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                       ABSTRACT 
 

In this paper, we present a new algorithm for 
tracking the generalized signal subspace recursively. It 
is based on an interpretation of the generalized signal 
subspace as the solution of a constrained minimization 
task. This algorithm, referred to as the CGST algorithm, 
guarantees the Cx-orthonormality of the estimated 
generalized signal subspace basis at each iteration 
which Cx denotes the correlation matrix of the sequence 
x(t). Thus, the proposed algorithm avoids Cx-
orthonormalization process after each update for post-
processing algorithms which need Cx-orthonormal basis 
for the generalized signal subspace. An efficient 
implementation of the proposed algorithm enhances 
applicability of it in real time applications. Various 
simulation results show outstanding performance of the 
proposed algorithm.  
 

Index Terms— generalized subspace, projection 
approximation, generalized eigen-decomposition, 
constrained optimization. 
 
 

I.    INTRODUCTION 
 

Generalized eigen-decomposition (GED) has an 
important role in various signal processing applications. 
Pattern recognition, adaptive noise cancellation and 
antenna array processing are some of applications of the 
GED [1]-[3]. Many researches have been focused on 
principal component analysis (PCA) and signal 
subspace tracking. Several adaptive algorithms for PCA 
and signal subspace tracking can be found in the 
literatures [4]-[7]. Nevertheless, there are a few efficient 
algorithms for adaptive implementation of GED.  

Consider the matrix pencil (Cy,Cx), where Cy and 
Cx are NN ×  symmetric positive definite matrices. 
Then, the task of computing an 1×N vector w and a 
scalar λ such that 

wCwC xy λ=                                                          (1) 

is called the generalized eigen-decomposition problem. 
The solution vector w and scalar λ are called the 
generalized eigenvector and eigenvalue, respectively, of 
the matrix pencil (Cy,Cx). According to the matrix 
theory, the matrix pencil has N positive generalized 
eigenvalues, Nλλλ ≥≥≥ ...21 , and corresponding Cx–
orthonormal generalized eigenvectors Nii ,...,2,1 , =v  

ixiy vCvC λ=                                                         (2) 

},...,2,1{,      Njiijjx
H
i ∈= δvCv                          (3) 

where ijδ is the Kronecker delta function. 
Finding the r principal generalized eigenvectors of 

the matrix pencil corresponding to the r largest 
generalized eigenvalues is the task of generalized eigen-
decomposition. The subspace spanned by the r principal 
generalized eigenvectors is called generalized signal 
subspace. The remaining generalized eigenvectors 
corresponding to the N-r generalized eigenvalues span 
the generalized noise subspace. 

Many researchers have addressed the problem (1) 
for given Cy and Cx and proposed methods for solving 
it. Moler and Stewart [8] proposed a QZ algorithm, and 
Kaufman [9] proposed an LZ algorithm for solving it 
iteratively. By invoking the Cholesky factorization of 
Cx, the problem (1) can be reduced to the standard 
eigenvalue problem which has been reported by Martin 
and Wilkinson [10]. Shougen and Shuqin [11] proposed 
an algorithm that makes use of Cholesky, QR, and 
singular value decompositions when Cy is also positive 
definite. Auchmuty [12] proposed and analyzed certain 
cost functions that are minimized at the eigenvectors 
corresponding to some specific eigenvalue. These 
algorithms assume that Cy and Cx are known, but in 
adaptive signal processing applications the matrix Cy 
and Cx are time-variant and should be estimated from 
the samples. Thus, these algorithms based on matrix 
pencil are not feasible for real time signal processing. 
Most proposed algorithms in literatures [13] are 
gradient based which slow convergence is the major 
problem of them. 



