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ABSTRACT 
 

In this paper, we present a new algorithm for 
tracking the signal subspace recursively. It is based on a 
new interpretation of the signal subspace. We introduce 
a novel information criterion for signal subspace 
estimation. We show that the solution of the proposed 
constrained optimization problem results the signal 
subspace. In addition, we introduce three adaptive 
algorithms which can be used for real time 
implementation of the signal subspace tracking. The 
computational complexity of the proposed signal 
subspace tracking algorithms are O(nr2) which is much 
less than the direct computation of singular value 
decomposition or even some algorithms. To reduce the 
computational complexity, a fast alternative algorithm 
is proposed. The complexity of the latter algorithm is 
O(nr) which makes it feasible in real time applications. 
Simulation results in the direction of arrival (DOA) 
tracking context depict excellent performance of the 
proposed algorithms. 

Index Terms— subspace tracking, constrained 
optimization, adaptive algorithm. 

 

I.   INTRODUCTION 
 

Subspace-based signal analysis methods play a 
major role in contemporary signal processing, with 
applications including direction of arrival estimation in 
array processing and frequency estimation of sinusoidal 
signals in spectral analysis. As their distinguishing 
feature, these methods seek to extract the desired 
information about the signal and noise by first 
estimating either a part or all of the eigenvalue 
decomposition (EVD) of the data covariance matrix. 
For example, knowledge of the eigenvalues can be used 
in connection with a criterion such as AIC or MDL to 
estimate the number of dominant signal sources present 
in the observed data [1]. Additional knowledge of the 
eigenvectors can be used in a high resolution procedure 
such as MUSIC to estimate unknown parameters of 
these dominant sources [2]. 

In recent years, several computationally efficient 
methods in the form of recursive algorithms have been 
proposed for sequential estimation and tracking of some 
or all of the EVD components of a time-varying data 
covariance matrix. A commonly used approach for the 
derivation of subspace trackers is to formulate the 
determination of the desired EVD components as the 
optimization of the specific cost function involving the 
unknown data covariance matrix. To arrive at a 
recursive algorithm, the optimization is accomplished 
adaptively via an appropriate stochastic search 
algorithm. Algorithms of this type have been derived 
based on the constrained gradient search [3], the Gauss-
Newton search [4] and the recursive least squares [5]. 
Another type of approach consists of using classical 
algorithms from numerical analysis to compute exactly, 
at regular intervals, the EVD of a time-varying sample 
covariance matrix or, equivalently, the singular value 
decomposition (SVD) of a corresponding data matrix. 
Such a technique based on orthogonal iterations is 
proposed in [6]. Another approach consists of 
interlacing the recursive update of a sample covariance 
or data matrix with only a few steps of certain standard 
iterations for EVD or SVD computation. Subspace 
tracker based on the inverse power method [7] is an 
example algorithm of this approach. 

From the computational point of view, we may 
distinguish between methods having O(n2r), O(nr2), or 
O(n3) operation counts where n is the number of sensors 
in the array and r is the dimension of signal subspace. 
Real time implementation of subspace tracking is 
needed in some applications and regarding that the 
number of sensors is usually much more than the 
number of sources ( rn >> ), algorithms with O(n3) or 
even O(n2r) are not preferred in these cases. It is 
noteworthy that in this paper operation counts are 
expressed in terms of multiply/accumulate (MAC) 
operations. 

In this paper, we propose recursive algorithms for 
tracking the signal subspace spanned by the 
eigenvectors corresponding to the r largest eigenvalues. 
These algorithms rely on a new interpretation of the 
signal subspace as the constrained optimization 
problem. Therefore, we call our approach as subspace 



information criterion (SIC). We show that the solution 
of the optimization problem results signal subspace. 
Then, three adaptive algorithms for implementation of 
the optimization problem are proposed. In order to 
reduce the computational complexity, fast SIC (FSIC) is 
proposed. Simulation results are given to evaluate the 
performance of the SIC in the context of adaptive DOA 
estimation. 

This paper is organized as follows. Section II 
introduces the signal model. In section ІIІ, our approach 
as a constrained optimization problem presented and 
derivation of the solution is described. Recursive 
implementation of the proposed solution is derived in 
section ІV. Section V introduces low complexity 
version of the SIC algorithm. In section VI, simulations 
are used to evaluate the performance of the proposed 
algorithms. Finally, the main conclusions of this paper 
are summarized in section VII. 

