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Abstract—The Golden code has recently been proposed as a 2
x 2 space time block code that achieves the optimal diversity
- multiplexing gain tradeoff for a multiple antenna system.
In this paper we review the decoding methodology for the
Golden code, followed by performance comparisons with the
Alamouti code and V-BLAST in Rayleigh fading environments
with Doppler spread. Simulation results show that the Golden
Code outperforms both the Alamouti code and V-BLAST at
high SNR levels. For a symbol error rate of 10−4 the Eb/N0
requirement for the Golden code is 5dB less than the Alamouti
code and V-BLAST.

I. INTRODUCTION

In recent years, multiple antenna systems (commonly re-
ferred to as multi-input multi-output or MIMO systems) have
proven to be an effective method for realising high-rate reliable
wireless communications. Research in MIMO systems has
generally focused on providing either higher-rate or increased
diversity over traditional single antenna (SISO) systems.

Foschini [1] introduced the layered space-time (BLAST)
architecture where a high throughput rate is achieved by using
multiple transmit antennas to transmit multiple independent
data sub-streams in parallel. Multiple receive antennas and
multi-user detection algorithms are used at the receiver end to
separate and decode the individual sub-streams. Although pro-
viding high-rate, BLAST has the shortcoming that it does not
provide diversity gain as each data symbol is only transmitted
once from one antenna.

Alamouti [2] introduced a simple orthogonal space time
block code (STBC) that provided diversity gain for 2× 1 and
2 × 2 multi-antenna systems. This scheme was generalised
and extended by Tarokh et. al. [3] to include higher-dimension
MIMO systems, using real and complex orthogonal STBCs.
Although providing diversity gain, orthogonal STBCs have the
shortcoming that (with the exception of a few sporadic codes)
the coding rate does not exceed 1

2 .
A generalised class of space-time codes that encompassed

both orthogonal STBCs and BLAST architectures was pro-
posed by Hassibi and Hochwald [4]. This generalised class of
codes, which are known as linear dispersion (LD) codes, are
defined as codes that break up the input data stream into sub-
streams that are dispersed in linear combinations over space
and time. Theoretically, LD codes can provide both diversity
gain and high-rate. In general, LD codes can outperform their
orthogonal STBC and BLAST sub-classes.

Sethuraman et. al. [5] proposed a methodology for designing
full-diversity high-rate LD codes using cyclic division alge-
bras. A division algebra is used to provide a structured set of
invertible matrices to construct LD space-time codes. Using
this technique, Belfiore et. al. [6] developed the Golden Code,
a 2×2 LD code that provides both diversity gain and full-rate.

In this paper, we investigate the effect of Doppler spread
on the performance of the 2×2 Golden Code. Doppler spread
is a measure of spectral broadening caused by the relative
motion between the transmitter and receiver antennas or by
the movement of reflecting objects in the channel. Doppler
spread is an important consideration in the design of mobile
communication systems.

The paper is organised as follows. Section II presents an
overview of the system model. Section III provides the defi-
nitions of LD codes. Section IV summarises the LD decoding
algorithm used in the simulations. Section V describes the
Golden code. Section VI presents the simulation results and
conclusions are presented in section VII.

II. SYSTEM MODEL

The system model for a multiple-antenna communications
system with M transmit and N receive antennas is shown in
fig. 1.
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Fig. 1. MIMO communications system model

If we assume a narrow-band flat-fading wireless channel
which is constant for at least T channel uses, then the
transmitted and received signals are related by

xτ =
√

ρ

M
Hsτ + vτ , τ = 1, 2, . . . , T (1)



where τ is an individual channel use, and we define

xτ =




xτ,1

xτ,2

...
xτ,N


 , sτ =




sτ,1

sτ,2

...
sτ,M


 , vτ =




vτ,1

vτ,2

...
vτ,N


 (2)

where xτ is the N -dimensional vector of complex received
signals during channel use τ , sτ is the M -dimensional vector
of complex transmitted signals, H is the N ×M channel ma-
trix, and vτ is the N -dimensional vector of additive complex-
Gaussian noise (assumed to be zero-mean and unit-variance).

If we assume that H, sτ and vτ are random and independent
quantities, the signal power normalisation

√
ρ/M ensures that

ρ is the signal-to-noise ratio (SNR) at each receive antenna,
independently of M . The channel matrix is assumed to be
known to the receiver.

