriber station
(SS). In mesh mode multihop communication is
possible between mesh subscriber stations (M-SSs).
A very important factor that influences the
performance of mesh networks is the assignment of
available network resources. The assignment of
resources can be organized in centralized or distributed
manner.
In this work we focus on the Coordinated Distributed
Scheduling scheme (CDS). The main idea of the
coordinated distributed scheduling is to let nodes
calculate the usage of transmission opportunities on
the neighborhood scheduling information. To achieve
this goal, nodes will exchange 2-hop neighborhood
scheduling information with each other. Since nodes
shall run the scheduling algorithm independently, a
common algorithm is necessary for each node in the
neighborhood to calculate the same schedule. This
algorithm must be random and predictable. One feature
for the contention in this protocol is the pseudo-
random election algorithm based on the transmission
schedules of two-hop neighbors. Nodes in the network
are allowed to send their own schedule in a control slot
acquired through a pseudo-random algorithm called
Mesh Election function. One key factor of this
algorithm is that the node persistence for the control
slot acquisition is related to a parameter called
XmtHoldoffExponent (XHE). Currently, the standard
does not give rules for XHE setting and users are free
to choose this parameter as they like.
Our work start from the assumption that the correct
choosing of XHE values should permit better
performance in terms of throughput and average end-
to-end data packet delay. In order to verify this
assumption, we developed a probabilistic algorithm,
based on the buffer data size of each node, that sets
XHE values in a dynamic fashion. Through the use of
a well-known simulation tool, ns2 [7], we will show
how our algorithm permits to obtain higher throughput
and lower data packet delays. Our experiments show
that, an appropriate configuration of scheduling
parameters, such as XmtHoldoffExponent (XHE), may

potentially improve the overall scheduling
performance in terms of throughput and delay. The
remainder of the paper is organized as follows. In
Section 2, we briefly review IEEE 802.16 Mesh mode
and the details of coordinated distributed scheduling
algorithm. We then give, in Section 3, details of the
proposed dynamic approach. In Section 4, we provide
extensive simulation studies on scheduling
performance both when the dynamic algorithm is used
and not. We conclude the paper in Section 5.

2. IEEE 802.16 Mesh Mode

In order to achieve efficient collision-free multi-hop

data transmissions, the Mesh Mode defines three
scheduling schemes: Centralized, Coordinated
Distributed, and Uncoordinated distributed. Our
attention will be focused in Coordinated Distributed
scheme. The frame structure is subdivided in two parts,
respectively, Control Subframe and Data Subframe. In
other words, control message and data packets are
allocated in the same frame structure but in different
time slots (see Figure 1).

Figure 1. Frame structure in Mesh Mode.

Moreover, two complementary types of Control
sub-frame are defined in Mesh Mode but each frame
can only have one of them. One is the Network Control
sub-frame, his transmission occurs periodically and it
is used to create and to maintain the cohesion between
different systems. The other, formerly the Schedule
Control sub-frame, occurs in all other frames without a
Network Control sub-frame. Every control sub-frame
consists of 16 transmission opportunities and every
transmission opportunity consists in seven OFDM
symbols time. The Data Sub-frame is situated at the
end of the Control Sub-frame and it is divided into
mini-slots. The mini-slot is the basic unit for resource
allocation. In Coordinated Distributed Scheduling all
the stations shall indicate their own schedule by
sending a MSH-DSCH regularly. Mesh Distributed
Scheduling messages (MSH-DSCH messages) are
transmitted in the Schedule Control sub-frame.

2.1 Coordinated Distributed Scheduling

In this sub-section, we briefly review the coordinated
distributed scheduling method in IEEE 802.16 Mesh
mode. The assignment of transmission opportunities in
the data sub-frame is managed by a scheduling
mechanism. As we already said, we focus on the
coordinated distributed scheduling mechanism (C-
DSCH) which employs a three-way handshake to
request, grant and confirm transmission opportunities
in the data sub-frame. MSH-DSCH messages are used
to carry these requests, grants and confirmations.
MSH-DSCH messages are sent within the C-DSCH
part of the Schedule Control sub-frame (Figure 1). The
transmission timing of the MSH-DSCH messages
plays key role in our work. The MSH-DSCH messages
scheduling is based on a distributed election
mechanism which supports distributed coordinated
transmission timing of periodic broadcast messages in
a multi-hop network without explicit schedule
negotiation. It provides collision-free and fair
transmissions within the two-hop neighborhood of
each node. To avoid collisions of MSH-DSCH
messages, every node must inform its neighbors about
the next MSH-DSCH transmission time. In order to
save network resource and to reduce the signaling
overhead, mesh nodes do not broadcast the exact
NextXmtTime Opportunity (NXTO), in which a node is
able to transmit in a collision-free fashion, but only a
time interval, the NextXmtTimeInterval (NXTI). A
node computes the NXTO during its Current
Transmission Time (CTT). The standard imposes that a
node has to wait a time interval (XmtHoldoffTime -
XHT) after its CTT before to transmit. XHT is defined
as:

XHT = 2(XHE +4) (1)

Practically, a node, after its CTT, is not allowed to
transmit for a time period equal to the XHT defined
through its XmtHoldoffExponent (XHE).
The XHE term must assume a value in the range
between 0 and 7. After XHT, a node has to compete
with all of its two-hop neighbors to acquire a new
transmission opportunity NXTO.
The next transmission interval to transmit is set as:

2XHE * NXM < NXTI ≤ 2XHE * (NXM +1) (2)

The NXTI is established based on a parameter called in
the standard NextXmtMx (NXM). In order to establish
its competing neighborhood the node runs a mesh
election function in its CTT (current transmission time)
based on the information about the NXTI of its

neighbors and as well as their XHE values. For
example, if NXM = 2 and XHE = 4 the station would
be eligible between 33 and 48 transmission
opportunities.

2.2 Distributed Election Algorithm

Every node calculates its NXTI during the current
transmission according to the distributed election
algorithm defined in [1, 2]. In this algorithm one node
sets the first transmission slot, formerly the NXTO,
just after the XHT as the temporary next transmission
opportunity. Let us to call the current node that is
running the mesh election function in its CTT, node A.
Node A is trying to find a new transmission time after
its XHT is spent. In order to do that, node A sets the
next slot after the XHT as temporary slot and it will
check whether this slot can be reserved or not. In order
to explain the mechanism we define three different
types of two-hop neighbors that have to be included in
the competing neighborhood of the current node A,
for different reasons. Specifically, node B has a NXTI
(remember that mesh nodes do not broadcast the exact
NXTO but only the NXTI) that includes the temporary
transmission slot, so we have to include B as potential
competing node. Node C computes its
EarliestSubsequenceXmtTime parameter (ESXT, equal
to NXTI + XHT) and it is ≤ the temporary
transmission slot, and C has to be included ad
competing node. Concerning node D, it has to be
included as competing node because node A did not
receive any information about it. The three different
types of competing nodes are shown in Figure 2 a.

Figure 2: a) Competing Nodes for the Next
Transmission time slot. B) Pseudorandom
Mixing Function

The mesh election algorithm used to establish whether
a temporary slot can be reserved as NXTO is a pseudo-
random function which uses the slot number and the
Node’s ID as the inputs and is executed at each node.
It generates pseudo-random values depending on the
input. The node wins when its result is the largest
mixing value (Figure 2 b). When any node wins, it
sets the NXTO as its next transmission time and
logically it shall communicate this information to all
the neighbors by sending the corresponding packet. In
the case a node has not won, it chooses the next NXTO
and repeats the algorithm as many times as it needs to
win. Since the exact scheduled NXTO of the
neighborhood is unknown, as implementation issue,
one may define NXTO to be the last NXTO within the
interval when calculating EarliestSubsequentXmtTime.
The holdoff exponent value decides the channel
contention time of node so it is an important parameter
that can affect the system performance. MSH-DSCH
messages are transmitted regularly by every node
throughout the whole mesh network to distribute nodes
schedules. As we already said, in this paper we focus
on the CDS and analyze the transmission timing of the
MSH-DSCH messages because this has much
influence on the overall network performance.

