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Abstract—A robust object tracking system has been developed
based on the directional edge information extracted from a
video sequence. By introducing the concept of the differential
directional-edge image (DDEI), a map of edge flags produced
from the difference of two consecutive edge images, the infor-
mation from background has been effectively removed. As a
result, the algorithm is robust against the influence of cluttered
background, as well as illumination change and speed variation.
In addition, in order to enhance the robustness against the
shape transformation and partial occlusion occurring during the
object movement, adaptive algorithms have been developed and
integrated in the system. The basic operation of the algorithm is
the spatial matching of differential directional-edge histograms,
which is compatible to direct VLSI hardware implementation,
making it possible to build a real-time responding system. The
performance of the proposed object tracking system has been
demonstrated by computer simulation using video sequences
including a variety of disturbances.

I. I NTRODUCTION

Object tracking is one of the most important subjects in
video processing. It has a wide range of applications including
traffic surveillance, vehicle navigation, gesture understanding,
security camera systems, and so forth. In biological systems,
visual object tracking is quite essential and very robust and so-
phisticated systems are established in animals. This is because
moving objects can be either their prey, an attacking enemy or
a potential mate, it is very important for an animal’s survival
to accurately find and track moving objects and subsequently
understand their behavior. Therefore, developing electronic
system somehow mimicking the biological principle would be
quite important to build robust object tracking systems.

Provided an object in motion is localized in a scene, tracking
can be carried out by searching for the object’s image in
consecutive frames of a video sequence. However, such an
approach poses several difficulties. First of all, the object
image needs be separated from the background. Otherwise,
simple pattern matching can not work due to the disturbances
arising from the cluttered background. Illumination change
during the tracking can also confuse correct identification
of the target image. In addition, since the algorithms for
motion tracking are usually computationally very expensive,
it is desirable to develop algorithms compatible to direct
VLSI hardware implementation in order to achieve real-time
performances [1],[2].

Several algorithms have been proposed so far for object
tracking. The mean-shift method [3]-[5] utilizes the color
histogram to separate the object from the background. Since
the color histogram is a viewpoint-invariant feature, it is
stable against changes in scale, pose and shape of the target
object. However, the technique is vulnerable to variation in
illumination, whereas the human vision system is capable of
tracking objects in gray scale without difficulty. In object
tracking by active contours (”snakes”) [6]-[8], objects are
separated from the background using the energy minimizing
technique, demonstrating a good performance for non-rigid
objects. However, it needs the prior information, i.e., the object
contour has to be defined or trained before tracking, which is
not always available in practice. Also, when the object contour
is complicated, the initial target contour definition is often
laborious and difficult to generate automatically.

It is well known that the visual perception in animals
relies heavily on edge information in various orientations to
recognize not only the static image of an object but also
its motion. Being inspired by such a biological principle, a
robust image recognition system has been developed based
on the image representation algorithm using directional-edges
extracted from an input image [9],[10].

Then, the purpose of the present work is to develop a
robust object tracking system utilizing the directional edge
information to represent the shape of the object under tracking.
In order to erase the information from the background, the
concept of a differential directional-edge image has been
introduced. A differential directional-edge image is produced
from edge maps of two consecutive images in a video sequence
by taking exclusive OR of edge flags at every pixel site. As
a result, edge flags in the static background are effectively
erased and edges are only retained primarily at locations of
moving objects. Since such an image representation is based
on edge information, it is very robust against illumination
change as already verified in [11]. We have also developed
adaptive algorithms for differential edge image generation as
well as motion vector detection. As a result, the present object
tracking system have shown robust performances against shape
transformation of objects during motion, partial occlusion,
speed variation as well as the presence of confusing back-
ground sceneries. The key operation of the system is the shift
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Fig. 1. Object tracking algorithm in x direction using four frames of images taken from a video sequence. The same algorithm is employed for tracking in
y direction.

and matching of differential edge histograms to determine the
motion. Specialized VLSI hardware systems for this operation
have already been developed in [1],[2], the present algorithm is
compatible to direct VLSI hardware implementation to achieve
a real-time performance.

The paper is organized as follows. After presenting the
total system organization and the object tracking algorithm
in Section 2, experimental results are demonstrated in Section
3. Finally conclusions are given in Section 4.

