
Design and Implementation of Efficient Range
Query over DHT Services

Xinuo Chen, Stephen A. Jarvis

Department of Computer Science, University of Warwick, Coventry, U.K.
Email: {xinuo.chen, saj}@dcs.warwick.ac.uk

Abstract-This paper describes the design and implementation
of DAST, a Distributed Arbitrary Segment Tree structure that
gives support of range query for public Distributed Hash Table
(DHT) services. DAST does not modify the underlying DHT
infrastructure, instead it utilises the scalability and robustness of
DHT while providing simplicity of implementation and deploy-
ment for applications. Compared with traditional segment trees,
the arbitrary segment tree used by a DAST reduces the number
of key-space segments that need to be maintained, which in turn
results in fewer query operations and lower overheads. More-
over, considering that range queries often contain redundant
entries that the clients do not need, we introduce the concept of
Accuracy of Results (AoR) for range queries. We demonstrate
that by adjusting AoR, the DHT operational overhead can be
improved. DAST is implemented on a well-known public DHT
service (OpenDHT) and validation through experimentation and
supporting simulation is performed. The results demonstrate the
effectiveness of DAST over exiting methods.

I. INTRODUCTION

There has been considerable research interest into Distrib-
uted Hash Tables (DHTs) in recent years. In addition to offer-
ing the advantages of scalability, load balancing and robust-
ness, DHTs allow P2P applications to achieve efficient key
insertion, lookup and retrieval over the underlying P2P net-
work [1-4]. Imperative to the success of DHTs is the hashing
operation. Each DHT node has a unique node identifier repre-
sented with a predetermined number of bits, e.g., a Pastry
node has a 128-bit id [2]. The node identifier typically derives
from the hash of the node’s public key or IP address, and the
set of node identifiers is uniformly distributed. Before insert-
ing a key into the P2P overlay, DHT also hashes the key over
the node identifier space so as to locate the node whose node
ID is closest to the hash of the key. Once this mapping is
complete, the hash of the key together with the value is stored
at the target node.

The ID-based hashing effectively balances the load over all
DHT nodes; however, this exact matching mechanism makes
range query inefficient because clients can only search and
retrieve one key at a time. If clients need to search for all
available keys in a certain range, i.e., a range query, this is
difficult to achieve via DHT lookup directly, since the DHT
hashes the keys over the node identifier space before inserting,
and the structural attributes of keys, such as the continuity of
the key space, are erased by the DHT hashing functions. Con-
sider for example that the keys to be inserted are the integers
between 0 and 15. Each key is hashed before it is inserted into
the DHT. If clients want to retrieve all keys in the range [3, 5],

each key (“3”, “4”, “5”) must be separately identified as even
if one key is found, e.g., “4”, it is not possible to conjecture
the locations of its neighbours (“3”, “5”) through the hash
value of “4” since the hashing is purely random and not struc-
tured. If the length of the range is very large, e.g. [2, 210], then
clients have to carry out 220-1 retrieval operations to obtain all
keys, which introduces considerable overheads to the DHT [5]
and the efficiency of the query itself.

To enable DHTs to support efficient range queries, we pro-
pose a Distributed Arbitrary Segment Tree (DAST), a data
structure that is layered upon a traditional DHT. There exist a
number of approaches to implementing a range query. In
some designs keys are duplicated or the query results contain
unnecessary keys in the interest of query efficiency. Never-
theless, the values associated with the keys are ignored. We
believe that the size and type of the data associated with each
key is crucial in understanding the efficiency of the query
process. It is this data after all which is directly retrieved from
the DHT and thus it is this that causes the storage load on the
DHT. By considering the values associated with each key,
DAST achieves a better balance between load and query per-
formance. Moreover, we use the term data item of the form
{key, value} when we describe DAST operations.

