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Abstract—This paper examines the task of calibrating a
network of security cameras of arbitrary topology utilizing a
common ground-plane to simplify the geometry. The method of
chaining ground-plane homographies is employed to overcome
the necessity that a common region is visible in all images of
the ground-plane. We show that this method of recovering a
projective reconstruction is ideal for the case of surveillance
camera networks due to the ability to linearly initialize the
cameras and structure when making use of the common ground-
plane assumption.

I. I NTRODUCTION

In order to perform tracking and recognition tasks from
networks of security cameras it is first necessary to determine
the calibration properties of the cameras. The calibrationof a
camera can be described in terms of it’s internal and external
properties [1].

The internal properties (such as the focal length) enable
metric measurements and angles to be properly recovered
from the images. The external properties (such as rotation
and translation) enable exact correspondences to be determined
between the images via a projective coordinate system. Both
the internal and external properties must be recovered in order
for a full Euclidean reconstruction to be possible.

For a large range of tracking applications a projective
reconstruction of the cameras and scene is adequate for the
essential task of track hand-over between the images. In the
case that the cameras form a large reconfigurable network,
with no specific knowledge of the networks topology or
fiducial markings with which to calibrate the cameras, it is
desirable to have a reliable means to determine a projective
reconstruction.

In this paper we present a projective reconstruction scheme
utilizing the constraint that all the cameras in the networkview
the same ground-plane. We overcome the necessity that all the
cameras need to view the same section of ground-plane by
chaining correspondences from non-overlapping views back
to a base view in the camera network.

A number of authors in the multiple-view geometry lit-
erature have addressed the topic of projective reconstruction
utilizing common plane correspondences [2], [3], [4], [5],[6].
The geometry of a scene relative to a plane is commonly

referred to as the plane + parallax model [7]. In this model the
projective structure of each camera is defined by3 parallax pa-
rameters in addition to4 parameters specifying a homography
between images of a common plane in the scene.

The general observation is that the calculation of the exter-
nal properties of the cameras becomes simplified in the case
that a common plane is readily identifiable in the images. In
[4] the process of determining a projective reconstructionby
standard sequential means [8] was compared with a plane-
based scheme indicating improved stability and results forthe
plane-based approach.

The advantages of the plane-based approach are that cor-
respondences between common scene points can be applied
simultaneously across many images in the solution of the cam-
era’s parallax (only factorization [7] is able to achieve this),
and far fewer correspondences are required as a minimum (3)
to solve for the camera’s parallax (assuming that the plane
homography can be found).

The second of these points is critical for the purpose of
surveillance imaging where the images are often of poor
quality with very limited overlap capable of generating im-
age correspondences. This means that an initial projective
reconstruction can be obtained in one linear computation –
overcoming the main difficulty in alternative structure from
motion approaches – and used as a starting point for a non-
linear minimization.

This paper proceeds by applying some of the plane-based
approaches proposed in the literature with several adaptations
to the task of determining a projective reconstruction of a
network of surveillance cameras. The major novelties are the
adaptation of the direct method into a sparse least-squares
problem (Section II-A) and the proposal of the plane-based
bundle adjustment (Section II-C). The concept of chaining
homographies has been used in other plane-based approaches
[6] but here is used in a different context to chain together
arbitrary networks recursively.

A. Plane-Based Camera Geometry

The correspondence of a set of points (x̄i) and (̄xj) from
imagesi andj lying on a plane (π) in the scene is expressed



in terms of the homographyHπ
i,j as follows,

x̄i ' Hπ
i,jx̄j . (1)

The plane (π) is assumed to be the ground-plane exclusively
in this paper. Furthermore the expression for a camera (i)
observing points in general position (i.e. off-plane points) can
be given in terms of the planar-homographyHπ

0,i (from the
first image labeled 0) and a further vectord0,i specifying the
parallax relative to the plane,

xi '
[

Hπ
0,i | di

]

X, (2)

wherexi are the projections of the off-plane pointsX to image
i.

