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Abstract—This paper examines the task of calibrating a referred to as the plane + parallax model [7]. In this model th
network of security cameras of arbitrary topology utilizing a  projective structure of each camera is defined parallax pa-

common ground-plane to simplify the geometry. The method of 5 meters in addition td parameters specifying a homography
chaining ground-plane homographies is employed to overcome bet . f | in th

the necessity that a common region is visible in all images of P€'WEEN IMages ot a Cc_)mmon plane in the S(_;ene'

the ground-plane. We show that this method of recovering a  The general observation is that the calculation of the exter

projective reconstruction is ideal for the case of surveillance nal properties of the cameras becomes simplified in the case
cameras and structure when making use of the common ground- [4] the process of determining a projective reconstructign
plane assumption. . .
standard sequential means [8] was compared with a plane-
I. INTRODUCTION based scheme indicating improved stability and resultshfer
) N plane-based approach.

In order to perform tracking and recognition tasks from The advantages of the plane-based approach are that cor-
networks of security cameras it is first necessary to det@miggpondences between common scene points can be applied
the calibration properties of the cameras. The calibratiba  gjmytaneously across many images in the solution of the cam

camera can be described in terms of it's internal and exterRa,'s parallax (only factorization [7] is able to achievés}h
properties [1]. and far fewer correspondences are required as a minirBum (

The internal properties (such as the focal length) enalig solve for the camera’s parallax (assuming that the plane
metric measurements and angles to be properly recovefgfnography can be found).

from the images. The external properties (such as rotationrhe second of these points is critical for the purpose of
and translation) enable exact correspondences to be deésfmg,cillance imaging where the images are often of poor

betv_veen the images via a proje_ctive coordinate system. B?ﬁrﬂality with very limited overlap capable of generating im-
the internal and external properties must be recoveredderor yge correspondences. This means that an initial projective
for a full Euclidean reconstrucn.on to bel po§3|ble. __reconstruction can be obtained in one linear computation —
For a large range of tracking applications a projectiVgyercoming the main difficulty in alternative structure rfro
reconstruction of the cameras and scene is adequate for th&ion approaches — and used as a starting point for a non-
essential task of track hand-over between the images. In {iar minimization.
case that the_c_;ameras form a large reconfigurable networks,iq paper proceeds by applying some of the plane-based
with no specific knowledge of the networks topology Of,,naches proposed in the literature with several adapsat
fldu_mal markings with \_/vh|ch to calibrate the pameras,_lt I the task of determining a projective reconstruction of a
desirable to have a reliable means to determine a projectiyg,ork of surveillance cameras. The major novelties age th

reconstruction. adaptation of the direct method into a sparse least-squares

.I.n.this paper we present a projective regonstruction' SCheﬁ[ﬂ%blem (Section II-A) and the proposal of the plane-based
utilizing the constraint that all the cameras in the ngtmmdw bundle adjustment (Section 1I-C). The concept of chaining
the same ground-plane. We overcome the necessity thagall ffy ographies has been used in other plane-based approaches

cameras need to view the same section of ground-plane [BY pyt here is used in a different context to chain together
chaining correspondences from non-overlapping views baﬁ"bitrary networks recursively.

to a base view in the camera network.

A number of authors in the _multlple-_vlev_v geomet_ry “t'A_ Plane-Based Camera Geometry
erature have addressed the topic of projective recongiruct
utilizing common plane correspondences [2], [3], [4], [E]. The correspondence of a set of poinks)(and ;) from
The geometry of a scene relative to a plane is commorilpagesi andj lying on a plane £) in the scene is expressed



in terms of the homographiA7 ; as follows, A. Direct Reconstruction

x; ~ H] X, (1) The Direct Reconstruction method was proposed in [3] and
seeks to find a solution to the parallax vectdis; (for i =
The plane £) is assumed to be the ground-plane excluswe@/ .n—1) and the affine part of the (off-plane) scene points
in this paper. Furthermore the expression for a caméra xj — [XIT,1]T (for j = 1,...,m). Firstly equation (2) is
observing points in general position (i.e. off-plane psjrtan |astated as
be given in terms of the planar-homographlf ; (from the j W X7
first image labeled 0) and a further vectdy ; specifying the X = [ 0.i | do.i ] ( 1 ) ’ )

parallax relative to the plane, which can then be rewritten in the form,

x;~ [Hf,; | d; | X, (2) . i
° ] [HZ, | dos | ( X ) — 0, )

wherex; are the projections of the off-plane poifsto image 1

& This can be rearranged once again to present a linear system

Assuming that the homographij; can be reliably de- in the coefficients of the unknown parameters as follows:
termined from correspondences relative to a common plane,

the task of determining a projective reconstruction for &1 se [ -1 0 = :”hSB* h12 ] ( de?’ ) =0y, (6)
of n cameras viewing a scene can be reduced to one of I -y | —yh"+h XJ 7

determining the3(n — 1) DOF associated with vectord ;
fori=1,...,n — 1 describing the parallax off the plane.

