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Abstract-This paper describes the design and implementation 
of DAST, a Distributed Arbitrary Segment Tree structure that 
gives support of range query for public Distributed Hash Table 
(DHT) services. DAST does not modify the underlying DHT 
infrastructure, instead it utilises the scalability and robustness of 
DHT while providing simplicity of implementation and deploy-
ment for applications. Compared with traditional segment trees, 
the arbitrary segment tree used by a DAST reduces the number 
of key-space segments that need to be maintained, which in turn 
results in fewer query operations and lower overheads. More-
over, considering that range queries often contain redundant 
entries that the clients do not need, we introduce the concept of 
Accuracy of Results (AoR) for range queries. We demonstrate 
that by adjusting AoR, the DHT operational overhead can be 
improved. DAST is implemented on a well-known public DHT 
service (OpenDHT) and validation through experimentation and 
supporting simulation is performed. The results demonstrate the 
effectiveness of DAST over exiting methods. 

 
I. INTRODUCTION 

There has been considerable research interest into Distrib-
uted Hash Tables (DHTs) in recent years. In addition to offer-
ing the advantages of scalability, load balancing and robust-
ness, DHTs allow P2P applications to achieve efficient key 
insertion, lookup and retrieval over the underlying P2P net-
work [1-4]. Imperative to the success of DHTs is the hashing 
operation. Each DHT node has a unique node identifier repre-
sented with a predetermined number of bits, e.g., a Pastry 
node has a 128-bit id [2]. The node identifier typically derives 
from the hash of the node’s public key or IP address, and the 
set of node identifiers is uniformly distributed. Before insert-
ing a key into the P2P overlay, DHT also hashes the key over 
the node identifier space so as to locate the node whose node 
ID is closest to the hash of the key. Once this mapping is 
complete, the hash of the key together with the value is stored 
at the target node.  

The ID-based hashing effectively balances the load over all 
DHT nodes; however, this exact matching mechanism makes 
range query inefficient because clients can only search and 
retrieve one key at a time. If clients need to search for all 
available keys in a certain range, i.e., a range query, this is 
difficult to achieve via DHT lookup directly, since the DHT 
hashes the keys over the node identifier space before inserting, 
and the structural attributes of keys, such as the continuity of 
the key space, are erased by the DHT hashing functions. Con-
sider for example that the keys to be inserted are the integers 
between 0 and 15. Each key is hashed before it is inserted into 
the DHT. If clients want to retrieve all keys in the range [3, 5], 

each key (“3”, “4”, “5”) must be separately identified as even 
if one key is found, e.g., “4”, it is not possible to conjecture 
the locations of its neighbours (“3”, “5”) through the hash 
value of “4” since the hashing is purely random and not struc-
tured. If the length of the range is very large, e.g. [2, 210], then 
clients have to carry out 220-1 retrieval operations to obtain all 
keys, which introduces considerable overheads to the DHT [5] 
and the efficiency of the query itself. 

To enable DHTs to support efficient range queries, we pro-
pose a Distributed Arbitrary Segment Tree (DAST), a data 
structure that is layered upon a traditional DHT. There exist a 
number of approaches to implementing a range query. In 
some designs keys are duplicated or the query results contain 
unnecessary keys in the interest of query efficiency. Never-
theless, the values associated with the keys are ignored. We 
believe that the size and type of the data associated with each 
key is crucial in understanding the efficiency of the query 
process. It is this data after all which is directly retrieved from 
the DHT and thus it is this that causes the storage load on the 
DHT. By considering the values associated with each key, 
DAST achieves a better balance between load and query per-
formance. Moreover, we use the term data item of the form 
{key, value} when we describe DAST operations. 

DAST constructs an arbitrary segment tree (AST), which is 
an enhanced form of a traditional segment tree [5, 6], to break 
down the entire key space into a number of segments (each 
segment being a node in the tree). For every insertion request 
of a data item {key, value}, DAST first locates all segments 
of the tree that contain the key, and then creates new data 
items in the form {segmentId, (key, value)}, i.e., DAST en-
capsulates the key and value in the new data item, with seg-
mentId being the new key. Finally, DAST inserts the new data 
items into the underlying DHT instead of the original data 
items. To process a range query, DAST looks for a minimum 
number of segments on the tree so that the union of the se-
lected segments matches the range of the query. This way, by 
retrieving all segmentIds in the union, we obtain the result of 
the range query. Since every segment contains a number of 
keys, retrieving by segmentIds instead of the original keys can 
significantly reduce the number of DHT retrieval operations 
and consequently improve the efficiency of the range query.  

A novel concept in DAST is the accuracy of the results for 
a range query. As mentioned, the efficiency of DAST is de-
termined by the number of segments that constitute the query 
range. The use of the arbitrary segment tree guarantees that 
the DAST is able to find the union of segments exactly 
matching the range. However, if we relax the requirement of 



an exact match, that is, allow the union of segments to exceed 
the range of a query for a certain length, then fewer seg-
ments may be needed to cover the range, which in turn leads 
to fewer “get” operations to the DHT. This said, the query 
efficiency may not always be improved since the result of the 
query may contain unwanted data items due to the extra span 
of segments which may cause more traffic or longer latency. 
We thus define the accuracy of results (AoR) as the number of 
necessary keys divided by the total number of keys in the 
response. We analyse the balance between the efficiency of 
DAST and the value of AoR in this paper. To the best of our 
knowledge, no existing research has introduced or analysed 
the AoR, which makes our contribution unique. 

