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ABSTRACT

In this paper, we present a new algorithm for
tracking the signal subspace recursively. It is based on a
new interpretation of the signal subspace. We introduce
a novel information criterion for signal subspace
estimation. We show that the solution of the proposed
constrained optimization problem results the signal
subspace. In addition, we introduce three adaptive
algorithms which can be wused for real time
implementation of the signal subspace tracking. The
computational complexity of the proposed signal
subspace tracking algorithms are O(n*) which is much
less than the direct computation of singular value
decomposition or even some algorithms. To reduce the
computational complexity, a fast alternative algorithm
is proposed. The complexity of the latter algorithm is
O(nr) which makes it feasible in real time applications.
Simulation results in the direction of arrival (DOA)
tracking context depict excellent performance of the
proposed algorithms.

Index Terms— subspace tracking, constrained
optimization, adaptive algorithm.

I. INTRODUCTION

Subspace-based signal analysis methods play a
major role in contemporary signal processing, with
applications including direction of arrival estimation in
array processing and frequency estimation of sinusoidal
signals in spectral analysis. As their distinguishing
feature, these methods seek to extract the desired
information about the signal and noise by first
estimating either a part or all of the eigenvalue
decomposition (EVD) of the data covariance matrix.
For example, knowledge of the eigenvalues can be used
in connection with a criterion such as AIC or MDL to
estimate the number of dominant signal sources present
in the observed data [1]. Additional knowledge of the
eigenvectors can be used in a high resolution procedure
such as MUSIC to estimate unknown parameters of
these dominant sources [2].

In recent years, several computationally efficient
methods in the form of recursive algorithms have been
proposed for sequential estimation and tracking of some
or all of the EVD components of a time-varying data
covariance matrix. A commonly used approach for the
derivation of subspace trackers is to formulate the
determination of the desired EVD components as the
optimization of the specific cost function involving the
unknown data covariance matrix. To arrive at a
recursive algorithm, the optimization is accomplished
adaptively via an appropriate stochastic search
algorithm. Algorithms of this type have been derived
based on the constrained gradient search [3], the Gauss-
Newton search [4] and the recursive least squares [5].
Another type of approach consists of using classical
algorithms from numerical analysis to compute exactly,
at regular intervals, the EVD of a time-varying sample
covariance matrix or, equivalently, the singular value
decomposition (SVD) of a corresponding data matrix.
Such a technique based on orthogonal iterations is
proposed in [6]. Another approach consists of
interlacing the recursive update of a sample covariance
or data matrix with only a few steps of certain standard
iterations for EVD or SVD computation. Subspace
tracker based on the inverse power method [7] is an
example algorithm of this approach.

From the computational point of view, we may
distinguish between methods having O(n*r), O(nr?), or
O(n*) operation counts where 7 is the number of sensors
in the array and r is the dimension of signal subspace.
Real time implementation of subspace tracking is
needed in some applications and regarding that the
number of sensors is usually much more than the
number of sources (1 >>r ), algorithms with O(x*) or
even O(n’r) are not preferred in these cases. It is
noteworthy that in this paper operation counts are
expressed in terms of multiply/accumulate (MAC)
operations.

In this paper, we propose recursive algorithms for
tracking the signal subspace spanned by the
eigenvectors corresponding to the r largest eigenvalues.
These algorithms rely on a new interpretation of the
signal subspace as the constrained optimization
problem. Therefore, we call our approach as subspace



information criterion (SIC). We show that the solution
of the optimization problem results signal subspace.
Then, three adaptive algorithms for implementation of
the optimization problem are proposed. In order to
reduce the computational complexity, fast SIC (FSIC) is
proposed. Simulation results are given to evaluate the
performance of the SIC in the context of adaptive DOA
estimation.