In this paper, we present a recursive algorithm for 
tracking the generalized signal subspace of matrix 
pencil. This algorithm relies on an interpretation of the 
generalized signal subspace as the solution of a 
constrained optimization problem. The proposed 
algorithm employs the projection approximation for 
obtaining an efficient algorithm. The Cx-orthonormality 
of the generalized signal subspace is the constraint used 
in this optimization. It is noteworthy that the Cx-
orthonormality of the principal generalized signal 
subspace can improve the performance of the 
estimation. In addition, it can enhance the convergence 
rate of the algorithm. We call our approach as 
constrained generalized subspace tracking (CGST). We 
will show that the proposed algorithm has O(n2) 
complexity, and thus is appropriate for real time 
applications. It is noteworthy that in this paper 
operation counts are expressed in terms of 
multiply/accumulate (MAC) operations. 

This paper is organized as follows. In section ІІ, 
our approach as a constrained optimization problem is 
introduced and derivation of the solution is described. 
Recursive implementation of the proposed solution is 
derived in section ІII. In section IV, simulations are 
used to evaluate the performance of the proposed 
algorithm and to compare this performance with another 
existing subspace tracking algorithm. Finally, the main 
conclusions of this paper are summarized in section V. 
 

II. CONSTRAINED OPTIMIZATION FOR 
GENERALIZED SIGNAL SUBSPACE 

TRACKING 
 

 A well-known method for computing the signal 
subspace of the data is projection approximation 
subspace tracking (PAST) method [14]. It tracks the 
dominant subspace of dimension r spanned by the 
correlation matrix. Yang et. al. [15] proposed an 
algorithm for generalized eigenvector tracking which 
invoked the projection approximation. The columns of 
generalized eigenvector of Yang’s method are not 
exactly Cx-orthonormal. The deviation from the 
orthonormality depends on the signal to noise ratio 
(SNR) and the forgetting factor β. This lack of 
orthonormality affects seriously the performance of 
post-processing algorithms which are dependant on Cx-
orthonormality of the generalized basis. To overcome 
this problem, we propose the following constrained 
optimization problem. 

Let nC  ∈x  and nC  ∈y be two stationary complex 
valued random vector processes with the 
autocorrelation matrices { }H

x E xxC =  and { }H
y E yyC =  

which are assumed to be positive definite. We consider 
the following minimization 
problem
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where Ir is the r×r identity matrix, 

)()1()( ttt H yWz −=  is the r-dimensional compressed 
data vector, and W is an n×r (r≤n) Cx-orthonormal 
generalized subspace basis full rank matrix. The 
aforementioned constraint guarantees the Cx-
orthonormality of the generalized signal subspace. The 
use of the forgetting factor 0<β≤1 is intended to ensure 
that data in the distant times are downweighted in order 
to preserve the tracking capability when the system 
operates in a nonstationary environment.  

To solve this constrained problem, we use 
Lagrange multipliers method. Thus, after expanding the 
expression for ))(( tJ W′ , we can replace (4) with the 
following problem 
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where 
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which tr(C) is the trace of the matrix C, F.  denotes 
the Frobenius norm, and λ  is the Lagrange multiplier. 
We can rewrite h(W) in the following form 
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 Let 0=∇h , where ∇ is the gradient operator with 
respect to W, then we have 
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which can be rewritten in the following form 
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If we substitute W(t) from (9) into the constraint which 
is rx

H IWCW =  , after some manipulations we obtain 
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Now, we define matrix L as follows 
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It follows from substituting (11) into (10) that 
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where 
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and (.)1/2 denotes the square root of a matrix. 
Using (13) and (12), we can rewrite (9) in the following 
form 

11 )()()( −−= LCCW ttt yzx                                       (14) 
Now, using (12) and (14) we can achieve the following 
fundamental solution  

2
1

11 )]()()()[()()(
−

−−= tttttt yzx
H
yzyzx CCCCCW            (15)   

This constrained generalized subspace tracking (CGST) 
algorithm guarantees the Cx-orthonormality of the 
columns of W(t).  

Recursive computation of the rn ×  matrix )(tyzC  
using (13) requires 2nr operations. The computation of 
W(t) using (15) demands additional n2r+2nr2+3n2+n 
operations. Thus, the closed form solution of the CGST 
method given by (15) needs O(n2r) operations. 
However, some manipulations can reduce the 
complexity to O(n2). 
 
