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Abstract— Low complexity implementation of Discrete Cosine 
Transform (DCT) requires efficient reduction of multiplier 
complexity. The number of adders (subtractors) needed to 
implement the multiplier determines the complexity of the 
DCT implementation. In this paper, we present an efficient 
method to reduce the complexity of multiplication in DCT 
using a binary common subexpression elimination technique. 
Our algorithm chooses the maximum number of frequently 
occurring common subexpressions to eliminate redundant 
computations in the DCT matrix and hence reduces the 
number of adders required to implement the multiplications. 
Design example of an 8 x 8 DCT shows that our method offers 
complexity reduction of 22% over the best known method. 

Keywords — Discrete Cosine Transform, Low Complexity, 
Common Subexpression Elimination, Multiplier, Adder, 
Logic Depth.

I. INTRODUCTION

Recently, there is high demand on video and image data 
transmission and storage. Image compression has become a 
mandatory requirement, in order to achieve high-speed data 
transmission, save bandwidth and to save storage space. The 
Discrete Cosine Transform (DCT) has been widely 
recognized as the most effective technique among various 
transform-coding methods for image and video signal 
compression standards such as JPEG, MPEG, H.261 and 
H.263 [1]. DCT has been extensively used due to its high 
energy compaction capability, decorrelation properties and
existence of numerous fast DCT algorithms. It has become a 
necessity to design a low-power and high-speed DCT chip 
as these standards find applications on portable multimedia 
devices, personal digital assistants and portable 
communication equipments. The most power consuming 
element in a DCT chip is the multiplier. In CMOS 
technology, there are three sources of power dissipation –
switching (dynamic) currents, leakage currents and short-
circuit currents. Among these parameters it is found that the 

switching component of current, which is the function of the 
effective capacitance, plays the most important role [2]. 
Transformations such as reductions in the critical path, 
number of operations, and average transition activity result 
in architectures that minimize the effective capacitance of 
the circuit by reducing the power consumption [2].  

With increasing real-time video processing requirement, 
high-speed DCT implementations use efficient dedicated 
hardware units but suffer from high hardware cost [3]. The
multipliers used in the systolic array based designs [4, 5] 
consume a large silicon area, and hence these designs are 
not power efficient. An effort to overcome the drawback of 
the systolic array designs let to the development of ROM 
based designs of [6, 7] in which the complexity of 
multiplication is reduced by employing efficient ROM 
access operations. However, the most crucial component in 
low-power implementations is not considered in the designs 
of [3-7] which is the optimization of the computationally 
intensive multiplication of the input data (image) with the 
DCT matrix. Based on the concept of Common 
Subexpression Elimination (CSE) presented in [8] to 
eliminate multiple constant multiplications, a CSE method 
using the Canonic Signed Digit (CSD) representation of 
DCT matrix has been proposed in [9]. The goal of Hartley’s 
CSE [8], which was originally proposed for digital filters, is 
to identify multiple occurrences of identical bit patterns 
(called common subexpressions) that are present within 
each filter coefficient. Since the computation of multiple 
identical expressions needs to be implemented only once, 
the resources necessary for these operations can be shared.
In [9], the CSE technique was reformulated in the context of 
DCT. While the conventional low complexity DCT 
implementation methods focus on reducing the number of 
inter-structure adders, the CSE method in [9] focused on 
minimizing the number of intra-structure adders, which is 
the most power-consuming component in a DCT chip.
However, the CSE method in [9] does not maximize the 
subexpression formation as it groups subexpressions 



sequentially, i.e., subexpressions are chosen as and when 
they occur and without employing a look-ahead. Therefore, 
this approach would produce many unpaired nonzero bits 
which require additional adders to be implemented. 

In this paper, we propose a new CSE algorithm using binary 
representation of the DCT matrix for reducing the number 
of intra-structure adders in DCT implementation. Recently, 
we proposed a CSE method in [10, 11] based on binary 
representation of filter coefficients which produced better 
adder reductions compared to conventional CSD-based CSE 
methods in realizing digital filters. Basically, we extend the
idea in [10, 11] proposed for digital filters to implement low 
complexity DCT in this paper. With the combination of 
Binary Horizontal Subexpression Elimination (BHSE) and
Binary Vertical Subexpression Elimination (BVSE), our 
algorithm eliminates redundant computations to implement 
the DCT.  Our algorithm maximizes the grouping of bits to 
form subexpressions, which results in fewer ungrouped bits 
and correspondingly fewer adders to implement the DCT
multipliers.