This paper is organized as follows. Section II
introduces the signal model. In section III, our approach
as a constrained optimization problem presented and
derivation of the solution is described. Recursive
implementation of the proposed solution is derived in
section IV. Section V introduces low complexity
version of the SIC algorithm. In section VI, simulations
are used to evaluate the performance of the proposed
algorithms. Finally, the main conclusions of this paper
are summarized in section VII.

Il. SIGNAL MODEL

Consider the samples X(¢), recorded during the
observation time on the n sensor outputs of an array,
satisfying the following model

X(1) = A(0)s(r) +n(r) (1)

where xeC" is the vector of sensor outputs, se C” is

the vector of complex signal amplitudes, neC” is an
additive noise vector, A(0)=[a(6,),a(,),...,a(6,)]

e C™" is the matrix of the steering vectors a(#)), and 6;
; j=1,2,...,r is the parameter of the jth source, for
example its DOA. It is assumed that a(g;) is a smooth
function of 6, and that its form is known (i.e. the array is
calibrated). We assume that the elements of S(¢) are
stationary random processes, and the elements of n(¢)
are zero-mean stationary random processes which are
uncorrelated with the elements of s(f). The covariance
matrix of the sensors’ outputs can be written in the
following form

R = E{x(r)xH (z)}: ASAT R, )
where S = E{s(t)sH (t)} is the signal covariance

matrix assumed to be nonsingular (“’H” denotes
Hermitian transposition), and R, is the noise covariance
matrix. A large number of methods such as SVD or
EVD use covariance matrix of data to estimate the
signal subspace.

I11. ANEW SIGNAL SUBSPACE
INTERPRETATION

Let xeC” be a complex valued random vector
process with the autocorrelation matrix
CzE{xxH}which is assumed to be positive definite.

The normalized orthonormal eigenvectors and the
positive eigenvalues of C are denoted by ¢; and A
(==1,2,...,n) respectively. If the number of signal
sources r is less than n, then the eigenvalues of R are
given by

MW>A> >4, >4 =.=4, 3)

The signal subspace is defined as the column span of
Qs :[q17q29""qr] 4)

and the noise subspace is defined as the column span of
Qn :[qr+lfqr+29"'9qn] (%)

We consider the following constrained minimization
problem

2
minimize J(W):E{”XXH —ww# “ }
w F
subject 0 W (nW() =1, (6)

where |||| e denotes the Frobenius norm and
W =[W,,W,,..,W,] is an  nxr  matrix

W e C™" (r <n) which is assumed to be full rank.
This is no restriction on W, if the rank of W is 7 <r,
W in (6) can be replaced by a full rank nx7 matrix W
satisfying WWH7 =wWw*# . The orthonormality
constraint can be accomplished by the Gram-Schmidt
orthonormalization (GS-orth) procedure.

Now, we want to consider the following questions
about the aforementioned minimization problem:

e  Isthere a global minimum of J(W) ?

e  Are there any local minima of J(W) ?

° What is the relation between the minimum of
J(W) and the signal subspace of C ?

We will answer the first and the second questions by the
following theorem.

Theorem 1: J(W) has one and only one global
minimum and there are not any other minima or
maxima in J(W).

Proof. We can write the minimization problem as
follows

J(W) = a = 2tr(CWW Ty + - ((WwW )2 (7)
where

a = r(E{0x™)?}) ®)
We define Z=WW?7 | so (7) can be changed to the
following form

J(Z) = a-2tr(CZ) +1(Z?) )

For discussing about the minima and maxima of J(W),
we expand (9) as below

n
2,2 2

J= Z [(le' +Z5; +...+Zm')_

i=1

2(6‘11'21'1 + CriZoi +...+ CniZni )] +oa
10)

where z; and c; (ij=12,..,n) are the corresponding
elements of the ith row and jth column of the matrices Z
and C respectively.



Since (10) shows a quadratic equation, it is clear that it
has convex shape and has one and only one minimum
and it has not any other minima or maxima.

[ ]

To answer the third question about the relation of
the minimum point and the signal subspace, the
following theorem is presented.