      III.    FAST ADAPTIVE CGST ALGORITHM 
 

We are interested in computing the dominant 
generalized subspace spanned by correlation matrices of 
Cx(t) and Cy(t). Expression (15) shows the CGST 

algorithm for tracking the generalized signal subspace. 
In order to reduce the order of complexity, we propose 
the fast CGST algorithm in this section. 
 
A. Recursion for the correlation matrix Cy (t) 

Let y(t) be a sequence of n-dimensional data 
vectors. The correlation matrix Cy(t) used for 
generalized signal subspace estimation can be estimated 
recursively as follows 
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The expression (16) has achieved by the windowing 
called exponential window. Indeed, this window tends 
to smooth the variations of the signal parameters and 
allows a low complexity update at each time. Thus, it is 
suitable for slowly changing signals. 
 
B. Recursion for the cross correlation matrix Cyz(t) 

The cross correlation matrix Cyz(t) can be obtained 
as 

)1()()( −= ttt yyz WCC                                        (17) 
For achieving the recursive form for Cyz(t) in 
exponential window case, let us substitute (16) into (17) 

)()()1()1()( ttttt H
yyz zyWCC +−−= β            (18) 

 
By applying projection approximation at time t-1, (18) 
can be replaced by the following form 

)()()2()1()( ttttt H
yyz zyWCC +−−= β          (19) 

By invoking (17), (19) can be expressed as follows 
)()()1()( tttt H

yzyz zyCC +−= β                        (20) 
 
C. Recursion for generalized signal subspace W(t) 

Now, we want to find a recursion for fast update of 
signal subspace. Let us write (15) as below 

)()()()( 1 tttt yzx ΦCCW −=                                     (21) 
where 
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It can be easily shown that (21) leads to 
)()()()( 1 tttt xyz

−= ΦWCC                                   (23) 
Substituting (23) into (20) and right multiplying 
by )(tΦ and left multiplying by )(1 tx

−C  results the 
following recursion 
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By approximation nxx tt ICC ≈−− )1()(1 , relation (24) 
can be replaced with 
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Left multiplying (25) by )1( −tHW and right 

multiplying it by )(1 t−Φ leads to 
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By applying the approximation r

H tt IWW ≈− )()1( , 
then we have 
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For reduce the complexity further, we apply the matrix 
inversion lemma to (27). The matrix inversion lemma 
(MIL) can be written as follows 
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Using matrix inversion lemma leads to (27) replaced 
with the following expression 
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Substituting (32) into (25) leads to the following 
expression 
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It should be noted that )( txC is estimated from 
sequence vectors x(t). We use the exponentially 
weighted sample correlation matrix for 
estimating )( txC . The recursive update relation 
for )( txC is written as 

)()()1()( tttt H
xx xxCC +−= β                            (34) 

Using the MIL results the following efficient recursive 
expression for updating inverse of )(txC  
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Table 1.  The fast CGST algorithm 
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Thus, the above recursive expression can be used in the 
relations. 

The pseudo-code of the fast CGST algorithm is 
presented in table 1. The total computational 
complexity of the fast CGST algorithm is 
4n2+5nr+n+O(r2). 

Appropriate initial values should be chosen for 
W(0), C(0) and )0(Φ . C(0) and )0(Φ must be 
Hermitian positive definite matrices and W(0) should 
contain r orthonormal vectors. The choice of these 
initial values affects the transient behavior but not the 
steady state behavior of the algorithm. The simplest 
way is to set C(0) and )0(Φ  to the n×n and r×r identity 
matrices and the columns of W(0) to the first r columns 
of the n×n identity matrix. 

From computational complexity point of view, the 
CGST and fast CGST algorithms have a little more 
complexity than the parallel RLS-based adaptive 
algorithm. However, the performance of the proposed 
CGST algorithms is superior to the parallel RLS-based 
adaptive algorithm. 
 

          IV.     SIMULATION RESULTS 
 

In this section, we present some simulation results 
to demonstrate the performance of the proposed CGST 
algorithm. In the simulations, we compare the proposed 
CGST algorithm and fast CGST algorithm with the 
parallel RLS-based adaptive algorithm [15]. The 
parallel RLS-based adaptive algorithm has the total 
computational complexity of 4n2+3nr+O(r2). 