3. A Dynamic Approach for setting
parameter of the Coordinated Distributed
Scheduling

As we already seen, to avoid collisions of MSH-DSCH
messages every node must inform its neighbors about
the next MSH-DSCH transmission time (or
transmission opportunity). To save network resources
and to reduce the control overhead mesh nodes do not
broadcast the exact NXTO but only the
NextXmtTimeInterval (NXTI) which is a series of one
or more transmission opportunities. Therefore the
IEEE 802.16 standard defines the parameters NXM
and XHE. Since each node includes the own
parameters and the parameters of all one-hop
neighbors, it is able to calculate the NXTI of all nodes
in the two hop neighborhood. In practice, a node has to
wait a minimum of XHT (as defined in the previous
section) after the current XMT before it can send the
next MSH-DSCH message. In [8] the authors
developed an analytical model to evaluate the system
performance of the distributed scheduler of the IEEE
802.16 mesh mode. Specifically, they developed
methods for estimating the distributions of the node
transmission interval and connection setup delay.
Based on their analysis, the nodes with real time traffic
shall have smaller holdoff exponents because they can

have more chance to obtain data channel. However,
too many nodes with small exponent value generate
intensive competition that wastes system resource. A
good reservation scheme should guarantee the
bandwidth allocation fairness, improve the channel
utilization and should adjust the exponent values of the
nodes adaptively according to the competition node
number variation. Based on these considerations we
developed a probabilistic dynamic algorithm based on
the size of data queues of each node that in a dynamic
way adjust their holdoff exponents. Loosely speaking,
each node evaluates the size of the data queue and it
adjusts its XHE according to the value of this size: the
greater is the value of the size (the greater is the
number of data packets a node has to send) the smaller
will be the XHE because the node shall have more
chance to obtain data channel. Vice-versa, the smaller
is the size of data queue the greater will be the XHE. A
pseudo-code that shows the fundamental operations of
the Dynamic Approach is the following:

const int Max_Buffer_Size;
var int queue_size;
//Node A is in the current transmission opportunity
Node A evaluates its queue_size;
//The number of data packets in the queue of the node
// A is higher than the half of the maximum of the
// queue size
if (queue_size > Max_Buffer_size/2) then
 XHE (Node A) = 0;
//The number of data packet stored in the A data
//queue is less than the half of the maximum size of the
//queue
else XHE (Node A) = probabilistic value between 1,
2 or 3;
//the probabilistic value is evenly chosen between 1,
//2and 3

This approach is probabilistic in the sense that after a
node evaluated its data queue_size whether this size is
less than the half size of the entire capability of the
queue (i.e., if the queue size is 100 and the number of
data packets is less or equal than 50), the node will set
a XHE parameter between different values 1, 2 and 3
in an evenly distributed fashion, that is a node will
choose the value equal to 1 with a probability equal to
0,333333. The same probability a node will choose the
value equal to 2 and equal to 3. We adopted this
probabilistic technique in order to avoid all the nodes
that have a small number of data packets to transmit to
set the same value. When adopting a probabilistic
approach it is possible to “spread” the competing
nodes. In practice, we tried to have smaller
competition area when considering the probabilistic
approach. Otherwise, when the number of data

packets is higher than the half of the queue size, this
means that a node need more data slots in a lesser time
than other nodes. For this reason this node will set the
XHE equal to 0. The Max_Buffer_Size is the
maximum number of data packets a node is able to
store. This means that if we set Max_Buffer_Size equal
to 50 (this is the actual value of buffer size we used in
simulations) and the buffer is full a node will drop
next data packets. The parameter queue_size is the
number of data packets stored at the current instant a
node (Node A) has to send. We already said that this
information is available at network layer. MAX_XHE
is the maximum value of XmtHoldoffExponent that a
node can acquire in our network. In [8] the authors
argue that on choosing the MAX_XHE, 4 is large
enough; otherwise, the connection setup latency will
become too long. The threshold value of
Max_Buffer_Size/2 has been heuristically chosen.
Further study will be conducted to optimize this
choice. We set MAX_XHE equal to 3 because higher
values introduce an excessive latency for a node and, if
a node does not have data packets to send, the
information about its condition has to be known from
its neighborhood. In practice, if a node has to wait
longer time before to acquire a new opportunity to
transmit it is not able to send its schedule information
to the neighborhood. This implies that its neighbor
nodes will include him as competing nodes because
they do not have update information.