DAST constructs an arbitrary segment tree (AST), which is
an enhanced form of a traditional segment tree [5, 6], to break
down the entire key space into a number of segments (each
segment being a node in the tree). For every insertion request
of a data item {key, value}, DAST first locates all segments
of the tree that contain the key, and then creates new data
items in the form {segmentId, (key, value)}, i.e., DAST en-
capsulates the key and value in the new data item, with seg-
mentId being the new key. Finally, DAST inserts the new data
items into the underlying DHT instead of the original data
items. To process a range query, DAST looks for a minimum
number of segments on the tree so that the union of the se-
lected segments matches the range of the query. This way, by
retrieving all segmentIds in the union, we obtain the result of
the range query. Since every segment contains a number of
keys, retrieving by segmentIds instead of the original keys can
significantly reduce the number of DHT retrieval operations
and consequently improve the efficiency of the range query.

A novel concept in DAST is the accuracy of the results for
a range query. As mentioned, the efficiency of DAST is de-
termined by the number of segments that constitute the query
range. The use of the arbitrary segment tree guarantees that
the DAST is able to find the union of segments exactly
matching the range. However, if we relax the requirement of

an exact match, that is, allow the union of segments to exceed
the range of a query for a certain length, then fewer seg-
ments may be needed to cover the range, which in turn leads
to fewer “get” operations to the DHT. This said, the query
efficiency may not always be improved since the result of the
query may contain unwanted data items due to the extra span
of segments which may cause more traffic or longer latency.
We thus define the accuracy of results (AoR) as the number of
necessary keys divided by the total number of keys in the
response. We analyse the balance between the efficiency of
DAST and the value of AoR in this paper. To the best of our
knowledge, no existing research has introduced or analysed
the AoR, which makes our contribution unique.

Significantly, our solution does not require modifications to
the core of the DHT; instead, we layer the DAST over a DHT
infrastructure and present it as a middleware component be-
tween clients and DHTs. As some DHT systems have already
become public services [7], this layering approach brings
simplicity of implementation and deployment to applications.
Note that DAST is a tree-based data structure, however, it
does not require peers in the network to be organised in any
particular overlay structure, i.e., the DAST tree does not re-
quire maintenance as long as the range of the key space is
determined. Section III describes the characteristics of DAST
in more detail.

The rest of the paper is organised as follows. We describe
related work and compare DAST with this work in Section II.
In section III we present the details of the DAST algorithms
and the concept of the AoR. We evaluate the performance of
DAST in Section IV. Finally we conclude in Section V.

II. RELATED WORK

Range queries are used by many P2P applications, includ-
ing P2P databases, distributed computing, and file sharing [8-
10]. A variety of solutions have been proposed to address the
range query problem for DHTs. These solutions can be classi-
fied into two broad categories: those that need to modify the
core of the DHT, and those solutions that need not.

Mercury [11], SkipGraph [12], SkipNet [13], and PIER [14]
are all representative examples from the first category. They
either modify or redesign the core of the DHT to achieve a
range query. Alternative designs include the Prefix Hash Tree
(PHT) [15] and the Distributed Segment Tree (DST) [5],
which represent examples of the second category, and subse-
quently do not need to know the internal mechanism of the
DHT. Due to space limitations, we describe two examples,
PHT and DST, and compare these with our own scheme
DAST.

A. Prefix Hash Tree (PHT)
PHT employs a trie-based tree structure encapsulating the

original tuples {key, value} in new data items with the label
of the leaf nodes acting as the new key and inserting it into
the underlying DHT. Each original key is expressed as a bi-
nary string of length D. All keys with the same prefix are
stored on the same leaf nodes. The depth of the tree is decided
by the load balancing mechanism in PHT, i.e., if the number

of keys that are stored on a leaf node exceeds a threshold, the
leaf node will split into two child leaf nodes.

Clients are not aware of the structure of the whole PHT. To
determine which leaf node to insert, clients have to first look
up all D possible prefix labels in parallel, e.g., if the binary
string of a key is “00100”, a client has to perform parallel
“get” operations to the DHT for the keys “0”, “00”, “001”,
“0010” and “00100”; if one of the “get” operations returns a
result, then the leaf node is located and the key is stored on it
via the a data item. The authors of PHT also suggests a binary
search solution for locating the leaf node [15]. For the query
of range (L, H), PHT first locates the PHT node correspond-
ing to the longest common prefix of L and H and then per-
forms a parallel traversal of its subtree to retrieve all the de-
sired data items as the result of the query.