In order to evaluate the convergence speed and the 
estimated    accuracy    of   the   CGST   algorithm,   the 
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Figure 1. Direction cosine of the first dominant generalized 

signal subspace for three algorithms 
 

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

snapshots

D
is

ta
nc

e

Parallel RLS
Fast CGST
CGST

 
Figure 2. Distance between real and estimated principal 

generalized signal subspace for three algorithms 
 
 
direction cosine and subspace distance are respectively 
defined as 
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where ],...,,[ 21 rvvvV = contains the r dominant 
generalized eigenvectors of matrix pencil (Cy,Cx) which 
can be computed with the direct EVD and 

],...,,[ 21 rwwwW =   is    the    estimated   generalized 
subspace. Zero value of subspace distance shows the 
identically of the real and estimated generalized signal 
subspace. Moreover, when the value of direction cosine 
approaches to one, the estimated generalized signal 
subspace converges to the real generalized signal 
subspace. 

In the simulations, the sequences x(t) and y(t) are 
generated by 

)()46.0sin(10)( 1 tntt += πy                                   (39) 
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Figure 3. Deviation from Cx-orthonormality of the 

generalized signal subspace for three algorithms 
 
 

)()62.0sin(2)( 2 tntt += πx                                 (40) 
where )(1 tn and )(2 tn are zero mean white Gaussian 

noises with variances 1.02
1 =σ and 1.02

2 =σ . The first 
dominant (r=1) generalized subspace of (Cy,Cx) are 
considered with the CGST algorithm, fast CGST 
algorithm, and the parallel RLS-based adaptive 
algorithm. Let us assume N=8 and 99.0=β . 100 Monte 
Carlo simulations are performed for each algorithm. 

Figure 1 shows the direction cosine of the first 
dominant generalized signal subspace estimated by 
algorithms. It can be inferred from this figure that the 
fast   CGST algorithm   outperforms the parallel RLS-
based algorithm. In addition, the CGST algorithm 
shows excellent performance. 

Figure 2 demonstrates the subspace distance of the 
algorithms. The fast CGST algorithm shows the better 
performance than the parallel RLS-based algorithm. 
The proposed CGST algorithm shows substantial 
improvement in estimation of the first dominant 
generalized signal subspace. 

The deviation of the subspace weighting matrix 
W(t) from Cx-orthonormality can be measured by 
means of the following error criterion  

⎟
⎠
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⎝
⎛ −=

Fx
H ttt rIWCW )()()(log20deviation             (41)                      

Figure 3 depicts deviation from orthonormality of the 
algorithms. It can be easily seen that the performance of 
the proposed CGST algorithm in the sense of deviation 
from Cx-orthonormality is outstanding. 

It should be noted that the difference in 
performance of the CGST and fast CGST algorithms is 
because of the approximations lead to the expressions 
of (25) and (27). 
 

    V.     CONCLUDING REMARKS 
 

In this paper, we introduced an interpretation of the 
generalized signal subspace as the solution of a 
constrained   optimization   problem.   We   derived  the  
 



solution of  this  problem and discussed the applicability 
of the so-called CGST algorithm for tracking the 
generalized subspace. The complexity of this algorithm 
is O(n2). Simulations demonstrated excellent 
performance of the CGST algorithm. In addition, we 
derived a recursive formulation of this solution for 
adaptive implementation.  

The computational complexity of the fast CGST 
algorithm is O(n2) which is appropriate for on line 
implementation. The proposed algorithm is efficiently 
applicable in those post processing applications which 
need a Cx-orthonormal basis for the generalized signal 
subspace.  

In order to compare the performance of the 
proposed CGST and fast CGST algorithm with another 
subspace tracking algorithm, several simulation 
scenarios were considered. The simulation results 
showed that the performance of the CGST algorithms is 
much better than the parallel RLS-based adaptive 
algorithm. 
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