 
II.   SIGNAL MODEL 

 
Consider the samples x(t), recorded during the 

observation time on the n sensor outputs of an array, 
satisfying the following model 

)()()()( ttt nsAx += θ                                                   (1) 

where nC  ∈x  is the vector of sensor outputs, rC ∈ s  is 
the vector of complex signal amplitudes, nC  ∈n  is an 
additive noise vector, A(θ)=[a(θ1),a(θ2),…,a(θr)] 

rn×∈C  is the matrix of the steering vectors a(θj), and θj 
; j=1,2,…,r is the parameter of the jth source, for 
example its DOA. It is assumed that a(θj) is a smooth 
function of θj and that its form is known (i.e. the array is 
calibrated). We assume that the elements of s(t) are 
stationary random processes, and the elements of n(t) 
are zero-mean stationary random processes which are 
uncorrelated  with the elements of s(t). The covariance 
matrix of the sensors’ outputs can be written in the 
following form 

{ } n
HH ttE RASAxxR +== )()(                              (2) 

where  { })()( ttE HssS =   is  the  signal  covariance   
matrix assumed to be nonsingular (‘’H” denotes 
Hermitian transposition), and Rn is the noise covariance 
matrix. A large number of methods such as SVD or 
EVD use covariance matrix of data to estimate the 
signal subspace. 

  
III.   A NEW SIGNAL SUBSPACE 

   INTERPRETATION 
 
 Let nC  ∈x be a complex valued random vector 

process with the autocorrelation matrix 
{ }HE xxC = which is assumed to be positive definite. 

The normalized orthonormal eigenvectors and the 
positive eigenvalues of C are denoted by qi and λi 
(i=1,2,…,n) respectively. If the number of signal 
sources r is less than n, then the eigenvalues of R are 
given by 

   (3)                         ...... 121 nrr λλλλλ ==>>>> +
 
The signal subspace is defined as the column span of  

(4)                                               ],...,,[ 21 rs qqqQ =
and the noise subspace is defined as the column span of 

(5)                                       ],...,,[ 21 nrrn qqqQ ++=
 We consider the following constrained minimization 
problem 
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where F.  denotes the Frobenius norm and 

],...,,[ 21 rWWWW =  is an n×r matrix 

)( nrC rn <∈ ×W  which is assumed to be full rank. 
This is no restriction on W, if the rank of W is rr <ˆ , 
W in (6) can be replaced by a full rank rn ˆ×  matrix Ŵ  
satisfying HH WWWW =ˆˆ . The orthonormality 
constraint can be accomplished by the Gram-Schmidt 
orthonormalization (GS-orth) procedure. 

Now, we want to consider the following questions 
about the aforementioned minimization problem: 

• Is there a global minimum of J(W) ? 

• Are there any local minima of J(W) ? 

• What is the relation between the minimum of 
J(W)  and the signal subspace of C ? 

We will answer the first and the second questions by the 
following theorem. 
 

Theorem 1: J(W) has one and only one global 
minimum and there are not any other  minima or 
maxima in J(W). 

Proof. We can write the minimization problem as 
follows 

(7)           ))(()(2)( 2HH trtrJ WWCWWW +−=α
where 

(8)                                                 })){(( 2HEtr xx=α

We define HWWZ = , so (7) can be changed to the 
following form 

(9)                                 )()(2)( 2ZCZZ trtrJ +−=α
For discussing about the minima and maxima of J(W), 
we expand (9) as below 

α++++

−+++=∑
=

)]...(2                                 

)...[(

2211

22
2

2
1

1

niniiiii

niii

n

i
zczczc

zzzJ

                       
                                                                                   (10) 
where  ijz and )21 ( ,...,n,i,jcij =  are the corresponding 
elements of the ith row and jth column of the matrices Z 
and C respectively. 



Since (10) shows a quadratic equation, it is clear that it 
has convex shape and has one and only one minimum 
and it has not any other minima or maxima.                                                        

   

To answer the third question about the relation of 
the minimum point and the signal subspace, the 
following theorem is presented. 

 
Theorem 2: J reaches its minimum when W spans 

the signal subspace. In this case, W is an arbitrary basis 
for the signal subspace. 
      Proof. We can write (7) as follows 

(11)        )()(2)( WWWWCWWW HHH trtrJ +−=α

Respect to the constraint r
H tt IWW =)()( , (6) can be 

replaced with the following problem 

(12)                       )()(        

)()(ˆ        maximize

r
H

H

ttosubject  t

trJ

IWW

CWWW
W

=

=

 

It is well known that the W which maximizes the 
aforementioned constrained optimization problem is 
equal to Qs. Thus, W is the signal subspace of the 
received data. 

   

It is noteworthy that at the global minimum of 
J(W), W does not contain the signal eigenvectors 
necessarily. Instead, we attain an arbitrary orthonormal 
basis of the signal subspace. This is because J(W) is 
invariant with respect to rotation of the parameter space, 
indeed J(W)= J(WU) when UUH=In. In other words, W 
is not determined uniquely when we minimize J(W). 