4. Performance Evaluation

In this section, we provide ns-2 [7] simulation results
for various scenarios. We deal simulations to
investigate the performance of the CDS when our
dynamic scheme for setting XHE is applied and the
CDS scheme in which static values of XHE are chosen
at beginning. It is worth to note that the choice of this
parameter has been left un-standardized in the 802.16
and the main scope of this work is to show how
different choices of XHE conduct to different
behaviors of the network in terms of throughput and
delay. Moreover, it is worth to note that we relate the
setting of the XHE with data queue size because our
feeling is that the latency of a node that needs to send
more data packets than another one, should be smaller
in order to avoid loss of data (overflow) or traffic
congestion or at least reduce them. Note that our
scheme does not introduce any starvation as nodes
with smaller traffic to send are allowed to reserve data
slots even if they are delayed compared to other nodes.
In practice the inherent fairness policy of the standard
is kept.

4.1 Simulation Network Model

The reference network architecture is a WiMAX mesh
cloud interconnected to a Wide Area Network (WAN)
through only one gateway node (Fig. 3). The Gateway
node provide WAN connectivity to all other Mesh
nodes. Practically, we suppose that all the data traffic
is directed from a generic source node to the Gateway
one. Nodes can act as traffic source node, traffic relay
node or both. In other words, a Mesh node could be a
direct traffic source, could have data packets to
forward for other nodes in the network (Relay) or
could be a direct traffic source while it is also
forwarding traffic for other nodes. Nodes are randomly
positioned in a square grid of 1000 meter x 1000
meter.

 MESH Cloud

WAN
GATEWAY

Figure 3. Network architecture.

The performance evaluation of our proposal was made
utilizing the well-known simulation tool ns2. We first
outline that the current MAC modules of ns-2 include
802.11, Ethernet, TDMA and satellite; however, no
802.16 MAC module is available. In our work, we
implemented a new MAC module for the IEEE 802.16
mesh mode and use it to study the system performance.
There is a logical component, the scheduling part, that
handles the signaling channel contention and data
allocation. During the holdoff time of a node, the
MSH-DSCH messages received from PHY module
are sent to the scheduling component. In the
transmission slot, the scheduling component contends
the next transmission time using the election algorithm
defined in the standard based on the collected
neighbor’s information. The data channel component
receives and transmits data packets in the allocated
time slots. The XHE value determines the node

transmission interval and holdoff time. We made
simulations for both static and dynamic management
of XHE parameter. In the static case, that is the case in
which identical holdoff exponents have been assigned
to every node in the network, we considered different
values (0, 1 and 2) for the XHE value. Furthermore,
we evaluated the CDS scheme with our probabilistic
dynamic approach. In this work we are interested on
evaluating the impact of the distributed scheduling
scheme on the performance of the network.
Specifically, we evaluate some significant parameters
for wireless mesh networks:
1) Throughput: is the number of data packets

correctly delivered to the destination over the
number of data packets sent;

2) Average end-to-end data packet delay: the time
that takes into account all the delay encountered
in the network as buffering delay, transmission
delay and propagation delay of data packets;

3) Latency: the average interval between an
opportunity to transmit and the next opportunity
to transmit for each node or, in other words, the
average time interval that occurs between the
transmission of a MSH-DSCH and the next
transmission of a new MSH-DSCH (remember
that the opportunity to transmit is used both for
updating the neighborhood with the current
schedule and for the reservation of data slots so
the latency is an important parameter that can
affect the performance of the network).

These three parameters have been chosen because the
biggest challenge in building a wireless backhaul is to
provide performance (throughput and delay) similar to
those typically offered by a wired backhaul.
Simulation Parameters are given in Table I. The
considered network scenario consists of a variable
number of mesh nodes (specifically we considered a
number of nodes equal to 30, 40, 50, 60, 70 and 80
nodes) and one Gateway node. The Gateway
interconnects the mesh network with other networks
that could be potentially wired or wireless. We
differentiate data rates for different sources in order to
create scenarios in which data traffic is heterogeneous.
Notice that a node can activate simultaneously more
than one data source. We simulated two scenarios,
respectively a light data traffic scenario and a heavy
data traffic scenario.
In the light scenario we set 20 traffic sources: ten of
these send data traffic at a rate of 5 pkts/sec, 5 sources
that send at a rate of 50 pkts/sec and 5 sources that
send data packets at a rate of 500 pkts/sec. The total
number of data packets transmitted is 200000. In the
heavy scenario we considered 40 traffic sources: 10
sources that send data traffic at a rate of 5 pkts/sec, 15

sources that send at a rate of 50 pkts/sec and 15
sources that send data packets at a rate of 500 pkts/sec.
The total number of data packets is 400000.