Significantly, our solution does not require modifications to 
the core of the DHT; instead, we layer the DAST over a DHT 
infrastructure and present it as a middleware component be-
tween clients and DHTs. As some DHT systems have already 
become public services [7], this layering approach brings 
simplicity of implementation and deployment to applications. 
Note that DAST is a tree-based data structure, however, it 
does not require peers in the network to be organised in any 
particular overlay structure, i.e., the DAST tree does not re-
quire maintenance as long as the range of the key space is 
determined. Section III describes the characteristics of DAST 
in more detail. 

The rest of the paper is organised as follows. We describe 
related work and compare DAST with this work in Section II. 
In section III we present the details of the DAST algorithms 
and the concept of the AoR. We evaluate the performance of 
DAST in Section IV. Finally we conclude in Section V.  

 
II. RELATED WORK 

Range queries are used by many P2P applications, includ-
ing P2P databases, distributed computing, and file sharing [8-
10]. A variety of solutions have been proposed to address the 
range query problem for DHTs. These solutions can be classi-
fied into two broad categories: those that need to modify the 
core of the DHT, and those solutions that need not.  

Mercury [11], SkipGraph [12], SkipNet [13], and PIER [14] 
are all representative examples from the first category. They 
either modify or redesign the core of the DHT to achieve a 
range query. Alternative designs include the Prefix Hash Tree 
(PHT) [15] and the Distributed Segment Tree (DST) [5], 
which represent examples of the second category, and subse-
quently do not need to know the internal mechanism of the 
DHT. Due to space limitations, we describe two examples, 
PHT and DST, and compare these with our own scheme 
DAST. 

A. Prefix Hash Tree (PHT) 
PHT employs a trie-based tree structure encapsulating the 

original tuples {key, value} in new data items with the label 
of the leaf nodes acting as the new key and inserting it into 
the underlying DHT. Each original key is expressed as a bi-
nary string of length D. All keys with the same prefix are 
stored on the same leaf nodes. The depth of the tree is decided 
by the load balancing mechanism in PHT, i.e., if the number 

of keys that are stored on a leaf node exceeds a threshold, the 
leaf node will split into two child leaf nodes.  

Clients are not aware of the structure of the whole PHT. To 
determine which leaf node to insert, clients have to first look 
up all D possible prefix labels in parallel, e.g., if the binary 
string of a key is “00100”, a client has to perform parallel 
“get” operations to the DHT for the keys “0”, “00”, “001”, 
“0010” and “00100”; if one of the “get” operations returns a 
result, then the leaf node is located and the key is stored on it 
via the a data item. The authors of PHT also suggests a binary 
search solution for locating the leaf node [15]. For the query 
of range (L, H), PHT first locates the PHT node correspond-
ing to the longest common prefix of L and H and then per-
forms a parallel traversal of its subtree to retrieve all the de-
sired data items as the result of the query.  

DAST differs from PHT in the following ways. First, the 
depth of the PHT grows with the increase in inserted keys, i.e., 
the structure of PHT keep changing over time and as a result 
it additional “get” operations are required for each insertion 
operation. In contrast, the structure of DAST is stable as long 
as the entire key space does not change. Clients locate the 
destination tree nodes for keys without any additional “get” 
operations, which results in lower latency for range queries. 
Moreover, as will be described in Section III, the result of a 
range query in PHT may contain unnecessary data items, 
which may increase the latency. In comparison, DAST gives 
criteria for the accuracy of results. We find that with similar 
AoR, DAST requires fewer DHT operations and thus achieves 
lower latency for range query than PHT. 

B. Distributed Segment Tree (DST) 
The Distributed Segment Tree approach is the most similar 

to our work. Both DST and DAST use the concept of a seg-
ment tree [6], nevertheless, DST is a binary tree while DAST 
is multi-way. Each non-leaf node in DST has two children 
and the segment corresponding to the parent is split into two 
equal parts and assigned to the two children, respectively. 
Hence the entire key space is split into 2i (i represents the 
level in the tree, counting from 0) parts on each tree level and 
the depth of the tree is O(log )R  (R is the length of the entire 
space range). Therefore, keys need to be inserted to O(log )R  
DST nodes and there will thus be O(log )R  duplications for 
each key (the number of duplications is not always O(log )R  
due to DST’s load balancing mechanism which we describe 
in Section III). The nodes in a DAST can have more than two 
children and through setting the maximum number (M) of 
children that each node can have, there will be arbitrary num-
ber of segments on each tree level (this is where the name 
“arbitrary segment tree” derives) and the depth of the tree is 

log
logO( )R

M . Consequently, each data items in a DAST will have 
log
logO( )R

M  duplications, which leads to lower DHT storage load 
and operational overheads. DAST also adopts a load balanc-
ing algorithm that achieves similar effects to the one in DST, 
but with a considerably simpler implementation. Finally, 
DAST incorporates the concept of the AoR to further improve 



the range query performance. DAST also provides clients 
with the flexibility to adjust the primary properties to suit 
their own range query requirements. Such an approach is not 
documented in DST or PHT. 

  
III. DESIGN OF DAST 

In this section we present the design of DAST. We first in-
troduce the Arbitrary Segment Tree data structure and then 
describe how to layer an AST over an existing DHT infra-
structure to achieve range query functionality. 