We define the matrices X, S, and V as:

X =
[

x1 x2 . . . xT

]t

S =
[

s1 s2 . . . sT

]t

V =
[

v1 v2 . . . vT

]t
(3)

where the superscript t denotes transpose. It is generally more
convenient to write equation (1) in its transposed form

X =
√

ρ

M
SH + V (4)

where the transpose notation is omitted from H, and the
channel matrix is simply redefined to have dimension M×N .
X is the T × N received signal matrix, S is the T × M
transmitted signal matrix, and V is the T ×N additive noise
matrix. In matrices X, S, and V, time runs vertically and
space runs horizontally.

III. LINEAR DISPERSION CODES

A Linear Dispersion (LD) code is a general class of space
time block code (STBC) that breaks up the input data stream
into sub-streams that are dispersed in linear combinations over
space and time. Specifically, a linear dispersion code is defined
as:

S =
Q∑

q=1

(sqCq + s∗qDq) (5)

where the data sequence is broken up into Q sub-streams,
s1, . . . , sQ are complex symbols from an arbitrary constella-
tion (typically r-PSK or r-QAM), and Cq and Dq are fixed
T ×M complex matrices. The code is completely determined
by the set of dispersion matrices {Cq,Dq}.

It is generally more convenient to decompose the complex
scalar sq into its real and imaginary components

sq = αq + jβq, q = 1, . . . , Q (6)

The LD code can then be redefined in terms of real and
imaginary components as follows:

S =
Q∑

q=1

(αqAq + jβqBq) (7)

where Aq = Cq + Dq and Bq = Cq −Dq . The dispersion
matrices {Aq,Bq} also completely specify the code.

LD codes include many commonly used ST codes including
the Alamouti Scheme and V-BLAST (Vertical-encoding spatial
multiplexing).

IV. DECODING OF LINEAR DISPERSION CODES

The simulations presented in this paper were performed
using the LD decoding method proposed by Hassibi and
Hochwald [4].

An important property of LD codes (7) is their linearity
in the variables αq, βq , leading to efficient decoding schemes.
To see this, we substitute the LD code equation (7) into the
received signal equation (4) which forms the following block
equation:

X =
√

ρ

M
SH+V =

√
ρ

M

Q∑
q=1

(αqAq +jβqBq)H+V (8)

The matrices in (8) can be decomposed into their real and
imaginary components to obtain:

XR =
√

ρ

M

Q∑
q=1

[(AR,qHR −AI,qHI)αq

+(−BI,qHR −BR,qHI)βq] + VR (9)

XI =
√

ρ

M

Q∑
q=1

[(AI,qHR −AR,qHI)αq

+(BR,qHR −BI,qHI)βq] + VI (10)

where XR = Re(X), XI = Im(X), HR = Re(H) and
HI = Im(H). (Where Re(z) and Im(z) denote the real and
imaginary parts respectively of the complex value z ).

We denote the columns of XR, XI , HR, HI , VR and VI

by xR,n, xI,n, hR,n, hI,n, vR,n and vI,n respectively and
define:

Aq =
[

AR,q −AI,q

AI,q AR,q

]

Bq =
[ −BI,q −BR,q

BR,q −BI,q

]
, hn =

[
hR,n

hI,n

]
(11)

where n = 1, . . . , N . The equations in XR and XI can be
assembled to form the single real system of equations




xR,1

xI,1

...
xR,N

xI,N




=
√

ρ

M
H




α1

β1

...
αQ

βQ




+




vR,1

vI,1

...
vR,N

vI,N




(12)

where the equivalent 2NT × 2Q real channel matrix is given
by:



H =



A1h1 B1h1 . . . AQh1 BQh1

...
...

. . .
...

...
A1hN B1hN . . . AQhN BQhN


 (13)

We now have a linear relation between the input and output
vectors s and x

x =
√

ρ

M
Hs + v (14)

where the equivalent channel H is known to the receiver
because the original channel H, and the dispersion matrices
are all known to the receiver. The receiver uses (13) to find
the equivalent channel. The system of equations between the
transmitter and receiver is not underdetermined as long as
Q ≤ NT .

Any decoding scheme that can solve a well-conditioned
system of linear equation can be used for decoding of LD
codes. Suitable decoding techniques include successive nulling
and canceling (as used for V-BLAST), and sphere decoding.

V. GOLDEN CODE

Sethuraman et. al. [5] proposed a methodology for designing
full-diversity high-rate LD codes using cyclic division alge-
bras. A division algebra is used to provide a structured set of
invertible matrices to construct LD space-time codes. In gen-
eral, LD codes derived from cyclic division algebra have been
found to provide better performance than LD codes derived
using the original information theoretic approach proposed by
Hassibi and Hochwald [4].

