
A New Algorithm to Implement Low Complexity DCT
for Portable Multimedia Devices
S. Vijay

Dept. of Instrumentation and Control Engineering,
National Institute of Technology, Trichy, India

Email: imvijays@gmail.com

A. P. Vinod
School of Computer Engineering,

Nanyang Technological University
Nanyang Avenue, Singapore
Email: asvinod@ntu.edu.sg

Abstract— Low complexity implementation of Discrete Cosine
Transform (DCT) requires efficient reduction of multiplier
complexity. The number of adders (subtractors) needed to
implement the multiplier determines the complexity of the
DCT implementation. In this paper, we present an efficient
method to reduce the complexity of multiplication in DCT
using a binary common subexpression elimination technique.
Our algorithm chooses the maximum number of frequently
occurring common subexpressions to eliminate redundant
computations in the DCT matrix and hence reduces the
number of adders required to implement the multiplications.
Design example of an 8 x 8 DCT shows that our method offers
complexity reduction of 22% over the best known method.

Keywords — Discrete Cosine Transform, Low Complexity,
Common Subexpression Elimination, Multiplier, Adder,
Logic Depth.

I. INTRODUCTION

Recently, there is high demand on video and image data
transmission and storage. Image compression has become a
mandatory requirement, in order to achieve high-speed data
transmission, save bandwidth and to save storage space. The
Discrete Cosine Transform (DCT) has been widely
recognized as the most effective technique among various
transform-coding methods for image and video signal
compression standards such as JPEG, MPEG, H.261 and
H.263 [1]. DCT has been extensively used due to its high
energy compaction capability, decorrelation properties and
existence of numerous fast DCT algorithms. It has become a
necessity to design a low-power and high-speed DCT chip
as these standards find applications on portable multimedia
devices, personal digital assistants and portable
communication equipments. The most power consuming
element in a DCT chip is the multiplier. In CMOS
technology, there are three sources of power dissipation –
switching (dynamic) currents, leakage currents and short-
circuit currents. Among these parameters it is found that the

switching component of current, which is the function of the
effective capacitance, plays the most important role [2].
Transformations such as reductions in the critical path,
number of operations, and average transition activity result
in architectures that minimize the effective capacitance of
the circuit by reducing the power consumption [2].

With increasing real-time video processing requirement,
high-speed DCT implementations use efficient dedicated
hardware units but suffer from high hardware cost [3]. The
multipliers used in the systolic array based designs [4, 5]
consume a large silicon area, and hence these designs are
not power efficient. An effort to overcome the drawback of
the systolic array designs let to the development of ROM
based designs of [6, 7] in which the complexity of
multiplication is reduced by employing efficient ROM
access operations. However, the most crucial component in
low-power implementations is not considered in the designs
of [3-7] which is the optimization of the computationally
intensive multiplication of the input data (image) with the
DCT matrix. Based on the concept of Common
Subexpression Elimination (CSE) presented in [8] to
eliminate multiple constant multiplications, a CSE method
using the Canonic Signed Digit (CSD) representation of
DCT matrix has been proposed in [9]. The goal of Hartley’s
CSE [8], which was originally proposed for digital filters, is
to identify multiple occurrences of identical bit patterns
(called common subexpressions) that are present within
each filter coefficient. Since the computation of multiple
identical expressions needs to be implemented only once,
the resources necessary for these operations can be shared.
In [9], the CSE technique was reformulated in the context of
DCT. While the conventional low complexity DCT
implementation methods focus on reducing the number of
inter-structure adders, the CSE method in [9] focused on
minimizing the number of intra-structure adders, which is
the most power-consuming component in a DCT chip.
However, the CSE method in [9] does not maximize the
subexpression formation as it groups subexpressions

sequentially, i.e., subexpressions are chosen as and when
they occur and without employing a look-ahead. Therefore,
this approach would produce many unpaired nonzero bits
which require additional adders to be implemented.