II. SYSTEM ORGANIZATION

The object tracking algorithm employed in the present
system is illustrated in Fig. 1. Firstly, four grayscale images are
taken from a video sequence. We assume that the object being
tracked at timet is enclosed in the tracking window. Then
the search window is determined by extending the tracking
window by ±8 pixels att′, t′+∆t′. At the very beginning of
the tracking session, the initial location of the tracking window
is determined by some other means and is specified as the
initial condition. Then the system starts to track the object
and continues to track it autonomously.

Directional-edge flags are obtained by binarizing grayscale
images obtained with appropriate filtering kernels (see an
example shown in Fig. 2) in the tracking window as well
as in the search window. In the present system, x-direction
tracking is performed using vertical edges since they are
sensitive to horizontal motion, while horizontal edges are used
for y-direction tracking. From directional-edge images att
and t+∆t, the differential directional-edge image (DDEI) at
t is generated by taking XOR (exclusive OR) of edge flags at
every pixel site. At this time,∆t is determined adaptively as it

is explained in section 2.1 and 2.2. The differential directional-
edge image (DDEI) att′ is generated by the same procedure. If
we assume there is no movement in the camera position, DDEI
edge flags in the static background are effectively removed and
edges are only retained primarily at moving object locations.
To calculate the x component of a motion vector (∆x), data of
DDEI are projected onto horizontal axes. Then the shift and
match of the projected data of DDEI att and t′ yields the
motion vector of the object as the minimum in the matching
residue. By this processing, the motion vector att′ is obtained.
t′ starts fromt+∆t, and increases as the frame advances. If
∆x reaches±4 pixels (half the search range of±8 pixels),
then the location of the tracking window is shifted accordingly.
When the tracking window is shifted, a new DDEI of the target
is generated from the window and utilized as the template for
tracking. Since the tracking template is regenerated each time,
the algorithm can track an object even if it changes its shape
or partial occlusion occurs.

In the present system, there are two threshold values that
are important to make the system adaptive to environmental
change. First is the threshold used in edge detection from
the original image, denotedTh edge. The second threshold
is used for generating differential directional edge images,
Th DDEI. In the next section, the two thresholds are ex-
plained.

A. Directional-Edge Detection and Differential Edge Image
Generation

Detection of directional-edges and generation of a differen-
tial edge image are illustrated in Fig. 2. Edge filtering is carried
out at every pixel site in the tracking window using a 5×5-
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Fig. 2. Thresholding for the vertical edge detection in the tracking window yielding the number of edge flags of 75%, 50%, and 25% of the total number
of pixels in the window. DDEI at 25% is also shown on the right.
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Fig. 3. Adaptive threshold of differential image by∆x depending on transformation, partial occlusion.

pixel kernel. The absolute value after filtering represents the
directional-edge intensity at each pixel.Th edge is determined
by observing the total number of edge flags detected in the
tracking window. The vertical edge images produced with
three different thresholds are shown in Fig. 2, where the
number of edge flags are 75%, 50%, 25% of the total number
of pixel sites in the window. In the present system,25% was
employed as the condition forTh edge. With this threshold,
the essential features from the original image are mostly
retained in the vertical edge image.

From the two directional-edge images att andt+∆t, DDEI
is generated by taking XOR as already explained. In generating
DDEI, the number of edge flags after XOR is counted in every
frame. And when the edge count reaches a predetermined
value, i.e.,Th DDEI, the edge flag map at the moment is
accepted as the DDEI att. In the case of a target window
size of 200×200 pixels (as shown in Fig. 2), 5% of the total
number of pixels in the window (2, 000 pixels) was adopted
as the threshold. Initially,Th DDEI is set in this way, and
then Th DDEI is controlled by feedback automatically. We
explain it further in detail in the next section.