Theorem 2: J reaches its minimum when W spans
the signal subspace. In this case, W is an arbitrary basis
for the signal subspace.

Proof. We can write (7) as follows

J(W) =a—2tr(WHCcwW)+ (W www)  (11)

Respect to the constraint W ®OW(@E)=1,, (6) can be
replaced with the following problem

J(W) = (W cw)

maximize
w

subject 0 W (OHW()=1, (12)

It is well known that the W which maximizes the
aforementioned constrained optimization problem is
equal to Q,. Thus, W is the signal subspace of the
received data.

It is noteworthy that at the global minimum of
J(W), W does not contain the signal eigenvectors
necessarily. Instead, we attain an arbitrary orthonormal
basis of the signal subspace. This is because J(W) is
invariant with respect to rotation of the parameter space,
indeed J(W)= J(WU) when UU"=1,. In other words, W
is not determined uniquely when we minimize J(W).

IV. ADAPTIVE SIGNAL SUBSPACE
TRACKING

Subspace tracking methods have applications in
numerous domains, including the fields of adaptive
filtering, source localization, and parameter estimation.
In many of these applications we have a continuous
stream of data. Thus, developing adaptive algorithms is
very useful for these applications. In this section, we
propose three adaptive algorithms for signal subspace
tracking.

The constrained minimization of the cost function
(6) can be accomplished by a constrained gradient
search procedure. If the step size be fixed, the weight
matrix is updated as

W(k)=W(k-1)—uVJ (13)
with
W (k) := orthonormalization of the columns of W(k)
(14)

where u is the step size and VJ is the gradient of J
respect to W. The gradient of J(W) is given by

VJ =-2CW +2Ww 7w (15)
Thus, the signal subspace update can be written as

W(t) = W(t—1)— t[-C(t)W(t - 1)+
W -DWP ¢ —yw(-1)]
(16)
where é(t) is an estimate of the correlation matrix C at
the instant #. We may use an exponentially weighted or

a sliding window estimate for é(t) . The simplest choice

is the instantaneous estimate é(t) =x()x" (t) as used

in the least mean square (LMS) algorithm for adaptive
filtering. The obtained subspace update is expressed by

y(©) =W -1)x(0) (17)
W() = W(t 1)+ ux()y " (1) -
W -DW ¢ —yw(-1)]
(18)

We note that a further simplification of the above
algorithm can be  obtained by  replacing

WA @-1DW(@-1) in (18) with identity matrix

achieved by the constraint in the previous step. So, we
have

W(e) = W(e =1+ ulx(0)y " () - W(e-1)] (19)
Table 1 summarizes the so called SIC1 algorithm.

Another estimation of é(t) can be achieved by estimate

it with exponentially weighted window. Thus, (16) can
be changed as follows

t
C) =Y. %) (i) = pCe - 1) +x(0)x" (1) (20)

i=1
W(t) =W -1+ g COWE-1)-W(-1)]  (21)

where f is the forgetting factor used to ensure that data
in the past are downweighted in order to afford the
tracking capability when the system operates in a
nonstationary environment. Table 2 summarizes the so
called SIC2 algorithm.

A simplification is obtained by approximating the
second W(#-1) term in (21) by W(i-1). For stationary or
slowly varying signals, the difference between
X())W¥(t-1) and x(/)W"(i-1) is small, in particular when
i is close to t. So, in this case, (16) can be expressed in
the following form

t .
C, (=Y B x)y" ()= AC,, =D +x()y " (1)
i=1
(22)
W(1) = W(t = 1)+ 4[C ., (1) - W(t - 1)] (23)

In table 3 summary of the so called SIC3 algorithm has
been shown. It should be noted that all proposed
adaptive  algorithms  require  orthonormalization
procedure, such as Gram-Schmidt (GS)
orthonormalization, at the end of each iteration. It can
be easily shown that the SIC1, SIC2, and SIC3 have
O(nr), O(n*r), and O(nr) respectively. Moreover, the
orthonormalization procedure which needs at the end of
each iteration requires additional O(nr?) operations in
the algorithms.