In this paper, we propose a new CSE algorithm using binary
representation of the DCT matrix for reducing the number
of intra-structure adders in DCT implementation. Recently,
we proposed a CSE method in [10, 11] based on binary
representation of filter coefficients which produced better
adder reductions compared to conventional CSD-based CSE
methods in realizing digital filters. Basically, we extend the
idea in [10, 11] proposed for digital filters to implement low
complexity DCT in this paper. With the combination of
Binary Horizontal Subexpression Elimination (BHSE) and
Binary Vertical Subexpression Elimination (BVSE), our
algorithm eliminates redundant computations to implement
the DCT. Our algorithm maximizes the grouping of bits to
form subexpressions, which results in fewer ungrouped bits
and correspondingly fewer adders to implement the DCT
multipliers.

The rest of the paper is organized as follows. In Section II,
we analyze the complexity of multiplication in the DCT. In
Section III, a review of the conventional subexpression
sharing technique is given. In Section IV, the proposed BSE
procedure is presented. A design example is shown in
Section V. Section VI provides our conclusions.

II. DCT MULTIPLIER COMPLEXITY

The NN  DCT matrix),(nkcC  is defined as [1]:

















 



N

kn

N

N
nkc

2

)12(
cos

2

1

),(


Using matrix notation, the DCT coefficients (Y) is obtained
from :CUY 







































































NN

N

y

y

y

u

u

c c cc

Y

.

.

.

.

u

c . . . c c

.

.

c. . . c c c

 . . .

2

1

2

1

NNN2N1

2N232221

1131211

 (2)

where iu is the input data matrix and ijc represent the

elements of the DCT matrix. The multiplication of the
variable (image data, iu) with the constant (DCT matrix

elements, ijc) is implemented using shifts and adds by

representing the constant in CSD.

The adders used for computing the sum of the products,
 iii uc . to obtain the output matrix Y are called the inter-

structural adders whereas the adders used for computing the
products iii uc . are called intra-structural adders. For an

NN  DCT, the number of inter-structure adders, ,int erN

needed to compute  iii uc . is).1(NN The objective of the

DCT implementation methods [3]-[7] was to reduce the
number of inter-structure adders in DCT implementation.
However, the actual cost of DCT implementation is
dominated by the cost of multipliers required to compute the
products, ,. iii uc i.e., the number of intra-structure adders.

For example, consider the example of the multiplication to
obtain the first term of (2), ..)1(1 111 ucy  Assume c11 =

0.6458 = 0.101001010101. The product)1(1y can be

expressed as

1
10

1
8

1
6

1
3

1
1 22222)1(1 uuuuuy   1

122 u (3)

The adders used to compute (3) are called intra-structure
adders. In this case, 5 intra-structure adders are required to
obtain 111.uc as in (3), which is one less than the number of

nonzero bits in c11.

If ijB is the number of nonzero bits in the CSD (or binary)

representation of ,ijc the number of intra-structure adders,

,int raN is given by

   
 

N

i

N

j
ijra BN

1 1
int)1((4)

The value of raNint is substantially larger than .int erN

Therefore, a more effective goal of reducing the number of
computations (for reducing power) in DCT implementation
is to reduce the number of intra-structural adders, i.e.,

.int raN The CSD-based CSE method in [9] addressed the

problem of reducing the intra-structure adders in realizing
DCT. Though [9] achieved good reduction of intra-structure
adders, we note that there is still scope to further reduce the
hardware complexity.

III. REVIEW OF CSE METHOD

The goal of CSE methods for digital filters is to identify
multiple occurrences of identical bit patterns (called
common subexpressions) that are present within each filter
coefficient. Since the multiplication of Common
Subexpressions (CSs) with inputs signal needs to be
implemented only once, the resources necessary for these
computations can be shared. Each CSE algorithm proposed
in literature has its own unique method of subexpression
elimination process so as to maximize the reduction of
adders used to compute the sum of partial products. The

for 0k and 10  Nn

for 11  Nk and
10  Nn

(1)

CSE approach proposed for digital filters has been
reformulated for DCT implementation in [9] – This is
summarized below.