wherex! = [z, y,1]" andh* is thek*® row of the matrixHJ .
The left and right hand block of this constraint can be rewemit
more succinctly as A’ | B/ ] and the unknown parameters as
B. Chaining Homographies d=[d];,...,dJ,4]" andX = [X'T ..., X™T]T. Each
constraint of the form (6) provide® DOF toward the total
The assumption when solving for plane-based homogrgfg( 1) + 3m DOF in the unknown parametersl (and

ph]!es Hﬂ,k (for i = 1,...,n — 1) is that correspondencesy The combined constraints for each observation of a scene
(xg < x;) exist between the set of points; (for k' = noint j in imagei forms a sparse linear system,

1,...,m) in image 0 and x¥ in image i. The minimum ’

number of point (or line) based correspondences necessary D { d ] —0 @)

to fully determine the homography isand it's solution can X

be obtained via well-known least-squares methods [3].  with the structure ofD (assuming all the scene points are
It is common for the cameras in surveillance networks netsible in all the images) conforming to,
to share a common section of ground-plane visible from all
images. If this is the case then it is not possible to caleulat
the homographiedl7, for all the cameras. Instead relative
homographies must be determirld ; between sets of images .
that do share common visible sections of ground-plane. By
In order to utilize the information contained in the homog- A} Bi
raphy H7 , in either of the reconstruction schemes (outlined } )
in Section Il) it is necessary to be able to recol#f ; from D= A’:ﬂ ' . (8)
it by means of chaining it to other homographies in the set in !
the following fashion (see [6]),

B;

Al
H(T]rz = HLHSJ 3 . !

The key point here is that it is always possible to recurgivel Am‘ ' Bm

calculate the homograpﬂ;loj from (3) for networks of cam- - - nel S

eras where there is a continuous string of correspondentes3eeing as we seek a projective reconstruction the first eamer

sufficient number) to determirB7_,  (for j =1,...,i—1) IS assumed to be fixed?, = [I1|0]) and is consequently

in a sequential manner or otherwise. omitted (sincedo,o = [0,0,0]T). A solution to (7) is possible
using least-squares ideally taking into account the siyao$i

Il. PLANE-BASED RECONSTRUCTIONSCHEMES

In this Section we review two of the linear plane—base@' Matching Constraint Reconstruction

reconstruction schemes presented in the literature [3], [4 This approach was first proposed in [3] and extended to
as well as presenting a novel formulation of the non-lineéine three and four view cases in [4]. The method seeks to
bundle-adjustment of the cameras and scene points assuntiatgrmine a solution to just the parallax vectdgs; (for i =

a plane-based camera model. 1,...,n — 1) by utilizing matching constraints arising from



correspondences between the image poiﬂﬁé) {n different DOF toward resolving the parameters @fif n > 4.
images. In this case it is hecessary to add additional constraints de

The key observation is that under the parameterization (?ed from correspondences over three or more views to obtai
the coefficients of the multi-view tensors become linear ia feasible solution. If such correspondences are availaide
the coefficients ofl. We introduce the following notation for @lso advisable [4] to utilize the trifocal tensor versionthé
the camera®; = [Ala], P; = [B|b]. The equation of the linearized matching constraint for improved performante a
fundamental matrix in terms of the camera matriésand lower noise levels. We currently have not implemented this
P; is, additional constraint.
~ Az ~ ai

F,;=( +4)7! “B b | (9) C. Bundle-Adjustment
It is possible to reformulate the task of projective bundle-
justment to provide a non-linear solution for the systém o

cameras ;) and points(X;) with respect to the parame-

where~ omits the row corresponding to the superscript froer
the vector / matrix, for example,

A? a? terization of the camera given in equation (2). Considering
oo A3 2’ (10) as a template the sparse partitioned Levenberg-Marquardt
L= 1 B2 p2 | minimization scheme given in [3], we set out to minimize
B? bl the following objective function for, cameras anan points,
which can be rewritten as follows, ; ;
min [|x] — [Hf; [ dos | X7||?, (16)
A3 A2 A2 A2 do,:, X7 ’
_ 2 2 3 2 2 3 3 3 . .
Fii=-a B3 +a B3 -b A3 +b A2 where! = [ Hf, | do,; | X7 are the estimated locations of
B B B B 1) the reprojected image points. The first camera is once again

assumed to be fixed®, = [ I | 0 ]). Consequently the number

) o ) of parameters involved in the minimization &e:—1) +3m
Converting the coefficients @; ; into a vectorf, the usual and the parameter vectqs — [PLPHT is partitioned as

approach for solving fof [3] is by formulating a linear system — al 47 17 and _"xo XmTIT This
S composed from correspondences — x5, Pa = [doy,--.,d,] Py = | RREE ]

results in a simple form for the Jacobian of the camera
Sf = 0. (12) component of the parameter vector,