DAST differs from PHT in the following ways. First, the
depth of the PHT grows with the increase in inserted keys, i.e.,
the structure of PHT keep changing over time and as a result
it additional “get” operations are required for each insertion
operation. In contrast, the structure of DAST is stable as long
as the entire key space does not change. Clients locate the
destination tree nodes for keys without any additional “get”
operations, which results in lower latency for range queries.
Moreover, as will be described in Section III, the result of a
range query in PHT may contain unnecessary data items,
which may increase the latency. In comparison, DAST gives
criteria for the accuracy of results. We find that with similar
AoR, DAST requires fewer DHT operations and thus achieves
lower latency for range query than PHT.

B. Distributed Segment Tree (DST)
The Distributed Segment Tree approach is the most similar

to our work. Both DST and DAST use the concept of a seg-
ment tree [6], nevertheless, DST is a binary tree while DAST
is multi-way. Each non-leaf node in DST has two children
and the segment corresponding to the parent is split into two
equal parts and assigned to the two children, respectively.
Hence the entire key space is split into 2i (i represents the
level in the tree, counting from 0) parts on each tree level and
the depth of the tree is O(log)R (R is the length of the entire
space range). Therefore, keys need to be inserted to O(log)R
DST nodes and there will thus be O(log)R duplications for
each key (the number of duplications is not always O(log)R
due to DST’s load balancing mechanism which we describe
in Section III). The nodes in a DAST can have more than two
children and through setting the maximum number (M) of
children that each node can have, there will be arbitrary num-
ber of segments on each tree level (this is where the name
“arbitrary segment tree” derives) and the depth of the tree is

log
logO()R

M . Consequently, each data items in a DAST will have
log
logO()R

M duplications, which leads to lower DHT storage load
and operational overheads. DAST also adopts a load balanc-
ing algorithm that achieves similar effects to the one in DST,
but with a considerably simpler implementation. Finally,
DAST incorporates the concept of the AoR to further improve

the range query performance. DAST also provides clients
with the flexibility to adjust the primary properties to suit
their own range query requirements. Such an approach is not
documented in DST or PHT.

III. DESIGN OF DAST

In this section we present the design of DAST. We first in-
troduce the Arbitrary Segment Tree data structure and then
describe how to layer an AST over an existing DHT infra-
structure to achieve range query functionality.

A. Arbitrary Segment Tree
The Arbitrary Segment Tree (AST) is based on the tradi-

tional segment tree (TST) data structure [6], where a range
(henceforth we use the term segment tree range to distinguish
from the range in a query) of non-negative integers1 is itera-
tively split at each level into certain number of segments, and
each segment is assigned to one tree node. However, the rule
of splitting the segment tree range on each level in AST is
different from that found in TST. TST is a binary tree where
every internal node has two children. Therefore, starting from
the tree root, the segment that every internal node represents
is evenly split into two parts and allocated to the two children,
respectively, until it has only one number within. In contrast,
AST is a multiway tree in which each internal node can have
an arbitrary number2 of children. We denote M as the maxi-
mum number of children that one node can have, i.e., each
AST node can have at most M children. Note that AST is a
superset of TST, i.e., when the value of M is 2, an AST be-
comes a TST. At each tree level, AST splits the segment tree
range uniformly to up to M segments while maximising the
interval size of each segment. The properties of AST are as
follows:

1. Assuming the length of the segment tree range is R, the
height of an AST is log

logO()R
M .

2. The root node has the entire segment tree range. Every
other node represents a segment. The union of all segments
on the same tree level is the segment tree range.

3. Every non-leaf node has Ci children, where iC M≤ and
1iC ≠ . The segment of each non-leaf node is split into Ci

parts and distributed to the children. The value of Ci and the
intervals of the segments for the children are decided by the
tree construction algorithm (Algorithm I).