The expressions for the output Y in (2) can be written as
 NN ucucucy 12121111 

 NN ucucucy 22221212 

 NNNNNN ucucucy 2211  (5)

The objective of CSE method is to minimize raNint

required for computing the products, .. iij uc From (5), it can

be noted that each data needs to be multiplied with several
constants. For example, the data 1u is multiplied with

,,.... , 12111 Nccc which can be written as

  TNcccu 121111 (6)

By sharing the CSs that exist in the matrix elements ijc in

(6), raNint can be reduced. Thus, in order to obtain the

products ,. iij uc the DCT computation is reformulated as [9]:

 TNcccu 121111

 TNcccu 222122

  TNNNNN cccu 21 (7)

The basic idea in [9] was that, using the CSs in ,ijc (7) can

be computed efficiently, i.e., with fewer intra-structure
adders. The CSE method [9] was based on CSD
representation of .ijc In this paper, we show that the intra-

structure adders can be further reduced using a CSE method
based on binary representation of .ijc

IV. PROPOSED CSE METHOD

In this section, we explain the procedure of proposed binary
representation based CSE method. We call our method,
Binary Subexpression Elimination (BSE). First, a program is
run to identify the most commonly occurring subexpressions
in binary representation of .ijc We use two types of CSs: (1)

Horizontal Common Subexpressions (HCSs), i.e., bit patterns
that occur within each element of the DCT matrix and (2)
Vertical Common Subexpressions (VCSs), i.e., bit patterns
that occur across adjacent elements of the DCT matrix. Based
on statistical analysis of ijc s for various DCT sizes, we found

that the most frequently occurring HCSs are [1 1], [1 0 1], [1
1 1], and VCS is [1 1]. Therefore, we use these HCSs and
VCSs in our proposed BSE algorithm. The proposed BSE
procedure is as follows.

Step 1: Obtain the DCT matrix elements ijc for each data

element using (1).
Step 2: Obtain the binary representation of the decimal
values of the ijc for the desired word length.

Step 3: Let z represent the DCT matrix element and w, the bit
(the shift) analyzed. Set z = w = 1 so as to begin with the
Most Significant Bit (MSB) of the first coefficient (c11).

Step 4: The program checks for nonzero bits at (z, w), (z+1,
w), (z, w+2) and (z+1, w+2).

Case 1: When (z, w), (z, w+1) or (z, w+2) are (z+1, w) are
nonzero, i.e., when there is a horizontal and a vertical pattern
at (z, w), then:

(a) First the VCS at (z, w) is considered. The number of CSs
and the bits that cannot form CSs are determined for the
remaining bits in the z coefficient as shown in Fig. 1 (a).

Fig. 1(a). Grouping of subexpressions with VCS given
preference (case 1).

(b) Then the HCS at (z, w) is considered, and the same
procedure as (a) is followed as shown in Fig. 1 (b).

Fig. 1(b). Grouping of subexpressions with HCS given
preference (case 1).

The number of CSs and ungrouped bits are compared for both
these procedures and the one with the largest number of CSs
is chosen to pair up the rest of the bits in (z) coefficient. For
example, in the case shown in Fig. 1 (a), we get four CSs
with no bits ungrouped. But in the case of Fig. 1(b), we get
three subexpressions and two ungrouped bits. Hence the VCS
method is used to pair in this case. If the number of
subexpressions and ungrouped bits are the same, then the
procedure which considers the HCS is implemented.
Depending on whether the VCS or HCS at (z, w) is chosen to
group and form subexpressions for the (z) coefficient,

.. 4 5 6 7 8 9 10 11 12 13 14 ..

c11 .. 0 1 0 1 1 1 1 0 1 0 1 ..

c21 .. 0 1 0 0 0 …. …. …. …. …. …. ..

.. 4 5 6 7 8 9 10 11 12 13 14 ..

c11 .. 0 1 0 1 1 1 1 0 1 0 1 ..

c21 .. 0 1 0 0 0 …. …. …. …. …. …. ..

increment w correspondingly. If ,1 Nw go to step 4.
Otherwise go to step 5.
Case 2: A similar procedure as illustrated above is used when
(z, w), (z+1, w) are (z+1, w+1) or (z+1, w+2) are nonzero,
i.e., when there is a HCS at (z+1, w) and a VCS at (z, w).