A. Arbitrary Segment Tree 
The Arbitrary Segment Tree (AST) is based on the tradi-

tional segment tree (TST) data structure [6], where a range 
(henceforth we use the term segment tree range to distinguish 
from the range in a query) of non-negative integers1 is itera-
tively split at each level into certain number of segments, and 
each segment is assigned to one tree node. However, the rule 
of splitting the segment tree range on each level in AST is 
different from that found in TST. TST is a binary tree where 
every internal node has two children. Therefore, starting from 
the tree root, the segment that every internal node represents 
is evenly split into two parts and allocated to the two children, 
respectively, until it has only one number within. In contrast, 
AST is a multiway tree in which each internal node can have 
an arbitrary number2 of children. We denote M as the maxi-
mum number of children that one node can have, i.e., each 
AST node can have at most M children. Note that AST is a 
superset of TST, i.e., when the value of M is 2, an AST be-
comes a TST. At each tree level, AST splits the segment tree 
range uniformly to up to M segments while maximising the 
interval size of each segment. The properties of AST are as 
follows: 

1. Assuming the length of the segment tree range is R, the 
height of an AST is log

logO( )R
M . 

2. The root node has the entire segment tree range. Every 
other node represents a segment. The union of all segments 
on the same tree level is the segment tree range. 

3. Every non-leaf node has Ci children, where iC M≤  and 
1iC ≠ . The segment of each non-leaf node is split into Ci 

parts and distributed to the children. The value of  Ci and the 
intervals of the segments for the children are decided by the 
tree construction algorithm (Algorithm I).   

4. Every leaf node has an atom segment, i.e., a segment that 
contains only one key. The union of all leaf nodes covers the 
segment tree range.  

5. Every node has a segmentId. DAST produces the seg-
mentId by hashing its interval over the underlying DHT node 
ID space. Through the hash, the segmentId can be mapped to 
the DHT node ID space and then used in the DAST opera-
tions.  
                                                           
1 The range that a segment tree represents can in fact include 
real numbers. In this paper, we only give examples of non-
negative integers for practical purposes.  
2 The number cannot be “1” because splitting a segment can-
not be performed if a node has only one child.  

Unlike PHT, an AST will not change its structure once it 
has been constructed, as long as the segment tree range does 
not change. This property ensures the consistency of the posi-
tions for keys, i.e., the destination node that holds the (key, 
value) items.  Fig. 1 depicts an example AST where the seg-
ment tree range is [0, 16] and the value of M is four. Note that 
the numbers of children of internal nodes vary between two 
and four through the tree and are purely determined by the 
segment tree range and the choice of the value of M.  

B. DAST operations 
The DAST data structure provides an interface between the 

client applications and the underlying DHT. Clients insert, 
delete or retrieve data items to or from DAST instead of DHT. 
We describe the DAST operations needed to achieve range 
query functionality for clients. 

1) Insert/Delete: The insertion and deletion of a data item 
with a key in DAST is straightforward. When an insert re-
quest arrives, DAST looks for all nodes whose segments 
cover the key of the item (there must be one and only one 
such node on each tree level). For each of these nodes, DAST 
creates a new data item in which the key is the segmentId of 
the node and the value is the original data item. Finally, 
DAST inserts the new data items to DHT. The insert opera-
tion for one key in DAST needs log

logO( )R
M DHT insertions and 

there will be log
logO( )R

M  copies of the key inside the DHT. 
When a data item is deleted, DAST finds all segments that 
cover the key and removes the data items accordingly. 

2) Range query: DAST first divides the range of the query 
into a union of segments that the AST contains, and then re-
trieves all segmentIds with associated data items from the 
DHT. The dividing algorithm is shown in Algorithm II. Since 

Algorithm I 
The pseudo code of  

the AST construction algorithm 
// Parameters: 
// ASTNode: the class of AST nodes. 
// sf, st: bounds of the interval for the segment on the node. 
// level: the tree level of the node 
//ASTNode.children[]: an AST node’s children. 
//M: the maximum number of children; a global value. 
//C: the number of children of a node 
 
ASTNode(sf, st, level)  
     C ← 0 
     children ← new ASTNode[M] 
     if sf ≠ st then 
          from ← sf 
          length ← (st - sf) / M 
          to ← from + length 
          while true do 
               children[C] ← new ASTNode(from, to, level+1) 
               C ← C + 1 
                if to = st then 
                     break 
                else 
                     from ← to + 1 
              if st > from + length then 
                          to ← st 
              else 
                          to ← from + length 



the AST ensures leaf nodes have atom segments, the union of 
the segments is guaranteed to be found for the range. There 
may exist alternative ways to divide the range; however, our 
algorithm is dedicated to building a union containing a mini-
mum number of segments, i.e., the intervals of the segments 
should be as wide as possible, so as to reduce the number of 
DHT retrievals.  

3) Single key query: DAST performs single key queries by 
simply retrieving the corresponding atom segment from the 
DHT.   

C. The value of  M 
The value M controls the maximum number of children an 

AST node can have. The key advantage that AST has over 
TST is that it provides more flexibility for clients to improve 
the performance of a range query. As previously described, 
the height of an AST is log

logO( )R
M  and hence a greater value of 

M leads to lower numbers of DHT insertions (improving per-
formance of the DAST insertion) and less duplications of data 
items (reducing the DHT storage load). However, if M is too 
large, the segment of one node will be split into more parts 
and consequently the segments in the AST will be shorter. 
Therefore, when fulfilling a range query, the average number 
of segments in the union that covers the range will be greater. 
In other words, DAST has to perform more DHT retrievals to 
obtain the result. Due to this tradeoff, clients have to carefully 
choose the value of M depending on their definition of the 
key space and their expectations for the lengths of the ranges 
that the queries may have. We investigate the impact of M on 
the performance of DAST in section IV.  