Assuming that the homographyHπ
0,i can be reliably de-

termined from correspondences relative to a common plane,
the task of determining a projective reconstruction for a set
of n cameras viewing a scene can be reduced to one of
determining the3(n − 1) DOF associated with vectorsd0,i

for i = 1, . . . , n − 1 describing the parallax off the plane.

B. Chaining Homographies

The assumption when solving for plane-based homogra-
phies Hπ

0,i (for i = 1, . . . , n − 1) is that correspondences
(xk

0 ↔ xk
i ) exist between the set of pointsxk

0 (for k =
1, . . . ,m) in image 0 and xk

i in image i. The minimum
number of point (or line) based correspondences necessary
to fully determine the homography is4 and it’s solution can
be obtained via well-known least-squares methods [3].

It is common for the cameras in surveillance networks not
to share a common section of ground-plane visible from all
images. If this is the case then it is not possible to calculate
the homographiesHπ

0,i for all the cameras. Instead relative
homographies must be determinedHπ

j,i between sets of images
that do share common visible sections of ground-plane.

In order to utilize the information contained in the homog-
raphy Hπ

j,i in either of the reconstruction schemes (outlined
in Section II) it is necessary to be able to recoverHπ

0,i from
it by means of chaining it to other homographies in the set in
the following fashion (see [6]),

Hπ
0,i = Hπ

j,iH
π
0,j . (3)

The key point here is that it is always possible to recursively
calculate the homographyHπ

0,j from (3) for networks of cam-
eras where there is a continuous string of correspondences (of
sufficient number) to determineHπ

j−1,j (for j = 1, . . . , i− 1)
in a sequential manner or otherwise.

II. PLANE-BASED RECONSTRUCTIONSCHEMES

In this Section we review two of the linear plane-based
reconstruction schemes presented in the literature [3], [4],
as well as presenting a novel formulation of the non-linear
bundle-adjustment of the cameras and scene points assuming
a plane-based camera model.

A. Direct Reconstruction

The Direct Reconstruction method was proposed in [3] and
seeks to find a solution to the parallax vectorsd0,i (for i =
1, . . . , n−1) and the affine part of the (off-plane) scene points
Xj = [X̂j>, 1]> (for j = 1, . . . ,m). Firstly equation (2) is
restated as

x
j
i '

[

Hπ
0,i | d0,i

]

(

X̂j

1

)

, (4)

which can then be rewritten in the form,

[xj
i ]×

[

Hπ
0,i | d0,i

]

(

X̂j

1

)

= 03. (5)

This can be rearranged once again to present a linear system
in the coefficients of the unknown parameters as follows:

[

−1 0 x xh3 − h1

0 1 −y −yh3 + h2

](

d0,i

X̂j

)

= 02, (6)

wherexj
i = [x, y, 1]> andhk is thekth row of the matrixHπ

0,i.
The left and right hand block of this constraint can be rewritten
more succinctly as[ Aj

i | Bj
i ] and the unknown parameters as

d = [d>
0,1, . . . ,d

>
0,n−1]

> and X = [X̂1>, . . . , X̂m>]>. Each
constraint of the form (6) provides2 DOF toward the total
of 3(n − 1) + 3m DOF in the unknown parameters (d and
X). The combined constraints for each observation of a scene
point j in imagei forms a sparse linear system,

D

[

d

X

]

= 0, (7)

with the structure ofD (assuming all the scene points are
visible in all the images) conforming to,

D =
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. (8)

Seeing as we seek a projective reconstruction the first camera
is assumed to be fixed (P0 = [ I | 0 ]) and is consequently
omitted (sinced0,0 = [0, 0, 0]>). A solution to (7) is possible
using least-squares ideally taking into account the sparsity of
D.