B. Adaptation to Shape Transformation and Partial Occlusion

The procedure to determineTh DDEI adaptively in the
presence of transformation is illustrated in Fig. 3. At first, let’s
consider the case where an object is moving at a constant
speed without shape transformation. Then we can track the
object with constant values ofTh DDEI and ∆t, and the
resultant∆x would be also a constant. Now we consider
the case where a gradual shape transformation occurs during
the constant speed movement of an object. If we assume the

object’s edge flags are reduced by transformation, the edge
flag count after taking XOR would also reduce. In such a
case, the edge flag count after XOR does not reachTh DDEI
when the system waits the time interval of∆t. This is because
Th DDEI was determined in the previous time slot where the
edge flag count is larger than in the present time slot. As a
result, the value of∆t increases, and∆x also increases. In
order to keep the value of∆x at a constant value, we have
introduced an adaptive algorithm as shown in the Fig. 3. The
constant value of|∆x| was set to 1 pixel to achieve an accurate
object tracking. Namely, if|∆x| is larger than 1 pixel in the
present time slot, then the thresholdTh DDEI is reduced in
the next time slot. This reduces∆t and makes|∆x| approach
the constant value of 1 pixel. If|∆x| is smaller than 1 pixel,
thenTh DDEI is increased. Since the partial occlusion of an
object can be regarded as a kind of shape transformation, the
problem can also be resolved by this adaptive algorithm.

III. E XPERIMENTAL RESULTS

In order to evaluate the performance of the proposed system,
computer simulation was carried out for a variety of video
sequences. Samples of a person or a hand moving in a video
sequence taken with a video camera were used for tracking
experiment. Because the frame rate of an ordinary video
camera is 30 frame/sec, which is too slow for the present
algorithm to work, a target object in a scene was made to
move very slowly. However, in CMOS image sensors with
focal plane processing functions, it is practical to assume such
processing can be carried out at a frame rate of 500-1000
frame/sec. The tracking window enclosing the target object
was set by hand in the initial setting. The initial value of
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Fig. 4. Tracking the upper part of the body of a walking person in a scene with complicated background.
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Fig. 5. Tracking of a hand image under various disturbing conditions : (a) busy background, (b) illumination change, (c) shape transformation, (d) partial
occlusion.

Th DDEI is determined as 5% of the total pixel counts in the
tracking window.

At first, we tested the sample of a person walking on a street.
The tracking results of the upper part of the body are shown
in Fig. 4. In this experiment, the size of the tracking window
was set at 78×108 (8, 424) pixels. Although the background
is very complicated with pillars of a building (Fig. 2(b)) and
leaves moving in wind (Fig. 2(e)), the object is being tracked
correctly.

The robustness of the system against a variety of disturbing
conditions is demonstrated in Fig. 5. In Fig. 5(a), it is seen
that the hand passing through the busy background of a
decorated tree from left to right is correctly tracked. In this
sequence, the tracking window size was 182×154 (28, 028)
pixels. In Fig. 5(b), the light was turned on and off during the
sequence. The tracking window size was 158×144(22, 752)
pixels in this sequence. In Fig. 5(c), the shape of the hand

was changed during movement. The tracking window size was
176×154 (27, 104) pixels. In Fig. 5(d), the hand was hidden
partially behind the paper. The size of the tracking window
was 148×130 (19, 240) pixels. Under all these disturbing
conditions, the tracking was carried out successfully.

Fig. 6 shows the tracking results of an object moving with
speed variation. The size of tracking window was 172×154
(26, 488) pixels. The calculated speed of the object is shown
in Fig. 6(a). Despite the speed variation range as large as 46
times between the slowest and the fastest, the location of the
object is correctly detected.

Finally, the performance of the system was evaluated for
an object moving in two-dimensions with all disturbing con-
ditions included. The size of the tracking window in this case
was 168×144 (24, 192) pixels. The results are shown in Fig.
7, also demonstrating a successful tracking.
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Fig. 6. Object tracking under speed variation. (a) Object speed as a function of time. (b) Results showing successful tracking.

Fig. 7. Tracking of an object in two dimensional motion including all disturbing options : busy background, object transformation, illumination variation,
partial occlusion and speed variation. The object is accurately located in all trial scenes.

IV. CONCLUSION

A robust object tracking system utilizing the differential
directional-edge image (DDEI) has been developed. DDEI
is robust against the influence of background, illumination
change, speed variation. In addition, in order to enhance
the robustness against the shape transformation and partial
occlusion, the adaptive algorithms have been employed. As
a result, the efficiency of proposed object tracking system
under a variety of disturbing conditions is proved by computer
simulation.
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