D. Accuracy of Result for a range query 
We consider the Accuracy of Result (AoR) for a range 

query in DAST. This investigation is motivated by the fact 
that when using PHT we found that the responses of range 
queries may contain unnecessary data items, since one prefix 
tree node stands for a prefix of keys and consequently keys 
that do not belong to the same range may fall into one prefix 
node. This causes higher latency to the query responses and 
cannot be rectified because PHT does not modify the DHT 
layer and so cannot filter the query results before feeding 
them back to the clients.  By default, DAST always returns 

the query results to clients with 100% accuracy, i.e., the re-
sponses of the query do not contain any unwanted data items. 
However, we found that if we relax the segment union for the 
query (to be larger than the range of the query), i.e., the span 
of the union covers the range but has extra intervals on either 
end or both ends, the number of segments in the union may be 
reduced. Consequently, a number of unnecessary data items 
will exist in the results, however, the number of DHT retriev-
als needed for range queries will also drop. An exemplar 
range query [6, 13] is illustrated in Fig. 1. DAST builds a 
union {(6, 6), (7, 8), (9, 9), (10, 11), (12, 13)} for the query [6, 
13] by default and has to perform five DHT retrievals for the 

Algorithm II 
The pseudo code of the dividing algorithm  

for the range of the query 
// Parameters:  
// rf, rt: bounds of the interval of query range 
// cdt: the candidate segment for the union of range seg-

ments. 
// newCdt: new candidate segment. 
// cdtClt: the collection of candidates (cdt). 
// cf, ct: bounds of the interval for the candidate segment. 
// nf, nt: bounds of the interval for the current AST node. 
//nri: number of redundant data items allowed in query re-

sults. 
// results: the union of segments that match the range. 
 
divideRange(rf, rt, AoR) 
     cdtClt.add(interval(rf, rt)) 
     for each level on the tree do 
          for each AST node on the level do 
               if candidates is empty then 
                    return results 
         else  
    for each cdt in cdtClt do 
         nri ← (cdt.to ← cdt.from) × (1-AoR) 
           newCdt ← interval(cdt.from-nri, cdt.to + nri) 
         if newCdt covers the current node then 
                        results.add(the segment of current node) 
              if cf < nf then 
                    cdtClt.add(interval(cf, nf-1)) 
              if ct>nt then 
                   cdtClt.add(interval(nt+1, ct)) 
              cdtClt.remove(cdt) 
              break 
     return results 

 

[0, 16]

[15, 16][10, 14][5, 9][0, 4]

[0, 1] [2, 3] [4, 4] [5, 6] [7, 8] [9, 9] [10, 11] [12,13] [14, 14] [15, 15] [16, 16]

[0, 0] [1, 1] [2, 2] [3, 3] [5, 5] [6, 6] [7, 7] [8, 8] [10, 10] [11, 11] [12, 12] [13, 13]  

Figure 1: An example AST with the segment tree range [0, 16] and M =  4. We choose the segment tree range such 
hat each node can have an arbitrary number of children and the segments are uniformly split in each level while main-
taining appropriate span length. An exemplar query for range [6, 13] is also illustrated here. The query union can be 
{[6, 6], [7, 8], [9, 9], [10, 11], [12, 13]} with AoR 100% or be {[5, 9], [10, 14]} with AoR 71.4%. 

 



result. If we relax the union construction to be {(5, 9), (10, 
14)}, the result may contain only two extra items (5 and 14) 
but the number of retrievals drops down from five to two, 
which is 2.5 times lower than before.  

Achieving a range query in DAST usually requires a num-
ber of DHT retrievals and these DHT retrievals are executed 
in parallel which significantly reduces the response latency. 
However, if clients submit range query requests to DAST 
simultaneously with high frequency, DAST has to in turn 
submit the retrieval operations for those range queries to the 
underlying DHT in parallel and the DHT may suffer high 
overheads in a short period of time (PHT also considers the 
overhead for a DHT when choosing a binary search or paral-
lel search for a lookup, although there is no detailed analysis 
in the associated paper). To help the DAST clients reduce the 
overhead imposed on the DHT, we present the concept of the 
accuracy of result (AoR) for a range query. We will show that 
by adjusting the value of AoR, the number of DHT retrievals 
for range queries can be much reduced and the overhead on 
DHT can therefore be lowered. The AoR is defined as the 
number of necessary data items divided by the total number 
of data items in the result of a query. In the example above, 
the value of AoR is 5

5 2
71.4%

+
=  after tolerating unnecessary 

items in the result. The implementation of AoR is demon-
strated in Algorithm II. 

The AoR in a DAST range query is 100% by default since 
DAST builds a segment union that can precisely match the 
range of the query and the resulting response consists of only 
necessary data items. Clients can choose the desired AoR 
value to be less than 100% to suite their application environ-
ments. Note that the desired AoR acts as a threshold in DAST, 
i.e., the actual AoR of range query may not precisely equal the 
desired one but it is guaranteed not to be lower. This is be-
cause we assume every key in the key space as having a data 
item in Algorithm II, and calculate the AoR by the number of 
key slots not the number of actual items. In real range query 
cases, since some key slots may be empty, the actual AoR 
must be equal to or greater than the desired one. We demon-
strate the relationship between AoR and the number of DHT 
retrievals in section IV. 