(a) First, the VCS at (z, w) is considered. The number of
subexpressions and the bits that cannot form CSs are
determined for the remaining bits in the (z+1) coefficient as
shown in Fig. 2 (a).

Fig. 2(a). Grouping of subexpressions with VCS given
preference (case 2).

 (b) Then the HCS at (z+1, w) is considered, and the same
procedure as (a) is followed as shown in Fig. 2 (b)

Fig. 2 (b). Grouping of subexpressions with HCS given
preference (case 2).

The number of CSs and ungrouped bits are compared for both
these procedures and the one with the largest number of
patterns is chosen as the method to pair up the rest of that
(z+1) coefficient. For example, in the case shown in Fig. 2
(a), we get three subexpressions with no bits ungrouped. But
in the case of Fig. 2 (b), we get three subexpressions and two
ungrouped bits. Hence the VCS method is used to pair in this
case. If the number of subexpressions and ungrouped bits are
the same, then the procedure which considers the HCS is
implemented. Depending on whether the VCS at (z, w) or the
HCS at (z+1, w) is chosen to group and form CSs for the
(z+1) coefficient, increment w correspondingly. If

,1 Nw go to step 4. Otherwise go to step 5.

Case 3: When only (z, w) and (z, w+1)/(z, w+2) are nonzero,
i.e., when there is a HCS only and no VCS at (z, w), then
select the HCS. Increment w correspondingly. If ,1 Nw
go to step 4. Otherwise go to step 5.

Case 4: When only (z, w) and (z+1, w) are nonzero, i.e.,

when there is a VCS and no HCS at (z, w), then select the
VCS. Increment w correspondingly. If ,1 Nw go to step
4. Otherwise go to step 5.

Case 5: For any other combinations, w is just incremented by
one. If ,1 Nw go to step 4. Otherwise go to step 5.

Step 5: When ,kNw  where k is the length of the pattern
that is checked, set w = 1 and increment z by one, go to step
4. When kNw  and ,Nz  go to step 6.

Step 6: Once the HCSs and the VCSs are grouped, the
coefficients are now checked for Super-Subexpressions
(SSs), i.e., patterns that have more bits like [1 1 1 1], [1 0 1 0
1] , [1 1 0 1] , [1 0 1 1]. The SSs are implemented only if
they occur at least twice in the DCT coefficient matrix. As
and when these SSs are implemented, depending on the
pattern, increment w accordingly, and go to step 5. When

,kNw  set w = 1 and increment z by one, and go to step

7. When ,kNw  and ,Nz  go to step 6.

Step 7: When the SSs are grouped, another look-ahead
method is implemented wherein a check is made as to
whether there is a better way to group the nonzero bits. This
is because the SSs tend to increase the logic depth (number of
adder-steps in a maximal path of decomposed
multiplications) of the multiplier which in turn would
increase the multiplier delay. Thus the logic depth (LD) is
kept under check as and when the patterns are selected. After
eliminating a pattern, increment w according to the size of the
pattern selected, and go to step 7. When ,kNw  set w = 1

and increment z by one, go to step 7. When ,kNw  and
,Nz  terminate the program.

V. DESIGN EXAMPLE

In this section, we present the design of a 8 X 8 DCT using
our BSE procedure. Due to space constraints, we only
provide the detailed implementation of 11. icu for 1i to 8

given by (6), and the same procedure is adopted to
implement other terms of (7). The first column of the DCT
matrix is [c11 c21 c31 ….. c71 c81]

T . The decimal values of the
elements in first column are shown in Fig. 3.

Fig. 3. DCT matrix elements for data element u1.

We then obtain the binary representation of the DCT
coefficients [c11 c21….. c71 c81]

T which is shown in Fig. 4.