The rest of the paper is organized as follows. In Section II, 
we analyze the complexity of multiplication in the DCT. In 
Section III, a review of the conventional subexpression 
sharing technique is given. In Section IV, the proposed BSE 
procedure is presented. A design example is shown in 
Section V. Section VI provides our conclusions.

II. DCT MULTIPLIER COMPLEXITY

The NN   DCT matrix ),( nkcC   is defined as [1]:
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Using matrix notation, the DCT coefficients (Y) is obtained 
from :CUY 
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where iu is the input data matrix and ijc  represent the 

elements of the DCT matrix. The multiplication of the
variable (image data, iu ) with the constant (DCT matrix 

elements, ijc ) is implemented using shifts and adds by 

representing the constant in CSD.

The adders used for computing the sum of the products, 
 iii uc .  to obtain the output matrix Y are called the inter-

structural adders whereas the adders used for computing the 
products iii uc .  are called intra-structural adders. For an 

NN   DCT, the number of inter-structure adders, ,int erN

needed to compute  iii uc . is ).1( NN The objective of the 

DCT implementation methods [3]-[7] was to reduce the 
number of inter-structure adders in DCT implementation. 
However, the actual cost of DCT implementation is 
dominated by the cost of multipliers required to compute the 
products, ,. iii uc  i.e., the number of intra-structure adders.

For example, consider the example of the multiplication to 
obtain the first term of (2), ..)1(1 111 ucy   Assume c11 = 

0.6458 = 0.101001010101. The product )1(1y  can be 

expressed as
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The adders used to compute (3) are called intra-structure 
adders. In this case, 5 intra-structure adders are required to 
obtain 111.uc  as in (3), which is one less than the number of 

nonzero bits in c11.

If ijB  is the number of nonzero bits in the CSD (or binary) 

representation of ,ijc  the number of intra-structure adders, 

,int raN  is given by
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The value of raNint  is substantially larger than .int erN

Therefore, a more effective goal of reducing the number of 
computations (for reducing power) in DCT implementation 
is to reduce the number of intra-structural adders, i.e., 

.int raN The CSD-based CSE method in [9] addressed the 

problem of reducing the intra-structure adders in realizing 
DCT. Though [9] achieved good reduction of intra-structure 
adders, we note that there is still scope to further reduce the 
hardware complexity. 

III. REVIEW OF CSE METHOD 

The goal of CSE methods for digital filters is to identify 
multiple occurrences of identical bit patterns (called 
common subexpressions) that are present within each filter 
coefficient. Since the multiplication of Common 
Subexpressions (CSs) with inputs signal needs to be 
implemented only once, the resources necessary for these 
computations can be shared. Each CSE algorithm proposed 
in literature has its own unique method of subexpression 
elimination process so as to maximize the reduction of 
adders used to compute the sum of partial products. The 

for 0k  and 10  Nn

for 11  Nk  and
10  Nn

(1)



CSE approach proposed for digital filters has been 
reformulated for DCT implementation in [9] – This is 
summarized below.

The expressions for the output Y  in (2) can be written as
                  NN ucucucy ...... 12121111 

             NN ucucucy ...... 22221212 
              .   .    .    .    .    .    .    .    .    .    .
            NNNNNN ucucucy ...... 2211                  (5)

The objective of CSE method is to minimize raNint

required for computing the products, .. iij uc  From (5), it can 

be noted that each data needs to be multiplied with several 
constants. For example, the data 1u  is multiplied with 

,,....  , 12111 Nccc  which can be written as 

               TNcccu 121111 .......  .                              (6)

By sharing the CSs that exist in the matrix elements ijc  in 

(6), raNint  can be reduced. Thus, in order to obtain the 

products ,. iij uc  the DCT computation is reformulated as [9]:

 TNcccu 121111 .......  .

 TNcccu 222122 .......  .

  .    .    .    .    .    .    .    