4. Every leaf node has an atom segment, i.e., a segment that
contains only one key. The union of all leaf nodes covers the
segment tree range.

5. Every node has a segmentId. DAST produces the seg-
mentId by hashing its interval over the underlying DHT node
ID space. Through the hash, the segmentId can be mapped to
the DHT node ID space and then used in the DAST opera-
tions.

1 The range that a segment tree represents can in fact include
real numbers. In this paper, we only give examples of non-
negative integers for practical purposes.
2 The number cannot be “1” because splitting a segment can-
not be performed if a node has only one child.

Unlike PHT, an AST will not change its structure once it
has been constructed, as long as the segment tree range does
not change. This property ensures the consistency of the posi-
tions for keys, i.e., the destination node that holds the (key,
value) items. Fig. 1 depicts an example AST where the seg-
ment tree range is [0, 16] and the value of M is four. Note that
the numbers of children of internal nodes vary between two
and four through the tree and are purely determined by the
segment tree range and the choice of the value of M.

B. DAST operations
The DAST data structure provides an interface between the

client applications and the underlying DHT. Clients insert,
delete or retrieve data items to or from DAST instead of DHT.
We describe the DAST operations needed to achieve range
query functionality for clients.

1) Insert/Delete: The insertion and deletion of a data item
with a key in DAST is straightforward. When an insert re-
quest arrives, DAST looks for all nodes whose segments
cover the key of the item (there must be one and only one
such node on each tree level). For each of these nodes, DAST
creates a new data item in which the key is the segmentId of
the node and the value is the original data item. Finally,
DAST inserts the new data items to DHT. The insert opera-
tion for one key in DAST needs log

logO()R
M DHT insertions and

there will be log
logO()R

M copies of the key inside the DHT.
When a data item is deleted, DAST finds all segments that
cover the key and removes the data items accordingly.

2) Range query: DAST first divides the range of the query
into a union of segments that the AST contains, and then re-
trieves all segmentIds with associated data items from the
DHT. The dividing algorithm is shown in Algorithm II. Since

Algorithm I
The pseudo code of

the AST construction algorithm
// Parameters:
// ASTNode: the class of AST nodes.
// sf, st: bounds of the interval for the segment on the node.
// level: the tree level of the node
//ASTNode.children[]: an AST node’s children.
//M: the maximum number of children; a global value.
//C: the number of children of a node

ASTNode(sf, st, level)
 C ← 0
 children ← new ASTNode[M]
 if sf ≠ st then
 from ← sf
 length ← (st - sf) / M
 to ← from + length
 while true do
 children[C] ← new ASTNode(from, to, level+1)
 C ← C + 1
 if to = st then
 break
 else
 from ← to + 1
 if st > from + length then
 to ← st
 else
 to ← from + length

the AST ensures leaf nodes have atom segments, the union of
the segments is guaranteed to be found for the range. There
may exist alternative ways to divide the range; however, our
algorithm is dedicated to building a union containing a mini-
mum number of segments, i.e., the intervals of the segments
should be as wide as possible, so as to reduce the number of
DHT retrievals.

3) Single key query: DAST performs single key queries by
simply retrieving the corresponding atom segment from the
DHT.

C. The value of M
The value M controls the maximum number of children an

AST node can have. The key advantage that AST has over
TST is that it provides more flexibility for clients to improve
the performance of a range query. As previously described,
the height of an AST is log

logO()R
M and hence a greater value of

M leads to lower numbers of DHT insertions (improving per-
formance of the DAST insertion) and less duplications of data
items (reducing the DHT storage load). However, if M is too
large, the segment of one node will be split into more parts
and consequently the segments in the AST will be shorter.
Therefore, when fulfilling a range query, the average number
of segments in the union that covers the range will be greater.
In other words, DAST has to perform more DHT retrievals to
obtain the result. Due to this tradeoff, clients have to carefully
choose the value of M depending on their definition of the
key space and their expectations for the lengths of the ranges
that the queries may have. We investigate the impact of M on
the performance of DAST in section IV.