Now a substitution can be made fér= Qd whered = (3ﬁj)k m%

[aT,b"]T andQ = [Q;|Q;] is a matrix composed according CRAE m% , a7

to the linear relationship between the coefficient ahdd of Pa -2

the form (11) — partitioned in order to separate the comptsnen ’ _

of d — resulting in, for entry k = 0,1 of the image vectok! = [mg, my, m,] "
whereg # k. This results in an efficient non-linear solution to

SQd = 0. (13) the problem at the cost of assuming that the plane-based ho-

mographies are not contributing to the overall error asdedi
Assuming that the matriceA and B correspond with the with the reconstruction.
known planar homographieB7, and Hf ;, equation (13)
allows for a direct solution to the parallax component of the Ill. EXPERIMENTAL EVALUATION
camera matriced = [d;,dg ;] " In order to assess the performance of the plane-based recon-
By obtaining correspondences between common off-plagtuction schemes we have conducted a series of experiments
points over the entire set of images a sparse matficxan be on synthetic data in addition to two examples with real insage

constructed to solve for the vectdr= [d ,,...,dJ,,_;]" as with known ground truth data. The process used to test the
follows, algorithms is outlined in Algorithm 1.
Md = 0. (14) The different reconstruction schemes referred to in this

Section are th®irect, Matching ConstraintNIC) and Plane-
Based Bundle-AdjustmenPBA) algorithms discussed in Sec-
tion Il. In addition to these schemes a full projective b@adl

The structure of the matriM when using only sequential
correspondences is,

SQ: adjustment is appliedFBA) [3] as a final stage in this
SQ; SQ process. Using a full bundle-adjustment no longer strictly
SQ; SQq (15) enforces the plane-based geometry but does absorb some of

) the error associated with misalignments of the groundelan
' homographies.
SQn-2 SQn Also note that preconditioning is applied to the points in
as noted in [3] this configuration does not provide sufficiemach image independently to ensure well conditioned linear



systems for theéDirect and MC schemes, this should not beFBA result in the least sensitivity to error in the groundraa
considered optional. The resulting calculations of the@@® point observations. FBA appears to be able to absorb theteffe
must then be deconditioned accordingly. of error in the ground plane point observations to the extent

The assumption when using the plane-based approach is that it becomes insignificant compared to the effect of error
the ground-plane can be reliably and accurately determinéud the off-plane points.
Consequently less error was added to the ground-plane-correAll the correspondences were used for these experiments;
spondences in the synthetic experiments and care was takewever, a further set of experiments were performed (on the
in the real image experiments to ensure that the groundeplasame configuration) with an average track length ehowing
homographies were calculated with relative accuracy. @lsis almost identical results. These have been omitted due espa
allows for a more meaningful analysis of the impact of noisestrictions.
in the off-plane correspondence data.

B. Real Images

Algorithm 1: Plane-Based Reconstruction Th_e first image sequence was chuire_d from [1_0] and
Input - Set of imagesTy, ..., ;), point sets consists of four528 x 384 images with22 different points

manually identified with sub-pixel accuracy in the sceng- Fi

f));O;{ric.ivgfrfL;ﬁ)e zrrlgu(;l%lr-rs;a%r.]dences o ure 2 shows twq images of .tf%ETSsequence With'selected

Output: Projective cameraP;, scene point&X* and ground plane points labeled in red and off-plane points Bk
ground-plane homographidd”. in green. The correspondences r_elateq to these points are on

hJ average slightly more then three views in length. Groundela

begin homographies are fitted between all the image pairs with an
for V{i,j} wherei < j <n—1do average fitting error 06.02 pixels squared.
if at least4 correspondences; < x; existthen The second image sequence was acquired of a driveway
L (i) CalculateH; using least-squares [3] and consists of four20 x 576 images with20 different points
(ii) Refine HY ; non-linearly [3] manually identified in the scene. Two images of this sequence
I. Condition the image points [9] are §hown in Figure 3, with points marked in a similar fa_shion
II. Use theDirect or MC scheme to solve linearly to Figure 2. '_rhe c_orrespondences related to these pc_)lnts are
for the camerasK;) (the scene pointX* must be gxactly two views in Igngth. Gr'ound. plane homogrgphles are
triangulated after reconstruction fMC) fitted between all the image pairs with an average fittingrerro
I1l. Decondition the camerasP() of 0.02 pixels squared. _ _
IV. Refine the camerasP(;) and points X*) using The .ground truth error in e_ach_ case was gcquwed by
PBA calibrating each camera using fiducial markings in the scene
V. Refine the camera®() and points X*) using manually identified in the images, then using Tsai's method
FBA [1] to determine the camera’s internal and external progeert
end Table IlI-B presents the average squared reprojectiorrerro