E.  Load Balancing 
Approaches based on segment trees have potential prob-

lems on load balancing. There are fewer nodes at the higher 
tree levels; however, these nodes are responsible for more 
data items, as each data item has to be inserted into every tree 
level. The extreme case occurs at the root node. Since the root 
node has the entire key space, it will have to maintain a copy 
of every data item. The actual DHT node thus experiences a 
heavy storage load.  

DST [5] employs a load balancing mechanism, called 
downward load stripping. Each node maintains two counters 
for its children, the left one and the right one. If, when a key 
is inserted into a node, it can also be covered by one of its 
children, the corresponding counter is increased by one. 
When either counter reaches a threshold, the node stops re-
ceiving keys. What this mechanism actually does is to limit 

the high level nodes from having more data items than the 
threshold. However, it brings to the implementation the prob-
lem of how do clients locate the values of two counters for 
each DST node in such a distributed environment? The obvi-
ous solution is to put the counters into the underlying DHT as 
data items and let clients access them through specified keys. 
However, this solution will occupy extra DHT storage and the 
insertions or retrievals of the counters themselves take time. 
Consequently, concurrency or synchronisation problem may 
occur, e.g., one node may not stop receiving data items when 
it should, because the counters are not updated on time.  

Load balancing is nontrivial in DHTs [16] and cannot be 
perfect since even if the keys are uniformly distributed onto 
the DHT nodes, some nodes will be responsible for a loga-
rithmic factor more of the key space than others [3]. In other 
words, some nodes in the DHT will assume much higher stor-
age and routing load than others. Due to inheritance, PHT, 
DST and DAST also suffer from the same problem. Even 
though data items are inserted at leaf nodes in PHT and it is 
easier to distribute leaf nodes uniformly unto DHT nodes, 
some data items within a certain range may still gain high 
popularity and become responsible nodes and hence will have 
uncharacteristically heavy load; this is also true for the DST.  

Therefore, we propose to reduce the effects of load in 
DAST but not to perfectly eliminate it. We ignore the nodes 
in the levels N - 1 and above in the AST and start to insert 
data items at level N. The value of N depends on how large 
the entire segment tree range is and how many nodes there are 
in the underlying DHT. We encourage applications or clients 
to carry out experiments to test their values of N before de-
ployment. Our evaluation in Section IV provides suggestions 
as to how to choose a good value for N. 

F. Tree Maintenance and Fault Tolerance 
As previously described, DAST is a data-structure layer be-

tween the peer-to-peer overlay and the DHT infrastructure. 
When a peer carries out range query operations, it passes the 
command to DAST and its associated algorithms, and subse-
quently obtains the results from the DAST layer. Thus, the 
DAST data structure exists only within the application func-
tions with which peers carry out range query operations; it 
does not influence the peer-to-peer overlay structure or the 
DHT infrastructure. Moreover, algorithms I and II show that 
the DAST structure will remain constant as long as the range 
of the key space does not change. Thus, DAST does not re-
quire additional maintenance which significantly simplifies 
the supported applications.  

Since DAST is built upon a DHT service layer, it inherits 
all the resilience and failure recovery properties of the under-
lying DHT. Although the DHT has methods to guarantee a 
certain level of data availability and fault tolerance [7], the 
DAST can still lose data if all replicas in the DHT fail. To 
avoid this catastrophic failure, DAST employs a soft state 
refreshing mechanism. Each data item that is inserted to the 
DHT through the DAST layer has a time-to-live (TTL) asso-
ciated. Peers have to regularly update the data items against  a 
TTL of seconds, otherwise, the data items are automatically 
deleted from the DHT. Hence, even if all replicas for a data 



item in the DHT are lost, the item will eventually be restored 
by the supporting refresh mechanism.  

 
IV. EVALUATION 

In this section, we evaluate the performance of DAST. First 
we investigate the internal structural properties of DAST. We 
then compare the range query operations of DAST, DST and 
PHT. Finally we compare their range query efficiencies in an 
OpenDHT deployment.  

A. Implementation 
We implement two versions of DAST, the first as a simula-

tion and the second as a full-scale deployment. In both ver-
sions, the source codes for the mechanisms of DAST are ex-
actly the same. The only difference is that the simulation ver-
sion of DAST utilises a Java Hashtable object to simulate the 
underlying DHT, while the deployed version is layered on top 
of OpenDHT.  

To shorten the time to conduct the experiments, we use the 
simulation version to investigate the structural properties of 
DAST and compare the range query operations of DAST, 
DST and PHT. For comparisons of the real range query effi-

ciencies, we use our deployed version of DAST that accesses 
OpenDHT service on the Internet.  

B. Setup 
In the simulations, we assumed the segment tree range to 

be [0, 216-1] and generated 214 keys for insertions. The keys 
are uniformly distributed over the segment tree range space. 
The values associated with the keys are empty, i.e., the sizes 
of the values are zero. This is because the sizes of the data 
items do not affect the investigation of the internal mecha-
nisms of DAST, DST or PHT - such a configuration also im-
proves the simulation efficiency. We also randomly generate 
five sets of range queries, each of which has 1000 queries 
with span lengths of 512, 1024, 2048, 4096 and 8192, respec-
tively.  