D. Accuracy of Result for a range query
We consider the Accuracy of Result (AoR) for a range

query in DAST. This investigation is motivated by the fact
that when using PHT we found that the responses of range
queries may contain unnecessary data items, since one prefix
tree node stands for a prefix of keys and consequently keys
that do not belong to the same range may fall into one prefix
node. This causes higher latency to the query responses and
cannot be rectified because PHT does not modify the DHT
layer and so cannot filter the query results before feeding
them back to the clients. By default, DAST always returns

the query results to clients with 100% accuracy, i.e., the re-
sponses of the query do not contain any unwanted data items.
However, we found that if we relax the segment union for the
query (to be larger than the range of the query), i.e., the span
of the union covers the range but has extra intervals on either
end or both ends, the number of segments in the union may be
reduced. Consequently, a number of unnecessary data items
will exist in the results, however, the number of DHT retriev-
als needed for range queries will also drop. An exemplar
range query [6, 13] is illustrated in Fig. 1. DAST builds a
union {(6, 6), (7, 8), (9, 9), (10, 11), (12, 13)} for the query [6,
13] by default and has to perform five DHT retrievals for the

Algorithm II
The pseudo code of the dividing algorithm

for the range of the query
// Parameters:
// rf, rt: bounds of the interval of query range
// cdt: the candidate segment for the union of range seg-

ments.
// newCdt: new candidate segment.
// cdtClt: the collection of candidates (cdt).
// cf, ct: bounds of the interval for the candidate segment.
// nf, nt: bounds of the interval for the current AST node.
//nri: number of redundant data items allowed in query re-

sults.
// results: the union of segments that match the range.

divideRange(rf, rt, AoR)
 cdtClt.add(interval(rf, rt))
 for each level on the tree do
 for each AST node on the level do
 if candidates is empty then
 return results
 else
 for each cdt in cdtClt do
 nri ← (cdt.to ← cdt.from) × (1-AoR)
 newCdt ← interval(cdt.from-nri, cdt.to + nri)
 if newCdt covers the current node then
 results.add(the segment of current node)
 if cf < nf then
 cdtClt.add(interval(cf, nf-1))
 if ct>nt then
 cdtClt.add(interval(nt+1, ct))
 cdtClt.remove(cdt)
 break
 return results

[0, 16]

[15, 16][10, 14][5, 9][0, 4]

[0, 1] [2, 3] [4, 4] [5, 6] [7, 8] [9, 9] [10, 11] [12,13] [14, 14] [15, 15] [16, 16]

[0, 0] [1, 1] [2, 2] [3, 3] [5, 5] [6, 6] [7, 7] [8, 8] [10, 10] [11, 11] [12, 12] [13, 13]

Figure 1: An example AST with the segment tree range [0, 16] and M = 4. We choose the segment tree range such
hat each node can have an arbitrary number of children and the segments are uniformly split in each level while main-
taining appropriate span length. An exemplar query for range [6, 13] is also illustrated here. The query union can be
{[6, 6], [7, 8], [9, 9], [10, 11], [12, 13]} with AoR 100% or be {[5, 9], [10, 14]} with AoR 71.4%.

result. If we relax the union construction to be {(5, 9), (10,
14)}, the result may contain only two extra items (5 and 14)
but the number of retrievals drops down from five to two,
which is 2.5 times lower than before.

Achieving a range query in DAST usually requires a num-
ber of DHT retrievals and these DHT retrievals are executed
in parallel which significantly reduces the response latency.
However, if clients submit range query requests to DAST
simultaneously with high frequency, DAST has to in turn
submit the retrieval operations for those range queries to the
underlying DHT in parallel and the DHT may suffer high
overheads in a short period of time (PHT also considers the
overhead for a DHT when choosing a binary search or paral-
lel search for a lookup, although there is no detailed analysis
in the associated paper). To help the DAST clients reduce the
overhead imposed on the DHT, we present the concept of the
accuracy of result (AoR) for a range query. We will show that
by adjusting the value of AoR, the number of DHT retrievals
for range queries can be much reduced and the overhead on
DHT can therefore be lowered. The AoR is defined as the
number of necessary data items divided by the total number
of data items in the result of a query. In the example above,
the value of AoR is 5

5 2
71.4%

+
= after tolerating unnecessary

items in the result. The implementation of AoR is demon-
strated in Algorithm II.