B. Matching Constraint Reconstruction

This approach was first proposed in [3] and extended to
the three and four view cases in [4]. The method seeks to
determine a solution to just the parallax vectorsd0,i (for i =
1, . . . , n − 1) by utilizing matching constraints arising from



correspondences between the image points (x
j
i ) in different

images.

The key observation is that under the parameterization (2)
the coefficients of the multi-view tensors become linear in
the coefficients ofd. We introduce the following notation for
the camerasPi = [A|a], Pj = [B|b]. The equation of the
fundamental matrix in terms of the camera matricesPi and
Pj is,

Fi,j = (i + j)−1

∣

∣

∣

∣

∼ Ai ∼ ai

∼ Bj ∼ bj

∣

∣

∣

∣

, (9)

where∼ omits the row corresponding to the superscript from
the vector / matrix, for example,

F1,1 =
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which can be rewritten as follows,

F1,1 = −a2
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(11)
.

Converting the coefficients ofFi,j into a vectorf , the usual
approach for solving forf [3] is by formulating a linear system
S composed from correspondencesxk

i ↔ xk
j ,

Sf = 0. (12)

Now a substitution can be made forf = Qd where d =
[a>,b>]> andQ = [Qi|Qj ] is a matrix composed according
to the linear relationship between the coefficients off andd of
the form (11) – partitioned in order to separate the components
of d – resulting in,

SQd = 0. (13)

Assuming that the matricesA and B correspond with the
known planar homographiesHπ

0,i and Hπ
0,j , equation (13)

allows for a direct solution to the parallax component of the
camera matricesd = [d>

0,i,d
>

0,j ]
>.

By obtaining correspondences between common off-plane
points over the entire set of images a sparse matrixM can be
constructed to solve for the vectord = [d>

0,1, . . . ,d
>
0,n−1]

> as
follows,

Md = 0. (14)

The structure of the matrixM when using only sequential
correspondences is,
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, (15)

as noted in [3] this configuration does not provide sufficient

DOF toward resolving the parameters ofd if n > 4.
In this case it is necessary to add additional constraints de-

rived from correspondences over three or more views to obtain
a feasible solution. If such correspondences are availableit is
also advisable [4] to utilize the trifocal tensor version ofthe
linearized matching constraint for improved performance at
lower noise levels. We currently have not implemented this
additional constraint.

C. Bundle-Adjustment

It is possible to reformulate the task of projective bundle-
adjustment to provide a non-linear solution for the system of
cameras (Pi) and points(Xj) with respect to the parame-
terization of the camera given in equation (2). Considering
as a template the sparse partitioned Levenberg-Marquardt
minimization scheme given in [3], we set out to minimize
the following objective function forn cameras andm points,

min
d0,i,Xj

‖xj
i −

[

Hπ
0,i | d0,i

]

Xj‖2, (16)

where x̂
j
i =

[

Hπ
0,i | d0,i

]

Xj are the estimated locations of
the reprojected image points. The first camera is once again
assumed to be fixed (P0 = [ I | 0 ]). Consequently the number
of parameters involved in the minimization are3(n−1)+3m

and the parameter vectorp =
[

p>
a ,p>

b

]>
is partitioned as

pa = [d>
0,1, . . . ,d

>
0,n]> and pb = [X0>, . . . ,Xm>]>. This

results in a simple form for the Jacobian of the camera
component of the parameter vector,

(∂x̂
j
i )k

pa

=







1

m2

1

m2

−
mg

m2

2






, (17)

for entry k = 0, 1 of the image vector̂xj
i = [m0,m1,m2]

>

whereg 6= k. This results in an efficient non-linear solution to
the problem at the cost of assuming that the plane-based ho-
mographies are not contributing to the overall error associated
with the reconstruction.

III. E XPERIMENTAL EVALUATION

In order to assess the performance of the plane-based recon-
struction schemes we have conducted a series of experiments
on synthetic data in addition to two examples with real images
with known ground truth data. The process used to test the
algorithms is outlined in Algorithm 1.