measured in the real images tests. Note that the reduction
in error when the Plane base Bundle-Adjustment is applied
A. Synthetic Data is much more pronounced than in the synthetic tests. There
The synthetic experiments were generated from of a ser@lgo exists a more significant difference between the Direct
of 11 cameras placed in a circular configuration to ensuf®d MC methods; however, the relative performance does not
Correspondences can be determined re"ab|y_ adhere to a Simple relationship, but depends on the paitlcul
A set of coplanar scene points are generated on the grouiiage sequence, as well as the specific schemes employed
plane of the circle enabling the calculation of the homogrer reconstruction. The Direct method appears to perform
phiesH7; and a set 020 scene points are randomly locatedvell more consistently than the MC method. In both image
within a radius of the circle center and offset from the grbun Sequences, the Direct+PBA+FBA method produced results
plane facilitating the calculation of the parallax vectd).( ~ that were superior to the ground truth produced using Tsai's
The scene points were projected iMio2 x 512 images Method.
where zero-mean Gaussian noise of varying standard devi-
ations was applied to the ground-plane pointé)(and the
off-plane points §2). A series of50 trials are completed at
each error level usin®irect andMC as linear estimates and
Direct+PBA, MC+PBA andFBA as refined estimates.
Figure 1 presents the results of these experiments. It can be
seen that all variations of the plane based approach produce
stable results in the presence of noise. The Direct reaamstr
tion based methods perform equally well or slightly bettemt
the Matching Constraint methods. The use of both PBA and
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Fig. 2. Imagesl and4 from the PETSdata set.
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(b)
ot Fig. 3. Images3 and4 from thedrivewaydata set.
0 driveway PETS
Direct | MC [ Direct | MC
Com M e Linear 3.9830| 3.6050| 5.4604| 7.7048
S © Lin+PBA 2.7466| 2.7223| 2.3609| 2.6521
Ll] = Diecuipen Lin+PBA+FBA || 0.3392| 1.0266 || 0.1180| 0.0914
Lol 6 mearonre Ground Truth 0.4969 0.1251
TABLE |

AVERAGE SQUARED REPROJECTION ERROR OF PLANBASED
RECONSTRUCTION SCHEMES APPLIED TO THHrivewayAND PETS
DATASETS.

squared error

IV. CONCLUSIONS& FUTURE WORK

In this paper we have implemented a number of algorithms
for the task of calibrating a network of security cameras

[C)]

— o relative to a common ground-plane. The results of the linear
M weaa schemes applied to real and synthetic data demonstrate the
—&- Direct+PBA+FBA . . . . .
Lot o mcrpBAEBA potential to determine a projective reconstruction for & se

of cameras utilizing very few correspondences between the
images correspondences.

The results from the synthetic experiments indicate that
linear plane-based algorithms perform well in the presence
of noise, with the error increasing gradually at higher aois
levels. The algorithm remains stable with noise added to the
ground plane-correspondences in which case the full pregec
bundle-adjustment seems capable of absorbing most of the
T — error introduced into the plane-based solution.

The experiments performed on real images show that the
Fig. 1. Average squared reprojection error using a full ebrespondences @PProach works well for scenes with highly disparate views
for 02 € {0.0,...,2.0} and (a)8% = 0.0, (b) B2 = 0.5, (c) B2 = 1.0, (d) and in the case of thariveway sequence very minimal
42 =15, sequential overlap between the images. The final projective

squared error

L L L L
0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
standard deviation




bundle-adjustment in both cases was a necessity in ordenin
absorb some of the error associated with the selection of the
ground-plane homographies. [13]

It would be very difficult to reconstruct thdriveway data
set by any other method seeing as sequential structure f;[%r‘{]
motion methods [8] are very sensitive to errors in pair-wi
structure initialization where as the plane-based mettiodis
for this initialization to be performed simultaneously @&z all
the cameras (the only alternative to this is sparse facttoiz
[11]). The plane-based method is therefore shown to be a
practical approach for this type of scenario.

In future work we plan to utilize the framework for re-
constructing networks of cameras relative to the grouaahl
to form the basis for a semi-automated system for camera
network management. The user of the system would first be
required provide the ground-plane correspondences agabli
the determination of the plane homographies. This task ean b
simplified by incorporating the use of wide baseline matghin
methods [12], [13], [14].

By then incorporating the use of object tracks gathered
temporally the estimation of the parallax parameters can be
improved incrementally as more track data becomes availabl
In this respect the resulting external calibration will besn
accurate in the regions of the scene where off-plane feature
correspondences are available. This in turn conditions the
resulting reconstruction to be most accurate for track hand
over purposes.
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