TABLE I. SIMULATION PARAMETERS

Input Parameters
Simulation area 1000x1000 meter
Traffic sources CBR
Number of traffic sources 20 (light scenario), 40

(heavy scnenario)
Number of nodes 30, 40, 50, 60, 70, 80
Size of data packets 64 bytes
Transmission range 250 m
Simulation Time 500 s
Data Buffer Size 50
Light data traffic scenario
Number of traffic sources 20
Sending rate 5, 50, 500 pkts/sec
10 sources 5 pkts/sec
5 sources 50 pkts/sec
5 sources 500 pkts/sec
Heavy data traffic scenario
Number of Traffic sources 40
Sending rate 5, 50, 500 pkts/sec
10 sources Rate 5 pkts/sec
15 sources Rate 50 pkts/sec
15 sources Rate 500 pkts/sec
 Simulator
Simulator NS-2 (version 2.1b6a)
Medium Access Protocol 802.16 (CDS)
Link Bandwidth 1 Mbps
Confidence interval 95%
#run 10

We will show that even though in some cases the
average value of the latency increases when our
mechanism to set the XHE is used, we obtain better
performance in terms of throughput and data delay.

4.2 Simulation Results

In this sub-section we show simulations results.
First of all, we analyze results concerning the scenario
we called light data traffic scenario. Specifically we
considered throughput and average end-to-end data
packet delay varying the number of nodes in the
network. Indeed, we considered scenarios with 30, 40,
50, 60, 70 and 80 nodes in the network. Concerning
the light scenario we also analyzed the average latency,
that is the average interval time to obtain an NXTO
and the next.
After, we considered the “heavy” data traffic scenario
in which 40 sources have been introduced during each
simulation run. Once throughput and end-to-end delay
have been presented, we consider a specific simulation
scenario with 50 nodes and we draw for 1 and 2 hops
neighbors of the gateway the average latency in a
specific run and the total number of data packets a
node managed during a simulation run. This
representation is useful to understand how our

approach works, that is the effect of applying our
algorithm.
Finally, concerning this specific scenario with 50
nodes, we give an instantaneous “snapshot”
representing the simulation scenario of nodes at 1, 2
and 3 hops away from the gateway. For each node we
consider whether the node is at 1, 2 or 3 hops
gateway’s neighbor, the total number of data packets
involved this node during the simulation run we are
considering and the average latency. This snapshot
should be more useful to understand internal
mechanism of our dynamic algorithm.
In Figure 4 we can see the Throughput obtained when
we considered static values of the XHE identical for
each node and respectively equal to 0, 1 and 2. Higher
values of XHE are not shown because they introduce
an excessive latency and performance of the networks
are worst in terms of throughput and delay.
Furthermore, we evaluated our probabilistic dynamic
approach called ProbApproach in each plot. It is worth
to remember that our approach is based on the data
queue size. In practice, the contention window of each
node is modified based on the data traffic a node has to
manage in a certain time. As we can see in Figure 4 a
dynamic setting of the XHE allows to overcome in
terms of throughput 802.16-XHE-0, 802.16-XHE-1
and 802.16XHE-2.

55
57
59
61
63
65
67
69
71
73
75

30 40 50 60 70 80#Nodes

Th
ro

ug
hp

ut
(%

)

ProbApproach 802.16-XHE-0
802.16-XHE-1 802.16-XHE-2

Figure 4. Throughput (light scenario).

This result is not surprisingly because we choose to
modify the contention window of a node based on the
need of each node to transmit data packets. It is worth
to note that our approach is not optimal, in the sense
that the choice of the data queue size fixed equal to the
half of the maximum size of data buffer has been
heuristically found. However, we believe that results
obtained are encouraging and permit to trace some
ideas to set the parameters in the distributed scheduling
scheme in a dynamic fashion.

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

30 40 50 60 70 80
#Nodes

D
el

ay
 (s

ec
.)

ProbApproach 802.16-XHE-0
802.16-XHE-1 802.16-XHE-2

Figure 5. Average end-to-end data packet
delay (light scenario).