TABLE 1. The SIC1 Algorithm

FOR ¢=12,... DO
y(0) =W @ -1)x(1)

W(e) = W(t =)+ ux()y " ()= W(-1)]
W(¢) == GS - orth. of the columns of W(¢)

TABLE 2. The SIC2 Algorithm

FOR t=12,... DO

t
C) =Y. B x()x (1) = pCe -1 +x(O)x" (1)

i=1
W()=W(-1)+ ,u[é(t)W(t -D-W(-1)]
W(%) := GS - orth. of the columns of W(¢)

TABLE 3. The SIC3 Algorithm

FOR t=12,... DO
y() =W (t-1x()
Cyy (1) = Cxy (t =D+ x(0)y" (1)
W(t) = W(t = 1)+ u{Cyy (t) - W(t 1]
W(#) .= GS - orth. of the columns of W(¢)

SIC1 requires the minimum operations and the SIC2
needs the maximum operations. The SIC3 requires a
little more operations than the SIC1.

V. FAST SIC ALGORITHM

In this section, a fast implementation of the SIC
algorithm is proposed. SIC3 has O(nr) complexity and
an additional O(nr?) operations for orthonormalization.
The main computational complexity corresponds to
orthonormalization step. To reduce the computational
complexity, Gram-Schmidt orthonormalization
procedure is replaced with an alternative approach.

To this end, using (22) and (23) leads to the following
expression

W() = (1= )W (e = 1)+ u IC , (t = 1)+ x(O)y 7 (1)]
(24)
It can be inferred from (23) that
Cyt-1)= %[ww ~D-(-pW(@E-2)] (25

Substituting (25) into (24) results
W(0) =(1-p+ /W -1)- f(1- )W(1 -2)
+px()y (1)
(26)

The classical projection approximation [5] is equivalent
to W(t-1) = W(t-2) at each time step. Thus, (26) can
be written in the following form

W(2) = W (1) + ux @)y () 27
where
y=1-p+pu (28)

The fast orthonormal SIC algorithm consists of the
expression (27) plus an orthonormalization step of the
weight matrix at each iteration
-1
W(r) = WO IW " ()W(1)] 2 (29)
-1
where [W/7 (1)W()] 2 denotes an inverse square root

of [WH (OW(@)] . To compute the (29), we use the
updating equation of W(¢). Keeping in mind that W(z-1)
is now an orthonormal matrix.

By invoking (27) we have

W @W(e) =721, + 7w (- Dx@ey " (1) +

ny (X W 1)+ 12 yOx? (exe)y ? (2)
(30)
Using projection approximation (17) leads to
W (W) =721, +y Oy (0)+ )y 7 () +

#2yO Xy o)

€1y

For reduce the complexity further, we apply the matrix

inversion lemma to (31). The matrix inversion lemma
(MIL) can be written as follows

(A+BCcD) ' =A'—A“BDA'B+Cc)'DA!

(32)
By employing (32), the following expression can be
obtained

H
W owir! =L, YOy 5
7y oy +s0)
where
}/2
o) = 34
“ 2pu+ 12 x M (Ox(0) o9

-1
It can be shown that [WH (H)W(#)] 2 can be obtained
in the following form
-1
W OWN 2 =77 +ryoy o1 - 39)
where
1 1

1) = (
VT OYO) 1+ 0y " Oy
Substituting (27) and (35) into (29) results that
W) =[W(t = 1)+ x(OYOlr ' [1, + 2y ©y " ()]
(37)

Finally, the following recursive expression is used for
updating the signal subspace

-1) (36)