             TNNNNN cccu .......  . 21                         (7)

The basic idea in [9] was that, using the CSs in ,ijc (7) can 

be computed efficiently, i.e., with fewer intra-structure 
adders. The CSE method [9] was based on CSD 
representation of .ijc  In this paper, we show that the intra-

structure adders can be further reduced using a CSE method 
based on binary representation of .ijc

IV. PROPOSED CSE METHOD

In this section, we explain the procedure of proposed binary 
representation based CSE method. We call our method, 
Binary Subexpression Elimination (BSE). First, a program is 
run to identify the most commonly occurring subexpressions 
in binary representation of .ijc We use two types of CSs: (1)

Horizontal Common Subexpressions (HCSs), i.e., bit patterns 
that occur within each element of the DCT matrix and (2) 
Vertical Common Subexpressions (VCSs), i.e., bit patterns 
that occur across adjacent elements of the DCT matrix. Based 
on statistical analysis of ijc s for various DCT sizes, we found 

that the most frequently occurring HCSs are [1 1], [1 0 1], [1 
1 1], and VCS is [1 1]. Therefore, we use these HCSs and 
VCSs in our proposed BSE algorithm. The proposed BSE 
procedure is as follows.

Step 1: Obtain the DCT matrix elements ijc  for each data 

element using (1).
Step 2: Obtain the binary representation of the decimal 
values of the ijc  for the desired word length.

Step 3: Let z represent the DCT matrix element and w, the bit 
(the shift) analyzed. Set z = w = 1 so as to begin with the 
Most Significant Bit (MSB) of the first coefficient (c11).

Step 4: The program checks for nonzero bits at (z, w), (z+1, 
w), (z, w+2) and (z+1, w+2).

Case 1: When (z, w), (z, w+1) or (z, w+2) are (z+1, w) are 
nonzero, i.e., when there is a horizontal and a vertical pattern 
at (z, w), then:

(a) First the VCS at (z, w) is considered. The number of CSs 
and the bits that cannot form CSs are determined for the 
remaining bits in the z coefficient as shown in Fig. 1 (a).

Fig. 1(a). Grouping of subexpressions with VCS given 
preference (case 1).

(b) Then the HCS at (z, w) is considered, and the same 
procedure as (a) is followed as shown in Fig. 1 (b). 

Fig. 1(b). Grouping of subexpressions with HCS given 
preference (case 1).

The number of CSs and ungrouped bits are compared for both 
these procedures and the one with the largest number of CSs 
is chosen to pair up the rest of the bits in (z) coefficient. For 
example, in the case shown in Fig. 1 (a), we get four CSs 
with no bits ungrouped. But in the case of Fig. 1(b), we get 
three subexpressions and two ungrouped bits. Hence the VCS 
method is used to pair in this case. If the number of 
subexpressions and ungrouped bits are the same, then the 
procedure which considers the HCS is implemented. 
Depending on whether the VCS or HCS at (z, w) is chosen to 
group and form subexpressions for the (z) coefficient, 

.. 4 5 6 7 8 9 10 11 12 13 14 ..

c11 .. 0 1 0 1 1 1 1 0 1 0 1 ..

c21 .. 0 1 0 0 0 …. …. …. …. …. …. ..

.. 4 5 6 7 8 9 10 11 12 13 14 ..

c11 .. 0 1 0 1 1 1 1 0 1 0 1 ..

c21 .. 0 1 0 0 0 …. …. …. …. …. …. ..



increment w correspondingly. If ,1 Nw  go to step 4. 
Otherwise go to step 5. 
Case 2: A similar procedure as illustrated above is used when 
(z, w), (z+1, w) are (z+1, w+1) or (z+1, w+2) are nonzero, 
i.e., when there is a HCS at (z+1, w) and a VCS at (z, w).

(a) First, the VCS at (z, w) is considered. The number of 
subexpressions and the bits that cannot form CSs are 
determined for the remaining bits in the (z+1) coefficient as 
shown in Fig. 2 (a).

Fig. 2(a). Grouping of subexpressions with VCS given 
preference (case 2).

 (b) Then the HCS at (z+1, w) is considered, and the same 
procedure as (a) is followed as shown in Fig. 2 (b) 

Fig. 2 (b). Grouping of subexpressions with HCS given 
preference (case 2).

The number of CSs and ungrouped bits are compared for both 
these procedures and the one with the largest number of 
patterns is chosen as the method to pair up the rest of that 
(z+1) coefficient. For example, in the case shown in Fig. 2 
(a), we get three subexpressions with no bits ungrouped. But 
in the case of Fig. 2 (b), we get three subexpressions and two
ungrouped bits. Hence the VCS method is used to pair in this 
case. If the number of subexpressions and ungrouped bits are 
the same, then the procedure which considers the HCS is 
implemented. Depending on whether the VCS at (z, w) or the 
HCS at (z+1, w) is chosen to group and form CSs for the 
(z+1) coefficient, increment w correspondingly. If 

,1 Nw  go to step 4. Otherwise go to step 5.