.. 3 4 5 6 7 8 9 10 11 12 13

c11 .. 1 0 0 0 …. …. …. …. …. …. ….

c21 .. 1 1 0 1 0 0 1 1 0 1 1

.. 3 4 5 6 7 8 9 10 11 12 13

c11 .. 1 0 0 0 …. …. …. …. …. …. ….

c21 .. 1 1 0 1 0 0 1 1 0 1 1

c11 0.3536 c51 0.3536

c21 0.4904 c61 0.2778

C31 0.4619 c71 0.1993

c41 0.4157 c81 0.0975

The numerals in the first row of Fig. 4 represent the number
of bit-wise right shifts whereas the first column is the DCT
coefficients corresponding to data element u1.

1 2 3 4 5 6 7 8 9 10 11 12

c11 0 1 0 1 1 0 1 0 1 0 0 0

c21 0 1 1 1 1 1 0 1 1 0 0 0

c31 0 1 1 1 0 1 1 0 0 1 0 0

c41 0 1 1 0 1 0 1 0 0 1 1 0

c51 0 1 0 1 1 0 1 0 1 0 0 0

c61 0 1 0 0 0 1 1 1 0 0 0 1

c71 0 0 1 1 0 0 0 0 1 1 1 1

c81 0 0 0 1 1 0 0 0 1 1 1 1

Fig. 4. Binary representation of cij.

The HCSs u2,1 = [1 0 1] , u4,1 = [1 1] , u5,1 = [1 1 1] and the
VCS u3,1 = [1 1] are indicated inside rectangles in Fig. 4. Fig.
5 is obtained from Fig. 4 by substituting the respective
pattern numbers in the respective positions where u2,1 = 2, u3,1

= 3, u4,1 = 4, and u5,1 =5. In Fig. 5, patterns like [2 0 0 2], [4 0
0 2] etc. are grouped to form the Horizontal Super-
Subexpressions (HSSs). Similarly, patterns like [5 5]T, [4 4]T

etc. are grouped to form the vertical supersubexpressions
(VSSs). Fig. 5 is simplified and represented in Fig. 6 with
pattern numbers assigned to the supersubexpressions.

1 2 3 4 5 6 7 8 9 10 11 12

c11 0 2 0 0 2 0 0 0 3 0 0 0

c21 0 5 0 0 4 0 0 1 0 0 0 0

c31 0 5 0 0 0 4 0 0 0 3 0 0

c41 0 4 0 0 2 0 0 0 0 0 1 0

c51 0 3 0 4 0 0 2 0 0 0 0 0

c61 0 0 0 0 0 5 0 0 0 0 0 3

c71 0 0 4 0 0 0 0 0 5 0 0 0

c81 0 0 0 4 0 0 0 0 5 0 0 1

Fig. 5. Representation of cij of after
taking HCSs and VCSs.

1 2 3 4 5 6 7 8 9 10 11 12

c11 0 7 0 0 0 0 0 0 3 0 0 0

c21 0 9 0 0 8 0 0 1 0 0 0 0

c31 0 0 0 0 0 0 0 0 0 3 0 0

c41 0 6 0 0 0 0 0 0 0 0 1 0

c51 0 3 0 6 0 0 0 0 0 0 0 0

c61 0 0 0 0 0 5 0 0 0 0 0 3

c71 0 0 8 0 0 0 0 0 9 0 0 0

c81 0 0 0 0 0 0 0 0 0 0 0 1

Fig. 6. Final representation of cij after
subexpression formation.