In the deployment, the segment tree range remains the 
same but we generate only 210 random keys. We chose a rela-
tively small number of insertions because 210 insertions are 
enough to demonstrate the insertion efficiency of all three 
approaches. Every key has 1KB of data associated with the 
value (the maximum size of a value in OpenDHT is 1KB). All 
the experiments were prototyped on a single PC to guarantee 
the correctness of the comparison of results. The range query 
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Figure 2: Plots of DHT operations for different values of M (Maximum number of children): (a) the plot of the average number 
of DHT insertions for one DAST insert request; (b) the plot of the average number of DHT retrievals for one DAST range query 
request 
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Figure 3: Plots of DHT operations for different values of N (the level number that DAST starts to insert data items): (a) the plot 
of the average number of DHT insertions for one DAST insert request; (b) the plot of the average number of DHT retrievals for one 
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setup is similar to that in the simulation except that each 
query set consists of 100 queries. 

Each of the simulation experiments were conducted 100 
times and the experiments on the OpenDHT deployment were 
repeated 30 times.  

C. Structural Properties of DAST 
We study the number of children allowed in AST, the load 

balancing mechanism and the performance impacts from dif-
ferent values of AoR. Clients can choose their own settings to 
suit the demands or adapt to the different computing envi-
ronments.  

Maximum number of children (the value of M): As de-
scribed in section III, the value of M controls both the number 
of DHT insertions and the number of DHT retrievals for 
range queries. Recall that the height of AST is log

logO( )R
M , if M 

is too large, AST may have only a very small number of lev-
els (the extreme case is that the whole AST has only the root 
node when M = R). Thus to maintain the AST we choose the 
candidate M to be 2, 4, 8, 16 and 32. For each of the DAST 
examples with those M candidates, we insert the preloaded 
keys (for now we do not consider the load balancing problem 
and AoR) and plot the average number of DHT insertions in-
volved. As depicted in Fig. 2(a), the number of DHT in-
sertions drops sharply when M increases from 2 to 4 and this 
trend slows as M increases. When M reaches 16, the number 
of DHT insertions remains constant. To see how the value of 
M affects the range query, we send the five sets of predefined 
range queries to DAST and plot the results in Fig. 2(b). We 
can see that the higher the value of M leads to a larger number 
of DHT retrievals. The distance between the curves for M = 8 
and M = 16 is large, indicating a sudden increase of DHT 
retrievals. Comparing Fig. 2(a) and (b), we thus suggest that 
M = 4is the optimal in our experiments.  

Load balancing (the value of N): Our load balancing 
mechanism is simply that we start to insert data items from 
tree level N (if the root node is on level 1). The top N levels 
therefore contain no items. Using the result of M = 4 from the 
previous experiments, and testing N values from 1 to 6, the 
insertion and query range results are plotted in Fig. 3(a) and 
3(b) respectively. The number of DHT insertions is reduced 
by one if N increases by one, which is apparent in Fig. 3(a). In 

Fig. 3(b), it is not easy to see the plots where N = 1, 2, 3 be-
cause they are overridden by N = 4, which implies the results 
for these three values of N are similar. When N = 5, the num-
ber of DHT retrievals starts to rise as the nodes on levels 1 to 
4 do not have data items and cannot contribute to the range 
query. The increment is more pronounced when the value of 
N reaches 6. The results in Fig. 3(b) narrow our choice of N 
down to 4 or 5. We do not consider 3N ≤ because N = 4 
gives better load balancing while providing a similar number 
of DHT retrievals. We present the detailed experimental re-
sults for N = 4 and N = 5 in Table I to illustrate choosing the 
optimal N. As we can see, the differences between the num-
bers of DHT retrievals of the two cases become larger when 
the span of the query increases. However, we should also note 
that the number of nodes on tree level 5 is 256, which is four 
times more than that on level 4. Considering that lowering 
AoR in DAST can further reduce the number of DHT retriev-
als, we thus chose 5 as the optimal value for N. This conclu-
sion is validated in the next experiments considering AoR. 

512 1024 2048 4096 8192
2

4

6

8

10

12

14

16

18

20

22

24

A
ve

ra
ng

e 
nu

m
be

r o
f D

H
T 

re
tri

ev
al

s

Span of query range

 AoR = 100%  AoR = 95%
 AoR = 90%  AoR = 85%
 AoR = 80%  AoR = 75%
 AoR = 70%

 

 

512 1024 2048 4096 8192
0

20

40

60

80

100

120

A
ve

ra
ng

e 
nu

m
be

r o
f D

H
T 

re
tri

ev
al

s

Span of query range

 DAST with AoR = 100%
 DAST with AoR = 95%
 DAST with AoR = 70%
 DST
 PHT

 
Figure 4: Plot of the average number of DHT retrievals for one DAST 

range query request with different values of AoR (the accuracy of result). 
 Figure 5: Comparison of DAST (with different AoR) against DST 

and PHT on average number of DHT retrievals for one range query. 
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Figure 6: Comparison of DAST (with different AoR) against DST 
and PHT on query latency. 
 

Table I 
The experimental results for N = 4 and N = 5  

Query span N # of nodes 512 1024 2048 4096 8192 
4 64 12.8 13.7 14.4 15.35 16.7 
5 256 12.8 13.7 15.4 18.4 23.3 



Note, N = 5 is not universally optimal and clients should test 
for their own value of N.  