On the other hand, good results have been obtained
also when the average end-to-end data packet delay
has been considered as shown in Figure 5. It is worth
to note that the average end-to-end data packet delay
of our mechanism outperforms results of the others
three schemes even though the average latency (Fig. 6)
of our scheme is higher than the latency of the 802.16-
XHE-0 and 802.16-XHE-1. In Figure 6 the average
latency of the light scenario is shown. Of course, we
have to take into account that we estimated the average
latency. This means that sources that have to send less
data packets will be characterized with higher latency
and sources that have to send more data packets will be
associated with smaller latency values.

0

0,05

0,1

0,15

0,2

0,25

0,3

30 40 50 60 70 80#Nodes

A
ve

ra
ge

 L
at

en
cy

 (s
ec

.)

802.16-XHE-0 802.16-XHE-1 802.16-XHE-2 ProbApproach

Figure 6. Average latency (light scenario).

We can observe that when the XHE increases the
average latency increases too. As we can observe in
Figures 4 and 5 the increasing of the latency does not
necessarily correspond to worst behavior in terms of

throughput or end-to-end delay. Our approach permits
a more loaded node to contend in a more “aggressive”
way than a node that has a smaller number of data
packets to send, but this latter does not starve, in the
sense that it is only delayed to reserve data slots.
In order to confirm the effectiveness of the
probabilistic dynamic algorithm proposed results for
the heavy data traffic scenario are shown in figures 7
and 8. This second scenario has been considered as the
average latency should increase when an higher
number of data packets involves nodes.

35

40

45

50

55

60

30 40 50 60 70 80
#Nodes

Th
ro

ug
hp

ut
 (%

)

ProbApproach 802.16-XHE-0
802.16-XHE-1 802.16-XHE-2

Figure 7. Throughput (heavy data traffic)

The “strange” slope obtained in Figure 4 and 7 when
passing from 40 nodes to 50 nodes is due to the fact
that even if the number of competing nodes increases,
the possibility to find different paths and to use
different nodes to send data traffic increases too.
For this reason, when considering 50 nodes,
performance in terms of throughput and end-to-end
data packet delay are better than at 40 nodes. On the
other hand, when the number of nodes increases the
contention between nodes increases too, but when we
have 50 nodes in the network the average number of
neighbors for each node is less or equal to the number
of control slots (opportunities to transmit, that are
fixed equal to 16 for each frame in the standard).
Generally, when the density of the network increases
the average number of neighbors for each node
increases too. Hence, even though the possibility to
find a path with a smaller number of hops increases in
this case, the possibility to catch an opportunity to
transmit decreases. In Table II we show the different
number of neighbors when different scenarios of
networks are considered. Specifically, we computed
the number of neighbors N’ (1 and 2 hop) analytically
and through the simulation scenarios created in ns2.
Concerning the analytical scheme let N1 the number of
1-hop neighbors (it is the number of nodes in the
coverage area of a Mesh Router). N1 can be expressed

as 21N rρπ= where ρ is the network density and

can be expressed as 2R
N

π
ρ = . N’ is the number

of 1 and 2-hop neighbors and can be computed as

2

2
' 4

R
rNN = , in which r is the radius of each node

(in our simulation we supposed all the nodes have the
same radius or transmission range equal to 250 meter),
R is the range of the network and N is the number of
nodes in the networks.

TABLE II. NUMBER OF NEIGHBORS (1AND 2 HOP) CONSIDERING
DIFFERENT SCENARIOS

Nodes in the
Network

N’
(Analytical)

N’
(Simulation)

30 7,5 7,6
40 10 11,3
50 12,5 17
60 15 20
70 17,5 22
80 20 24

We can observe that when the number of nodes is
smaller or equal to 50 the number of control slots
(opportunities to transmit) is, in average, sufficient for
each node in each frame. When the number of nodes in
the network increases the average number of neighbors
(1 and 2 hop neighbors) increases too and number of
control slots is not sufficient to cover each node in
each frame.

0,3
0,35
0,4

0,45
0,5

0,55
0,6

0,65
0,7

0,75
0,8

30 40 50 60 70 80
#Nodes

De
la

y
(s

ec
.)

ProbApproach 802.16-XHE-0
802.16-XHE-1 802.16-XHE-2

Figure 8. Average end-to-end data delay
(heavy data traffic).