Case 3: When only (z, w) and (z, w+1)/(z, w+2) are nonzero, 
i.e., when there is a HCS only and no VCS at (z, w), then 
select the HCS. Increment w correspondingly. If ,1 Nw
go to step 4. Otherwise go to step 5.

Case 4: When only (z, w) and (z+1, w) are nonzero, i.e., 

when there is a VCS and no HCS at (z, w), then select the 
VCS. Increment w correspondingly. If ,1 Nw  go to step 
4. Otherwise go to step 5.

Case 5: For any other combinations, w is just incremented by 
one. If ,1 Nw  go to step 4. Otherwise go to step 5.

Step 5:  When ,kNw   where k is the length of the pattern 
that is checked, set w = 1 and increment z by one, go to step 
4. When kNw   and ,Nz    go to step 6.

Step 6: Once the HCSs and the VCSs are grouped, the 
coefficients are now checked for Super-Subexpressions 
(SSs), i.e., patterns that have more bits like [1 1 1 1], [1 0 1 0 
1]  , [1 1 0 1] , [1 0 1 1]. The SSs are implemented only if 
they occur at least twice in the DCT coefficient matrix. As 
and when these SSs are implemented, depending on the 
pattern, increment w accordingly, and go to step 5. When 

,kNw   set w = 1 and increment z by one, and go to step 

7. When ,kNw   and ,Nz   go to step 6.

Step 7: When the SSs are grouped, another look-ahead 
method is implemented wherein a check is made as to 
whether there is a better way to group the nonzero bits. This 
is because the SSs tend to increase the logic depth (number of 
adder-steps in a maximal path of decomposed 
multiplications) of the multiplier which in turn would 
increase the multiplier delay. Thus the logic depth (LD) is
kept under check as and when the patterns are selected. After 
eliminating a pattern, increment w according to the size of the 
pattern selected, and go to step 7. When ,kNw  set w = 1

and increment z by one, go to step 7. When ,kNw   and 
,Nz   terminate the program.

V. DESIGN EXAMPLE

In this section, we present the design of a 8 X 8 DCT using 
our BSE procedure. Due to space constraints, we only 
provide the detailed implementation of 11. icu  for 1i  to 8 

given by (6), and the same procedure is adopted to
implement other terms of (7). The first column of the DCT 
matrix is [c11 c21 c31 ….. c71 c81]

T . The decimal values of the 
elements in first column are shown in Fig. 3.

Fig. 3.  DCT matrix elements for data element u1.

We then obtain the binary representation of the DCT 
coefficients [c11 c21….. c71 c81 ]

T  which is shown in Fig. 4. 

.. 3 4 5 6 7 8 9 10 11 12 13

c11 .. 1 0 0 0 …. …. …. …. …. …. ….

c21 .. 1 1 0 1 0 0 1 1 0 1 1

.. 3 4 5 6 7 8 9 10 11 12 13

c11 .. 1 0 0 0 …. …. …. …. …. …. ….

c21 .. 1 1 0 1 0 0 1 1 0 1 1

c11 0.3536 c51 0.3536

c21 0.4904 c61 0.2778

C31 0.4619 c71 0.1993

c41 0.4157 c81 0.0975



The numerals in the first row of Fig. 4 represent the number 
of bit-wise right shifts whereas the first column is the DCT 
coefficients corresponding to data element u1.

1 2 3 4 5 6 7 8 9 10 11 12

c11 0 1 0 1 1 0 1 0 1 0 0 0

c21 0 1 1 1 1 1 0 1 1 0 0 0

c31 0 1 1 1 0 1 1 0 0 1 0 0

c41 0 1 1 0 1 0 1 0 0 1 1 0

c51 0 1 0 1 1 0 1 0 1 0 0 0

c61 0 1 0 0 0 1 1 1 0 0 0 1

c71 0 0 1 1 0 0 0 0 1 1 1 1

c81 0 0 0 1 1 0 0 0 1 1 1 1

Fig. 4.   Binary representation of cij.