The different reconstruction schemes referred to in this
Section are theDirect, Matching Constraint (MC ) and Plane-
Based Bundle-Adjustment (PBA) algorithms discussed in Sec-
tion II. In addition to these schemes a full projective bundle-
adjustment is applied (FBA) [3] as a final stage in this
process. Using a full bundle-adjustment no longer strictly
enforces the plane-based geometry but does absorb some of
the error associated with misalignments of the ground-plane
homographies.

Also note that preconditioning is applied to the points in
each image independently to ensure well conditioned linear



systems for theDirect and MC schemes, this should not be
considered optional. The resulting calculations of the cameras
must then be deconditioned accordingly.

The assumption when using the plane-based approach is that
the ground-plane can be reliably and accurately determined.
Consequently less error was added to the ground-plane corre-
spondences in the synthetic experiments and care was taken
in the real image experiments to ensure that the ground-plane
homographies were calculated with relative accuracy. Thisalso
allows for a more meaningful analysis of the impact of noise
in the off-plane correspondence data.

Algorithm 1 : Plane-Based Reconstruction
Input : Set of images (I0, . . . , In−1), point sets

(x0, . . . ,xn−1) and correspondencesxi ↔ xi+1

on and off the ground-plane.
Output : Projective camerasPi, scene pointsXk and

ground-plane homographiesHπ
i,j

begin
for ∀{i, j} wherei < j ≤ n − 1 do

if at least4 correspondencesxi ↔ xj exist then
(i) CalculateHπ

i,j using least-squares [3]
(ii) Refine Hπ

i,j non-linearly [3]

I. Condition the image points [9]
II. Use theDirect or MC scheme to solve linearly
for the cameras (Pi) (the scene pointsXk must be
triangulated after reconstruction forMC )
III. Decondition the cameras (Pi)
IV. Refine the cameras (Pi) and points (Xk) using
PBA
V. Refine the cameras (Pi) and points (Xk) using
FBA

end

A. Synthetic Data

The synthetic experiments were generated from of a series
of 11 cameras placed in a circular configuration to ensure
correspondences can be determined reliably.

A set of coplanar scene points are generated on the ground-
plane of the circle enabling the calculation of the homogra-
phiesHπ

i,j and a set of20 scene points are randomly located
within a radius of the circle center and offset from the ground-
plane facilitating the calculation of the parallax vector (d).

The scene points were projected into512 × 512 images
where zero-mean Gaussian noise of varying standard devi-
ations was applied to the ground-plane points (β2) and the
off-plane points (σ2). A series of50 trials are completed at
each error level usingDirect andMC as linear estimates and
Direct+PBA, MC+PBA andFBA as refined estimates.

Figure 1 presents the results of these experiments. It can be
seen that all variations of the plane based approach produce
stable results in the presence of noise. The Direct reconstruc-
tion based methods perform equally well or slightly better than
the Matching Constraint methods. The use of both PBA and

FBA result in the least sensitivity to error in the ground plane
point observations. FBA appears to be able to absorb the effect
of error in the ground plane point observations to the extent
that it becomes insignificant compared to the effect of error
in the off-plane points.

All the correspondences were used for these experiments;
however, a further set of experiments were performed (on the
same configuration) with an average track length of3 showing
almost identical results. These have been omitted due to space
restrictions.

B. Real Images

The first image sequence was acquired from [10] and
consists of four528 × 384 images with22 different points
manually identified with sub-pixel accuracy in the scene. Fig-
ure 2 shows two images of thePETSsequence with selected
ground plane points labeled in red and off-plane points marked
in green. The correspondences related to these points are on
average slightly more then three views in length. Ground plane
homographies are fitted between all the image pairs with an
average fitting error of0.02 pixels squared.