Fig. 6 shows the final implementation of the DCT matrix for
the input data element u1. Note that u6,1 = [4 0 0 2] = 6, u7,1

= [2 0 0 2] = 7, u8,1 = 







04

40
= 8 and u9,1 = .9

5

5









It can be

determined from Fig. 4 that a total of 31 intra-structural
adders are required to obtain (6) using the direct method
(direct method means implementation using shifts and adds
and without any subexpressions). Using the CSD-based
CSE method [9], 16 adders are required, which is a
reduction of 48%. From Fig. 6, using our BSE method, the
output y1 corresponding to the first data element u1 is

6

4
3

2
1

11
6

2
3

10

1
8

8
5

10
2

3
9

7
2

1

22222

22222

uuuuu

uuuuuy








 1
12

10
9

8
3

3
12

5
6 22222 uuuuu   (8)

The proposed BSE method requires only 14 intra-structural
adders (7 adders for the actual realization and 7 adders for
the subexpressions) which is 54% reduction over the direct
CSD method and 12.5% reduction over the CSE method in
[9]. Using the proposed BSE technique, the total number of
intra-structure adders required to obtain all the products of
the 8 x 8 DCT is 102, whereas the adder requirement is 130
for the previously proposed CSE method [9] and 210 in the
direct CSD implementation. Thus, the adder reduction
achieved using our BSE is 22% over the CSE method [9]
and 51% over the direct CSD method. The critical path
length and the transition activity also need to be minimized
apart from reducing the number of additions. Moreover, it
can also be seen that in the proposed method, with the
increase in the order of the DCT matrix, the scope for
subexpression formation also increases proportionately,

thereby increasing the reductions in hardware required to
implement it. The logic depth of the multiplier implemented
using our method is 4 adder-steps, which is same as that in
[9]. Thus our BSE achieves adder reduction without
increasing the delay.

VI. CONCLUSIONS

We have proposed an efficient look-ahead binary
representation based CSE algorithm low complexity
implementation of a DCT chip. Our implementation method
gives more importance to reduce the number of intra-
structural adders, which is the most power-consuming
component in a DCT chip. As binary representation has a
higher frequency of occurrence of common subexpressions,
this concept has been efficiently used to produce better
reduction of adders and shifts without affecting the speed of
the multiplier.

References

[1] K. R. Rao and J. J. Hwang, Techniques and Standards for Image,
Video and Audio Coding, Englewood Cliffs, NJ: Prentice-Hall, 1996.

[2] A. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. W.
Brodersen, “Optimizing power using transformations,” IEEE Trans.
On CAD, vol. 14, no. 1, pp. 12-31, Jan. 1995.

[3] P. Pirsch, N. Ranganathan, “VLSI architectures for video
compression-A survey,” Proc. IEEE, vol. 83, pp. 220-246, Feb. 1995.

[4] L. W. Chang and M. C. Wu, “A unified systolic array for discrete
cosine and sine transforms,” IEEE Trans. Signal Processing, vol. 39,
pp. 192-194, Jan. 1991.

[5] J. I. Guo, C. M. Liu, and C. W. Jen, “A new array architecture for
prime length discrete cosine transform,” IEEE Trans. Signal
Processing, vol. 41, no. 1, pp. 436-442, 1993.

[6] D. Slawecki and W. Li, “DCT/IDCT processor design for high data
rate image coding,” IEEE Trans. Circuits Syst. Video Technology,
vol. 2, pp. 135-146, June 1992.

[7] J. I. Guo, C. M. Liu, and C. W. Jen, “The efficient memory-based
VLSI arrays for DFT and DCT,” IEEE Trans. Circuits Syst. II, vol.
39, no. 10, pp. 723-733, 1992.

[8] R. I. Hartley, “Subexpression sharing in filters using canonic signed
digit multipliers,” IEEE Trans. Circuits Syst. II, vol. 43, pp. 677-688,
Oct. 1996.

[9] A. P. Vinod and E. M-K. Lai, “Hardware efficient DCT
implementation for portable multimedia terminals using
subexpression sharing,” “in Proc. of IEEE TENCON, Thailand,
November 2004.

[10] R. Mahesh and A. P. Vinod, “A new common subexpression
elimination algorithm for implementing low complexity FIR Filters in
software defined radio receivers,” Proc. of IEEE International
Symposium on Circuits and Systems, vol. 4, pp. 4515-4518, Island of
Kos, Greece, May 2006.

[11] R. Mahesh and A. P. Vinod, “A new common subexpression
elimination algorithm for realizing low complexity higher order
digital filters,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits & Systems, (In Press).