For this reason when we consider performance in
terms of throughput and end-to-end delay and the
number of nodes is higher than 60 the behavior is

worst than in the case of 50 nodes or a smaller number
of nodes. On the other hand this behavior is confirmed
when the average end-to-end data packet delay is
considered in Figure 6 and 8.
In Table III and Table IV we reported the latency and
the total number of data packets that a node managed
during a simulation run at 1 and 2 hops respectively.
We considered a simulation scenario with 50 nodes
when heavy traffic is considered. In practice results
reported in the tables refer to the same scenario
considered to obtain results in Figures 7 and 8. Due to
the lack of space we only reported results of nodes at 1
and 2 hops away from the gateway but they are
sufficient in order our algorithm to be explained.
Generally, we can observe as the latency decreases
while the number of data packets increases. This is a
side effect of our algorithm, because the XHE
parameter is set to smaller values when a node needs to
send more data packets and vice-versa.

TABLE III. 1-HOP NEIGHBORS (NETWORK WITH 50 NODES
ANDHEAVY DATA TRAFFIC)

Node Latency
(Prob-
App)

#Data
Packets
(Prob-
App)

Latency
(802-16-
XHE-1)

#Data
Packet
s (802-
16-
XHE-
1)

0 0,226046 10000 0,14505 10000
3 0,209472 91185 0,14647 86982
10 0,202951 29688 0,14442 83576
12 0,238848 50999 0,14345 43508
21 0,241095 10000 0,13595 10000
23 0,234214 0 0,13498 0
25 0,224778 20000 0,13687 20000
37 0,195972 51307 0,15136 1530
44 0,229106 13046 0,15243 17488
45 0,248828 10000 0,15235 10000
47 0,250282 20000 0,15128 20000
 Avg

Latency
Tot
Data
Pakts

Avg
Latency

Tot
Data
Pakts

0,22557 306225 0,14496 303084

Of course, the fact we assign smaller values to XHE
parameter does not mean that the latency always
decreases. Indeed, smaller values of XHE correspond
with smaller contention window, but a node needs to
contend with its neighborhood and we computed the
average latency taking into account the instant time a
node reserves a new opportunity to transmit (control
slot).

TABLE IV. 2-HOP-NEIGHBORS (NETWORK WITH 50 NODES AND
HEAVY DATA TRAFFIC)

Node Latency
(Prob-
App)

#Data
Packets
(Prob-
App)

Latency
(802-
16-
XHE-1)

#Data
Packets
(802-
16-
XHE-1)

4 0,23271 10000 0,14519 27931
14 0,23750 31076 0,14345 10000
15 0,23901 10000 0,14324 10000
20 0,23597 10000 0,13614 40331
22 0,23196 10000 0,13516 30616
24 0,22564 57919 0,13712 36270
28 0,22306 10000 0,13514 10000
29 0,24620 13063 0,13502 7488
30 0,20180 76461 0,13582 51879
43 0,24987 0 0,15136 0
 Avg

Latency
Tot
Data
Pkts

Avg
Latency

Tot
Data
Pkts

 0,23233 228529 0,13916 224515

Moreover, latency values reported in the table are
averaged on the duration of a run, that is the latency is
an average latency and so it takes into account smaller
values of XHE and higher values of XHE based on the
specific time the XHE value is considered. Let
consider the following example: imagine a node A has
to send a lot of data packets in a certain time, so its
XHE will be a small value. On the other hand it will
happen that this node A in a certain time does not have
to send a large number of data packets, so in this
instant time if we considere the XHE, we obtain an
higher XHE value and the latency will increase. So, it
can happen that even if a node managed more data
packets than another node its average latency is
slightly higher or close to the average value of another
node.
In order to verify this behavior we can consider nodes
4 and 14 in Table IV. Nodes 14 manages more data
packets than node 4 but its average latency is slightly
higher than those of node 4. Generally, the effect of
applying our algorithm is that more data packets
correspond with smaller latency.
This result is due to the dynamic mechanism
introduced allowing to change in a dynamic fashion
the probability to reserve data slots and so to transmit
data packets. This means that a more loaded node (that
is, a node that has the necessity to send more data
packets) will contend in a more aggressive way in
respect of a node that has a smaller number of data
packets to send.

In Figure 9, we give an instantaneous “snapshot” of
the network when 50 nodes are considered and the
scenario is those referred as “heavy” data traffic
scenario. Due to the lack of space, we did not report all
the nodes in the networks, but we plotted only some
nodes. Specifically, we showed nodes at 3 hops away
from the gateway (node 1) and for each node the total
number of data packets that this node managed during
a simulation run and the average latency have been
shown. We can observe as the greater is the number of
packets a node managed during a simulation run the
lower is the average latency related with this node.
Indeed, observe at the level of 1-hop node 37 and node
21.