The second image sequence was acquired of a driveway
and consists of four720×576 images with20 different points
manually identified in the scene. Two images of this sequence
are shown in Figure 3, with points marked in a similar fashion
to Figure 2. The correspondences related to these points are
exactly two views in length. Ground plane homographies are
fitted between all the image pairs with an average fitting error
of 0.02 pixels squared.

The ground truth error in each case was acquired by
calibrating each camera using fiducial markings in the scene,
manually identified in the images, then using Tsai’s method
[1] to determine the camera’s internal and external properties.

Table III-B presents the average squared reprojection errors
measured in the real images tests. Note that the reduction
in error when the Plane base Bundle-Adjustment is applied
is much more pronounced than in the synthetic tests. There
also exists a more significant difference between the Direct
and MC methods; however, the relative performance does not
adhere to a simple relationship, but depends on the particular
image sequence, as well as the specific schemes employed
for reconstruction. The Direct method appears to perform
well more consistently than the MC method. In both image
sequences, the Direct+PBA+FBA method produced results
that were superior to the ground truth produced using Tsai’s
method.
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Fig. 1. Average squared reprojection error using a full set of correspondences
for σ2 ∈ {0.0, . . . , 2.0} and (a)β2 = 0.0, (b) β2 = 0.5, (c) β2 = 1.0, (d)
β2 = 1.5.

Fig. 2. Images1 and4 from thePETSdata set.

Fig. 3. Images3 and4 from thedrivewaydata set.

driveway PETS
Direct MC Direct MC

Linear 3.9830 3.6050 5.4604 7.7048
Lin+PBA 2.7466 2.7223 2.3609 2.6521

Lin+PBA+FBA 0.3392 1.0266 0.1180 0.0914
Ground Truth 0.4969 0.1251

TABLE I
AVERAGE SQUARED REPROJECTION ERROR OF PLANE-BASED

RECONSTRUCTION SCHEMES APPLIED TO THEdrivewayAND PETS
DATASETS.

IV. CONCLUSIONS& FUTURE WORK

In this paper we have implemented a number of algorithms
for the task of calibrating a network of security cameras
relative to a common ground-plane. The results of the linear
schemes applied to real and synthetic data demonstrate the
potential to determine a projective reconstruction for a set
of cameras utilizing very few correspondences between the
images correspondences.

The results from the synthetic experiments indicate that
linear plane-based algorithms perform well in the presence
of noise, with the error increasing gradually at higher noise
levels. The algorithm remains stable with noise added to the
ground plane-correspondences in which case the full projective
bundle-adjustment seems capable of absorbing most of the
error introduced into the plane-based solution.

The experiments performed on real images show that the
approach works well for scenes with highly disparate views
and in the case of thedriveway sequence very minimal
sequential overlap between the images. The final projective



bundle-adjustment in both cases was a necessity in order to
absorb some of the error associated with the selection of the
ground-plane homographies.

It would be very difficult to reconstruct thedrivewaydata
set by any other method seeing as sequential structure from
motion methods [8] are very sensitive to errors in pair-wise
structure initialization where as the plane-based method allows
for this initialization to be performed simultaneously across all
the cameras (the only alternative to this is sparse factorization
[11]). The plane-based method is therefore shown to be a
practical approach for this type of scenario.

In future work we plan to utilize the framework for re-
constructing networks of cameras relative to the ground-plane
to form the basis for a semi-automated system for camera
network management. The user of the system would first be
required provide the ground-plane correspondences enabling
the determination of the plane homographies. This task can be
simplified by incorporating the use of wide baseline matching
methods [12], [13], [14].

By then incorporating the use of object tracks gathered
temporally the estimation of the parallax parameters can be
improved incrementally as more track data becomes available.
In this respect the resulting external calibration will be most
accurate in the regions of the scene where off-plane feature
correspondences are available. This in turn conditions the
resulting reconstruction to be most accurate for track hand-
over purposes.
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