The Golden Code is a full-rate 2×2 LD code and is defined
as subset of the cyclic division algebra (Q(i,

√
5), i) with

centre Q(i) [6]. The 2× 2 Golden Code has the structure:

S =
1√
5

[
α(s1 + s2θ) α(s3 + s4θ)
iα(s3 + s4θ) α(s1 + s2θ)

]
(15)

where θ = 1+
√

5
2 , θ = 1−√5

2 = (1 − θ), α = i(1 − θ), and
α = 1 + i(1− θ)

In [7], Tarokh et. al. defined the rank criterion and de-
terminant criterion for designing ST codes. Oggier et. al.
[8] extended this design criteria to include: (a) full rate; (b)
full diversity; (c) non-vanishing determinant for increasing
spectral efficiency; (d) good shaping of the constellation; and
(e) uniform average transmitted energy per antenna. ST Codes
that meet all of these criteria are termed “perfect” space-time
block codes. The Golden Code has been found to be the best
“perfect” code for MIMO systems with 2 transmit and 2 or
more receive antennas.

Elia et. al. [9] have shown that the Golden code achieves
the optimal diversity-multiplexing tradeoff for a 2× 2 MIMO
system. Zheng and Tse [10] developed a simple characteri-
sation of the optimal tradeoff between diversity and degrees
of freedom (multiplexing gain), and then used it to evaluate
the performance of existing multiple antenna schemes. The
concept is that for a given MIMO channel, both diversity and
multiplexing gain can be simultaneously obtained, but there

is a fundamental tradeoff between how much of each type of
gain any coding scheme achieve. For example, for a particular
coding scheme, increased spatial multiplexing gain comes at
the cost of reduced diversity gain. Fig. 2 uses Zheng’s and
Tse’s method to compare the Alamouti STBC, V-BLAST and
the Golden Code STBC.
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From Fig. 2 we see that neither the Alamouti STBC nor V-
BLAST are optimal. The Alamouti STBC does not provide full
spatial-multiplexing gain, while V-BLAST does not provide
full diversity gain. The Golden Code however provides both
the full spatial-muliplexing gain and the full diversity gain
available for a 2× 2 system.

VI. SIMULATION RESULTS

The simulations assume the receiver has perfect channel
knowledge. The individual channels in the channel matrix are
uncorrelated, and the system does not use error correction
coding. The constellations of each of the coding schemes has
been chosen to ensure a common spectral efficiency of 8-bits
per channel use. The V-BLAST and Golden code simulations
both use 16-QAM constellations, while the Alamouti code
simulations use 256-QAM (the higher-order constellation is
required to compensate for the absence of spatial multiplexing
gain).

In Fig. 3 we compare the performance of the Golden Code
STBC against the Alamouti code and V-BLAST in a Rayleigh
flat-fading environment. The figure shows the superior perfor-
mance of the Golden code, particularly at higher SNR values.
For a symbol error rate of 10−4 the Eb/N0 requirement for
the Golden code is 5dB less than the Alamouti code and V-
BLAST.

Fig. 4 compares the performance of the Golden code over
a range of Doppler frequencies that would be typical in
mobile communications scenarios. We observe a performance
degradation of approximately 2dB for every 5Hz increase in
Doppler frequency.

Fig. 5 compares the Golden code performance against the
Alamouti code at selected Doppler frequencies. The per-
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Fig. 4. Golden Code Performance at Various Doppler Frequencies

formance degradation of approximately 2dB for every 5Hz
increase in Doppler frequency previously observed with the
Golden code is also observe with the Alamouti code. The 5dB
performance advantage at high SNR levels of the Golden code
compared to the Alamouti code is maintained over the range
of Doppler frequencies investigated.

VII. CONCLUSION

The performance of the Golden Code has been presented
and compared with common multiple antenna systems, namely
the Alamouti code and V-BLAST (spatial multiplexing). The
Golden Code has been shown to provide superior performance
at high SNR levels while using the same low-complexity linear
dispersion code decoding schemes typically used to decode
Alamouti and V-BLAST schemes.

Simulation results of the Golden Code performance at vari-
ous Doppler frequencies were presented. These results showed

Golden Code & Alamouti Code Performance (M=2, N=2)
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Fig. 5. Golden Code and Alamouti Code Performance Comparison

that the Golden Code maintains its superior performance when
compared to the Alamouti scheme over the range of Doppler
frequencies that would typically be encountered in a mobile
communications system.
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