Table 4. The FSIC algorithm

FOR t=1,2,... DO
y(©) =Wt -1x(0)
2
o) = 4
“ 2pu+ 1 X (0)x(0)
1 1
1= ( )
VT OYO) 15 oy ()
W(1) = W(r = 1)+ () (W -Dy(@)y " (1) +
Ly Oye oo

Table 5. Computational complexity of the algorithms

Algorithm Cost (MAC)
SIC1 O(nr)+3nr
SIC2 " r2n*+0(nr*)+2nr
SIC3 O(nr)+5nr
FSIC Anr+ntr*+O(r)

W) = W( 1) + () (W = Dy )y (1) +

H
oy Oy oy

(38)
This fast SIC algorithm, which is referred as to FSIC,
requires only O(nr) operations which makes it feasible
in real time applications. Table 4 summarizes the FSIC
algorithm.

Table 5 is given to compare the computational
complexity of the proposed algorithms. It can be
inferred from this table that the FSIC and SIC2 have the
lowest and highest computational complexity,
respectively. Since the complexity of SIC2 is O(n*r),
this algorithm is not preferred in on-line applications.
On the other hand, the FSIC algorithm can be used in
on-line applications.

(

VI. SIMULATION RESULTS

In this section, we use simulations to demonstrate
the applicability and performance of the SIC
algorithms. To do so, we consider the proposed
algorithm in DOA estimation context. We use MUSIC
algorithm for finding the DOAs of signal sources
impinging on an array of sensors. We consider a
uniform linear array where the number of sensors is
n=21 and the distance between adjacent sensors is equal
to half wavelength. In the first scenario of this section
the number of simulation runs used for obtaining each
point is equal to 100.

In the first scenario, we assume that two signal
sources are located constantly at (-40°,40°) and their
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Figure 1. Maximum principal angle vs. snapshots
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Figure 3. Estimated trajectory vs. snapshots

SNR is equal to 10 dB. In addition, we let the step size
#equal to 0.001. To evaluate the performance of the

proposed SIC algorithms in tracking of the signal
subspace, the maximum principal angles of the adaptive
algorithms are measured. Principal angle is a measure
of the difference between the estimated subspace and
the real subspace. The principal angles are zero if the
compared subspaces are identical. In figure 1, we have
depicted the maximum principal angle for this scenario.
From this figure, it can be seen that the performance of
the SIC1 and FSIC are approximately equal. Figure 1



shows that performance of SIC2 outperforms the other
algorithms. The SICI, SIC3, and FSIC have the same
performance.

To demonstrate the performance of the proposed
algorithms in low SNR, two sources with 0 dB SNR are
considered. In addition, we let the step size i equal to

0.01. Figure 2 shows the maximum principal angles for
SIC3 and FSIC algorithms. It depicts the appropriate
performance of the SIC3 and FSIC algorithms.

For investigation the performance of the proposed
algorithms in nonstationary environments, we consider
the first scenario. To this end, we assume that two
signal sources change their locations from (-40°,40°) to
(0°,10°) and SNR of each source is equal to 10 dB as the
previous scenario. Figure 3 shows the estimated
trajectory of the sources achieved by the MUSIC and
FSIC algorithms. This figure depicts that the SIC’s
algorithms can be used for subspace tracking in DOA
tracking context.

VIl. CONCLUDING REMARKS

In this paper, we introduced a new interpretation of
the signal subspace which is based on a novel
constrained optimization problem. We proved that the
solution of the proposed constrained minimization
results the signal subspace. Then, we derived three
adaptive algorithms for signal subspace tracking. To
reduce the complexity, FSIC proposed. The total
computational complexity of the SIC1, SIC2, SIC3, and
FSIC are O(nr?), O(n’r), O(nr?), and O(nr) respectively.
Simulation results in DOA tracking context showed the
perfect performance of the proposed algorithms.

Respect to the computational complexity and the
performance of the algorithms shown in the simulation
results section, the FSIC algorithm is superior to the
other algorithms and has perfect performance.
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