 
IV.   ADAPTIVE SIGNAL SUBSPACE  

     TRACKING 
 
Subspace tracking methods have applications in 

numerous domains, including the fields of adaptive 
filtering, source localization, and parameter estimation. 
In many of these applications we have a continuous 
stream of data. Thus, developing adaptive algorithms is 
very useful for these applications. In this section, we 
propose three adaptive algorithms for signal subspace 
tracking. 

The constrained minimization of the cost function 
(6) can be accomplished by a constrained gradient 
search procedure. If the step size be fixed, the weight 
matrix is updated as 

(13)                                       )1()( Jkk ∇−−= μWW
with 

=:)(kW orthonormalization of the columns of )(kW    
                                                                                   (14) 
where μ  is the step size and J∇  is the gradient of J 
respect to W. The gradient of J(W) is given by 

(15)                                   22 WWWCW HJ +−=∇
 Thus, the signal subspace update can be written as 
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                                                                                   (16) 
where )(ˆ tC  is an estimate of the correlation matrix C at 
the instant t. We may use an exponentially weighted or 
a sliding window estimate for )(ˆ tC . The simplest choice 

is the instantaneous estimate )()()(ˆ ttt HxxC =  as used 
in the least mean square (LMS) algorithm for adaptive 
filtering. The obtained subspace update is expressed by 
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We note that a further simplification of the above 
algorithm can be obtained by replacing 

)1()1( −− ttH WW  in (18) with identity matrix 
achieved by the constraint in the previous step. So, we 
have              

)]1( )()([)1()( −−+−= ttttt H WyxWW μ            (19) 
Table 1 summarizes the so called SIC1 algorithm. 
Another estimation of )(ˆ tC  can be achieved by estimate 
it with exponentially weighted window. Thus, (16) can 
be changed as follows 
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where β is the forgetting factor used to ensure that data 
in the past are downweighted in order to afford the 
tracking capability when the system operates in a 
nonstationary environment. Table 2 summarizes the so 
called SIC2 algorithm. 
A simplification is obtained by approximating the 
second W(t-1) term in (21) by W(i-1). For stationary or 
slowly varying signals, the difference between 
x(i)WH(t-1) and x(i)WH(i-1) is small, in particular when 
i is close to t. So, in this case, (16) can be expressed in 
the following form 
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)]1( )([)1()( −−+−= tttt xy WCWW μ                 (23)                      

In table 3 summary of the so called SIC3 algorithm has 
been shown. It should be noted that all proposed 
adaptive algorithms require orthonormalization   
procedure,   such as Gram-Schmidt (GS) 
orthonormalization, at the end of each iteration. It can 
be easily shown that the SIC1, SIC2, and SIC3 have 
O(nr), O(n2r), and O(nr) respectively. Moreover, the 
orthonormalization procedure which needs at the end of 
each iteration requires additional O(nr2) operations in 
the algorithms.  
 



TABLE 1. The SIC1 Algorithm 
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TABLE 2. The SIC2 Algorithm 
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TABLE 3. The SIC3 Algorithm 
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SIC1 requires the minimum operations and the SIC2 
needs the maximum operations. The SIC3 requires a 
little more operations than the SIC1. 
 

V.   FAST SIC ALGORITHM 
 

In this section, a fast implementation of the SIC 
algorithm is proposed. SIC3 has O(nr) complexity and 
an additional O(nr2) operations for orthonormalization. 
The main computational complexity corresponds to 
orthonormalization step. To reduce the computational 
complexity, Gram-Schmidt orthonormalization 
procedure is replaced with an alternative approach. 
To this end, using (22) and (23) leads to the following 
expression 

)]()()1([)1()1()( ttttt H
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It can be inferred from (23) that 
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Substituting (25) into (24) results 
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The classical projection approximation [5] is equivalent 
to  2)-(t1)-(t WW ≈ at each time step. Thus, (26) can 
be written in the following form 

)()()1()( tttt yxWW μγ +−=                                  (27) 
where  

βμμγ +−=1                                                         (28) 
The fast orthonormal SIC algorithm consists of the 
expression (27) plus an orthonormalization step of the 
weight matrix at each iteration 
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where 2
1

)]()([
−

ttH WW denotes an inverse square root 

of )]()([ ttH WW . To compute the (29), we use the 
updating equation of W(t). Keeping in mind that W(t-1) 
is now an orthonormal matrix.  
By invoking (27) we have 
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Using projection approximation (17) leads to 
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For reduce the complexity further, we apply the matrix 
inversion lemma to (31). The matrix inversion lemma 
(MIL) can be written as follows 