The accuracy of the result for range query (AoR): To 
provide an analysis from the point of view of the AoR, we 
queried DAST for the same range sets seven times and each 
time we tested a different value of AoR. The value set of AoR 
are shown in Fig. 4. We do not present the results when AoR 
< 70% because these plots are masked by the plot for AoR = 
70%, which means the value of AoR stops affecting DAST 
when it is below 70%. As we can see in Fig. 4, the number of 
DHT retrievals needed for the range query drops along with 
the reduction of AoR. We confirm the precise percentile of the 
drop (compared to that when AoR = 100%) with the corre-
sponding value of AoR in table II. Through comparisons, we 
can see that if we reduce the value of AoR by even 5%, the 
number of DHT retrievals drops significantly (by 21.62%). If 
we allow 30% of the result to be unnecessary (AoR = 70%), 
the number of retrievals drops further to 57.43%.  

Clients should be aware that lowering the value of AoR can 
also affect the response latency of the query depending on the 
sizes of the data items. If the size of the data item is small in 
the client application and the frequency of the range query 
request is high, having AoR of 70% can result in an approxi-
mate 50% lower overhead to the underlying DHT and may 
not negatively affect the response latency. Even if the size of 
the data items is large and the frequency of the request is high, 
allowing AoR to be 95% is worth considering since it still 
results in over 20% lower overhead to the DHT. A detailed 

analysis of the tradeoffs among the data size, overhead and 
AoR is required; this is precluded in this study as the imple-
mentation and evaluation of DAST is done entirely on a third 
party DHT layer. The results here provide suggestions rather 
than quantitative conclusions for reducing the potential DHT 
overhead through adjusting AoR in DAST.  
D. Range query operations in DAST, DST and PHT 

We compare the number of DHT operations (insertions and 
retrievals) that are needed for range queries in DAST, DST 
and PHT. The parameter settings M = 4 and N = 5 are se-
lected for DAST and a block size of 60 is chosen for DST and 
PHT, which means that on each of the DST and PHT nodes 
they can have at most 60 data items stored (these settings rep-
licate those found in related literature [5]). We insert the same 
set of data items to DAST, DST and PHT, and execute range 
queries using the same query sets in each of the three ap-
proaches. In DAST however, we also conduct range query 
experiments for three different values (100%, 95%, and 70%) 
of AoR; these results can be found in Fig. 5. 

For an insertion request of one data item, PHT always re-
quires only one DHT insertion, however, it requires a number 
of DHT retrievals for the lookup of the leaf node. For PHT, 
we hence add the number of DHT retrievals for the lookup to 
the one DHT insertion and treat the sum as the number of 
DHT operations needed for one data item insert request. The 
simulation results indicate that the average numbers of DHT 
operations for one data item insert request are 5, 13, and 8, 
respectively for DAST, DST and PHT. DST requires on aver-
age 13 DHT insertions for one data item insert request and 
duplicates the data item 13 times in the DHT storage. DAST 
requires less than half the DHT insertions and one data item 
requires only 5 copies in DHT, which significantly reduces 
the storage load in DHT. PHT on the other hand needs only 
one DHT insertion and requires only one copy of a data item. 
However, it requires on average 7 DHT retrievals, which im-
poses a higher operational overhead than DAST. To conclude, 
DAST is demonstrably superior to DST for insert requests 
and trades extra storage for insertion performance when com-
pared to PHT.  

Fig. 5 depicts the simulation results for the range queries. 
For one range query, PHT performs many more DHT retriev-
als than DAST and DST, which represents potentially high 
DHT overheads. When DAST is configured with AoR set to 
100% it requires more DHT operations than DST. This is 
because each DST node has fewer children and the splitting 
of segments is slower than in DAST; DST therefore has 
longer segment spans, leading to fewer query unions of seg-
ments and fewer DHT retrievals. Nevertheless, when the AoR 
of DAST is set to 95%, DAST achieves approximately the 
same number of DHT retrievals as DST. When AoR is con-
figured to 70%, DAST surpasses DST.  

PHT does not always achieve 100% AoR in the results of 
the range queries. We calculate the AoR and the average 
number of DHT retrievals for PHT and DAST responses, and 
present the results in Table III. Through comparing the values 
of AoR in PHT and DAST together with the average number 

Table II 
The experimental results for AoR 

AoR Average # of 
retrievals 

Dropping per-
centiles for AoR 

Dropping percentiles 
for # of retrievals 

100% 16.84 N/A N/A 
95% 13.26 5% 21.62% 
90% 11.54 10% 31.78% 
85% 9.76 15% 43.19% 
80% 8.32 20% 51.94% 
75% 7.72 25% 55.98% 
70% 7.5 30% 57.43% 

 
Table III 

The comparison of AoR between PHT and DAST 

PHT DAST 
AoR 79% 86% 92% 96% 98% 70% 95% 100% 

# of 
DHT 

retrievals 

10.7 17.9 32.3 58.6 111.9 7.5 12.0 16.5 

 
Table IV 

The experimental results for the average latencies of insert and range 

query in DAST, DST and PHT 

DAST (M = 4, N = 5)  AoR =100% AoR=95% AoR=70% DST PHT 

Insert (sec) 4.5 6.7 9.6 

Query (sec) 7.9 8.37 9.606 8.32 15.88 

 



of DHT retrievals, we can see that DAST performs fewer 
retrievals while maintaining higher AoR.  