Figure 9. Actual example of simulation results
in which a network of 50 nodes in a 1000
meter x 1000 meter has been considered with
heavy traffic.

The first one manages 51307 data packets (a node can
manage some data packet as relay node for another
node, for example 37 could be charged to send data
packet for node 30 and it can send their own packets)
and the average latency is 0,19507 sec. On the other
hand the second one, node 21, manages 10000 data
packets and its average latency is 0,2410 sec. This
behavior is an effect of the application of our dynamic
algorithm. In fact, our algorithm will set more times

smaller values of parameter XHE in the schedule
scheme for node 37 in respect of node 21. It is worth to
observe that the average latency is not linearly related
with the speed to send data packets. In fact, we already
outlined that the scheduling frame is characterized with
two kinds of frames, a control frame where we
consider the latency expressed as the time occurring
between a control slot reservation and the next control
slot reservation. The other part of the frame is
characterized with the data frame, in which the
reservation of data slots takes place. In conclusion we
can affirm that the effect of our algorithm is that the
average latency of each node during a simulation run
decrease when the total number of data packets the
node has to manage increases. A positive effect of the
application of this algorithm is the increasing of the
data packets delivered to the destination and the time
required to deliver these packets decreases. In practice,
we show a simple way to set an un-standardized
parameter.

5. Conclusions

In this paper we analyze the performance of the
Coordinated Distributed Scheduler of the Std. IEEE
802.16. In order to do that we implemented this
scheduler in a well-known network simulation tool,
ns2. We had to implement a MAC module for the
802.16 because nowadays there is not an available
MAC module for IEEE 802.16. Some results obtained
confirm results known in literature. In fact, the latency
increases when the number of nodes in the network
increases too. In order to obtain a higher scalability we
developed a simple dynamic and probabilistic queue-
size based algorithm that in a dynamic way permits to
set the XmtHoldoffExponent (XHE).

The setting of XHE is a critical point of the standard
scheduler because it determines the contention window
of each node. Furthermore, the contention window of
each node in a distributed environment depends of the
neighborhood. In this work we proposed a mechanism
to set in a dynamic and probabilistic fashion XHE
parameter. Of course this work is not at all exhaustive
as far as the setting of parameter is concerned. Indeed,
the contention window of each node strictly depends
of the number of neighbors. As further work we would
like to improve the parameters tuning taking into
account other aspects like the number of neighbors or
the presence of expiring packets into buffers.

10. References

[1] “802.16 IEEE Standard for Local and metropolitan are
networks” IEEE Std 802.16-2004.
[2] IEEE 802.16-2005, “ IEEE Standard for Local and
Metropolitan Area Networks – Part 16: Air Interface for Fixed
Broadband Wireless Access Systems for Mobile Users,” Dec. 2005.
[3] 3WiMAX Forum, http://www.wimaxforum.org
[4] C. Cicconetti, L. Lenzini, E. Mingozzi, and C. Eklund, “Quality
of Service Support in IEEE 802.16 networks ,” IEEE Network, Vol.
20, Issue 2, pp. 50 – 55, 2006.
[5] Guosong Chu, Deng Wang, and Shunliang Mei. “A QoS
architecture for the MAC protocol of IEEE 802.16 BWA System”.
IEEE International Conference on Communications Circuits &
System and West Sino Expositions, vol.1, pp. 435-439, China 2002..
[6] Arunabna Ghosh, David R, Wolter, Jeffrey G. Andrews and
Runhua Chen, “ Broadband Wireless Access with WiMax/802.16:
Current Performance Benchmarks and Future Potential” IEEE
Communications Magazine, February 2005, p129-136.
[7] “ http://www.isi.edu/nsmam/ns/ “.
[8] Min Cao, Wenchao Ma, Qian Zhang, Xiaodong Wang, and
Wenwu Zhu. “Modeling and performance analysis of the distributed
scheduler in IEEE 802.16 mesh mode”. In Proceedings of the 6th
ACM international symposium on Mobile ad hoc networking and
computing, pages 78-89, New York, NY, USA,2005, ACM Press.