The HCSs u2,1 = [1 0 1] , u4,1 = [1 1] ,  u5,1 = [1 1 1] and the
VCS u3,1 = [1 1] are indicated inside rectangles in Fig. 4. Fig. 
5 is obtained from Fig. 4 by substituting the respective 
pattern numbers in the respective positions where u2,1 = 2, u3,1

= 3, u4,1 = 4, and u5,1 =5. In Fig. 5, patterns like [2 0 0 2], [4 0 
0 2] etc. are grouped to form the Horizontal Super-
Subexpressions (HSSs). Similarly, patterns like [5 5]T, [4 4]T

etc. are grouped to form the vertical supersubexpressions 
(VSSs). Fig. 5 is simplified and represented in Fig. 6 with 
pattern numbers assigned to the supersubexpressions.

1 2 3 4 5 6 7 8 9 10 11 12

c11 0 2 0 0 2 0 0 0 3 0 0 0

c21 0 5 0 0 4 0 0 1 0 0 0 0

c31 0 5 0 0 0 4 0 0 0 3 0 0

c41 0 4 0 0 2 0 0 0 0 0 1 0

c51 0 3 0 4 0 0 2 0 0 0 0 0

c61 0 0 0 0 0 5 0 0 0 0 0 3

c71 0 0 4 0 0 0 0 0 5 0 0 0

c81 0 0 0 4 0 0 0 0 5 0 0 1

Fig. 5.  Representation of cij of after 
taking HCSs and VCSs.

1 2 3 4 5 6 7 8 9 10 11 12

c11 0 7 0 0 0 0 0 0 3 0 0 0

c21 0 9 0 0 8 0 0 1 0 0 0 0

c31 0 0 0 0 0 0 0 0 0 3 0 0

c41 0 6 0 0 0 0 0 0 0 0 1 0

c51 0 3 0 6 0 0 0 0 0 0 0 0

c61 0 0 0 0 0 5 0 0 0 0 0 3

c71 0 0 8 0 0 0 0 0 9 0 0 0

c81 0 0 0 0 0 0 0 0 0 0 0 1

Fig. 6.  Final representation of cij after 
subexpression formation.

Fig. 6 shows the final implementation of the DCT matrix for 
the input data element u1. Note that u6,1 = [4 0 0 2] = 6, u7,1

= [2 0 0 2] = 7, u8,1 = 







04

40
= 8 and u9,1 = .9
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It can be 

determined from Fig. 4 that a total of 31 intra-structural 
adders are required to obtain (6) using the direct method
(direct method means implementation using shifts and adds 
and without any subexpressions). Using the CSD-based 
CSE method [9], 16 adders are required, which is a 
reduction of 48%. From Fig. 6, using our BSE method, the 
output y1 corresponding to the first data element u1 is

              
6

4
3

2
1

11
6

2
3

10

1
8

8
5

10
2

3
9

7
2

1

22222

22222

uuuuu

uuuuuy








              1
12

10
9

8
3

3
12

5
6 22222 uuuuu                     (8)

                                                                                   
The proposed BSE method requires only 14 intra-structural 
adders (7 adders for the actual realization and 7 adders for
the subexpressions) which is 54% reduction over the direct 
CSD method and 12.5% reduction over the CSE method in 
[9]. Using the proposed BSE technique, the total number of 
intra-structure adders required to obtain all the products of 
the 8 x 8 DCT is 102, whereas the adder requirement is 130 
for the previously proposed CSE method [9] and 210 in the 
direct CSD implementation. Thus, the adder reduction 
achieved using our BSE is 22% over the CSE method [9]
and 51% over the direct CSD method. The critical path 
length and the transition activity also need to be minimized 
apart from reducing the number of additions. Moreover, it 
can also be seen that in the proposed method, with the 
increase in the order of the DCT matrix, the scope for 
subexpression formation also increases proportionately, 



thereby increasing the reductions in hardware required to 
implement it. The logic depth of the multiplier implemented 
using our method is 4 adder-steps, which is same as that in 
[9]. Thus our BSE achieves adder reduction without 
increasing the delay.

VI. CONCLUSIONS

We have proposed an efficient look-ahead binary 
representation based CSE algorithm low complexity 
implementation of a DCT chip. Our implementation method 
gives more importance to reduce the number of intra-
structural adders, which is the most power-consuming 
component in a DCT chip. As binary representation has a 
higher frequency of occurrence of common subexpressions, 
this concept has been efficiently used to produce better 
reduction of adders and shifts without affecting the speed of 
the multiplier. 
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