E. Comparison of the latencies for insertions and range queries  in 
DAST, DST and PHT 

In this experiment, we deploy our DAST implementation 
on OpenDHT together with DST and PHT. We insert the pre-
loaded data items into OpenDHT through DAST, DST and 
PHT, respectively. The latency of every insertion is recorded 
and the average of these values is presented in Table IV. The 
results clearly indicate one DAST insertion takes on average 
only 67% of the time that DST insertion requires. The advan-
tage of DAST over PHT is more pronounced in that PHT in-
sertions take twice as long as DAST insertions.  

For the range query experiment, we deploy three versions 
of DAST, each of which is configured with AoR as 100%, 
95% and 70%, respectively. With different values of AoR, we 
investigate the impact of AoR on the query latency. These 
results are presented in Fig. 6; the average latencies of the 
range queries can be found in Table IV. We can see that the 
average latency in DAST with AoR as 100% is very close to 
the one in DST. When AoR is reduced, the latency grows due 
to extra unwanted items in the results. PHT requires more 
time for range queries because it needs several sequential 
steps to lookup the leaf key, and the response contains unnec-
essary items. DAST does not have sequential operations and 
thus performs better. 

 
V. CONCLUSIONS 

In this paper, we proposed a Distributed Arbitrary Segment 
Tree (DAST), a structure built on top of public DHT services 
to achieve enhanced range query functionality for clients. 
DAST incorporates the Arbitrary Segment Tree (AST), yet is 
designed so that the query union contains a smaller number of 
segments leading to fewer DHT operations and a lower over-
head. In addition, the duplications of data items are signifi-
cantly reduced in DAST as compared with DST. Moreover 
DAST introduces the concept of AoR (Accuracy of Result). 
By adjusting the value of AoR, we demonstrate that DAST 
can further reduce the number of DHT operations and there-
fore further reduce the overhead.  

An advantage of this scheme is that DAST does not modify 
the underlying DHT and instead acts as a middle layer be-
tween DHT and the applications that require range query 
functionality. The approach is also designed to provide DAST 
users with the flexibility to modify DAST to their application 
environments for best range query efficiency. Furthermore, 
the DAST structure is deterministic once the range of the key 
space is decided. This is significant in terms of lack of main-
tenance, which itself simplifies and reduces the overhead to 
the supported client applications. 

Validations are undertaken through both simulation and ex-
tensive real-world experimentation and the results demon-
strate the effectiveness of DAST across a range of metrics.  

 

ACKNOWLEDGEMENTS 
This work is funded in part by the UK Engineering and 

Physical Sciences Research Council (EPSRC) contract num-
ber EP/F000936/1. 

 
REFERENCES 

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A 
Scalable Content-Addressable Network," presented at ACM SIGCOMM, 
2001. 

[2] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems," presented at 18th 
IFIP/ACM International Conference on Distributed Systems Platforms 
(Middleware 2001), Nov. 2001. 

[3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, 
"Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions," presented at ACM SIGCOMM, 2001. 

[4] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. 
Kubiatowicz, "Tapestry: A Resilient Global-scale Overlay for Service 
Deployment " IEEE Journal on Selected Areas in Communications, 2003. 

[5] C. Zheng, G. Shen, S. Li, and S. Shenker, "Distributed Segment Tree: 
Support of Range Query and Cover Query over DHT," presented at 
IPTPS, California, USA, 2006. 

[6] M. d. Berg, M. v. Kreveld, M. Overmars, and O. Schwarzkopf, Compu-
tational Geometry: Algorithms and Applications, 2nd ed: Springer-
Verlag, 2000. 

[7] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, 
I. Stoica, and H. Yu, "OpenDHT: A Public DHT Service and Its Uses," 
presented at ACM SIGCOMM, 2005. 

[8] V. Papadimos, D. Maier, and K. Tufte, "Distributed Query Processing 
and Catalogs for Peer-to-Peer Systems," in The Conference on Innova-
tive Data Systems Research Asilomar, CA, USA, 2003. 

[9] M. Abdallah and H. C. Le, "Scalable Range Query Processing for Large-
Scale Distributed Database Applications " presented at Parallel and Dis-
tributed Computing Systems, Phoenix, AZ, USA, 2005. 

[10] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, "Design and 
Implementation Tradeoffs for Wide-Area Resource Discovery " pre-
sented at HPDC, 2005. 

[11] A. R. Bharambe, M. Agrawal, and S. Seshan, "Mercury: Supporting 
Scalable Multi-Attribute Range Queries," presented at ACM SIGCOMM, 
2004. 

[12] J. Aspnes and G. Shah, "Skip Graphs," presented at ACM - SIAM Sym-
posium on Discrete Algorithms (SODA), 2003. 

[13] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman, 
"SkipNet: A Scalable Overlay Network with Practical Locality Proper-
ties," presented at Fourth USENIX Symposium on Internet Technologies 
and Systems, 2003. 

[14] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. 
Stoica, "Querying the Internet with PIER," presented at 19th Interna-
tional Conference on Very Large Databases (VLDB), 2003. 

[15] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker, 
and J. Hellerstein, "A Case Study in Building Layered DHT Applica-
tions," presented at ACM SIGCOMM, 2005. 

[16] S. C. Rhea, "OpenDHT: A public DHT service," in Computer Science, 
vol. PhD. Berkeley: University of California, 2005. 

 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