1111111 )()( −−−−−−− +−=+ DACBDABAABCDA                         
                                                                                   (32) 
By employing (32), the following expression can be 
obtained 
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It can be shown that 2
1
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in the following form 
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Substituting (27) and (35) into (29) results that 
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Finally, the following recursive expression is used for 
updating the signal subspace 
 
 



Table 4. The FSIC algorithm 

)()())()()((                               

)())()1()(()1()(         

      )1
)()()(1

1(
))()((

1)(         

)()(2
)(         

)()1()(         

DO  ,...2,1  FOR

1

2

2

ttttt

tttttt

ttttt
t

tt
t

ttt

t

H
H

H

HH

H

H

yxyy

yyWWW

yyyy

xx

xWy

γ
μτμ

τ

δ
τ

μγμ

γδ

+

+−+−=

−
+

=

+
=

−=

=

−

 
 

Table 5. Computational complexity of the algorithms 
Algorithm Cost (MAC) 

SIC1 

SIC2 

SIC3 

FSIC 

O(nr2)+3nr 

n2r+2n2+O(nr2)+2nr 

 O(nr2)+5nr 

4nr+n+r2+O(r) 
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                                                                                   (38) 
This fast SIC algorithm, which is referred as to FSIC, 
requires only O(nr) operations which makes it feasible 
in real time applications. Table 4 summarizes the FSIC 
algorithm.  

Table 5 is given to compare the computational 
complexity of the proposed algorithms. It can be 
inferred from this table that the FSIC and SIC2 have the 
lowest and highest computational complexity, 
respectively. Since the complexity of SIC2 is O(n2r), 
this algorithm is not preferred in on-line applications. 
On the other hand, the FSIC algorithm can be used in 
on-line applications. 
 

VI.   SIMULATION RESULTS 
 

In this section, we use simulations to demonstrate 
the applicability and performance of the SIC 
algorithms. To do so, we consider the proposed 
algorithm in DOA estimation context. We use MUSIC 
algorithm for finding the DOAs of signal sources 
impinging on an array of sensors. We consider a 
uniform linear array where the number of sensors is 
n=21 and the distance between adjacent sensors is equal 
to half wavelength. In the first scenario of this section 
the number of simulation runs used for obtaining each 
point is equal to 100. 

In the first scenario, we assume that two signal 
sources  are  located  constantly  at  (-40o,40o)  and their  
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Figure 1.  Maximum principal angle vs. snapshots 
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Figure 2.  Maximum principal angle vs. snapshots 
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Figure 3.  Estimated trajectory vs. snapshots 

 
 
SNR is equal to 10 dB. In addition, we let the step size 
μ equal to 0.001. To evaluate the performance of the 
proposed SIC algorithms in tracking of the signal 
subspace, the maximum principal angles of the adaptive 
algorithms are measured. Principal angle is a measure 
of the difference between the estimated subspace and 
the real subspace. The principal angles are zero if the 
compared subspaces are identical. In figure 1, we have 
depicted the maximum principal angle for this scenario. 
From this figure, it can be seen that the performance of 
the SIC1 and FSIC are approximately equal. Figure 1 



shows that performance of SIC2 outperforms the other 
algorithms. The SIC1, SIC3, and FSIC have the same 
performance. 

To demonstrate the performance of the proposed 
algorithms in low SNR, two sources with 0 dB SNR are 
considered. In addition, we let the step size μ equal to 
0.01. Figure 2 shows the maximum principal angles for 
SIC3 and FSIC algorithms. It depicts the appropriate 
performance of the SIC3 and FSIC algorithms. 

For investigation the performance of the proposed 
algorithms in nonstationary environments, we consider 
the first scenario. To this end, we assume that two 
signal sources change their locations from (-40o,40o) to 
(0o,10o) and SNR of each source is equal to 10 dB as the 
previous scenario. Figure 3 shows the estimated 
trajectory of the sources achieved by the MUSIC and 
FSIC algorithms. This figure depicts that the SIC’s 
algorithms can be used for subspace tracking in DOA 
tracking context.  

 
VII.   CONCLUDING REMARKS 

 
In this paper, we introduced a new interpretation of 

the signal subspace which is based on a novel 
constrained optimization problem. We proved that the 
solution of the proposed constrained minimization 
results the signal subspace. Then, we derived three 
adaptive algorithms for signal subspace tracking. To 
reduce the complexity, FSIC proposed. The total 
computational complexity of the SIC1, SIC2, SIC3, and 
FSIC are O(nr2), O(n2r), O(nr2), and O(nr) respectively. 
Simulation results in DOA tracking context showed the 
perfect performance of the proposed algorithms.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Respect to the computational complexity and the 
performance of the algorithms shown in the simulation 
results section, the FSIC algorithm is superior to the 
other algorithms and has perfect performance. 
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