The AoR in a DAST range query is 100% by default since
DAST builds a segment union that can precisely match the
range of the query and the resulting response consists of only
necessary data items. Clients can choose the desired AoR
value to be less than 100% to suite their application environ-
ments. Note that the desired AoR acts as a threshold in DAST,
i.e., the actual AoR of range query may not precisely equal the
desired one but it is guaranteed not to be lower. This is be-
cause we assume every key in the key space as having a data
item in Algorithm II, and calculate the AoR by the number of
key slots not the number of actual items. In real range query
cases, since some key slots may be empty, the actual AoR
must be equal to or greater than the desired one. We demon-
strate the relationship between AoR and the number of DHT
retrievals in section IV.

E. Load Balancing
Approaches based on segment trees have potential prob-

lems on load balancing. There are fewer nodes at the higher
tree levels; however, these nodes are responsible for more
data items, as each data item has to be inserted into every tree
level. The extreme case occurs at the root node. Since the root
node has the entire key space, it will have to maintain a copy
of every data item. The actual DHT node thus experiences a
heavy storage load.

DST [5] employs a load balancing mechanism, called
downward load stripping. Each node maintains two counters
for its children, the left one and the right one. If, when a key
is inserted into a node, it can also be covered by one of its
children, the corresponding counter is increased by one.
When either counter reaches a threshold, the node stops re-
ceiving keys. What this mechanism actually does is to limit

the high level nodes from having more data items than the
threshold. However, it brings to the implementation the prob-
lem of how do clients locate the values of two counters for
each DST node in such a distributed environment? The obvi-
ous solution is to put the counters into the underlying DHT as
data items and let clients access them through specified keys.
However, this solution will occupy extra DHT storage and the
insertions or retrievals of the counters themselves take time.
Consequently, concurrency or synchronisation problem may
occur, e.g., one node may not stop receiving data items when
it should, because the counters are not updated on time.

Load balancing is nontrivial in DHTs [16] and cannot be
perfect since even if the keys are uniformly distributed onto
the DHT nodes, some nodes will be responsible for a loga-
rithmic factor more of the key space than others [3]. In other
words, some nodes in the DHT will assume much higher stor-
age and routing load than others. Due to inheritance, PHT,
DST and DAST also suffer from the same problem. Even
though data items are inserted at leaf nodes in PHT and it is
easier to distribute leaf nodes uniformly unto DHT nodes,
some data items within a certain range may still gain high
popularity and become responsible nodes and hence will have
uncharacteristically heavy load; this is also true for the DST.

Therefore, we propose to reduce the effects of load in
DAST but not to perfectly eliminate it. We ignore the nodes
in the levels N - 1 and above in the AST and start to insert
data items at level N. The value of N depends on how large
the entire segment tree range is and how many nodes there are
in the underlying DHT. We encourage applications or clients
to carry out experiments to test their values of N before de-
ployment. Our evaluation in Section IV provides suggestions
as to how to choose a good value for N.

F. Tree Maintenance and Fault Tolerance
As previously described, DAST is a data-structure layer be-

tween the peer-to-peer overlay and the DHT infrastructure.
When a peer carries out range query operations, it passes the
command to DAST and its associated algorithms, and subse-
quently obtains the results from the DAST layer. Thus, the
DAST data structure exists only within the application func-
tions with which peers carry out range query operations; it
does not influence the peer-to-peer overlay structure or the
DHT infrastructure. Moreover, algorithms I and II show that
the DAST structure will remain constant as long as the range
of the key space does not change. Thus, DAST does not re-
quire additional maintenance which significantly simplifies
the supported applications.

Since DAST is built upon a DHT service layer, it inherits
all the resilience and failure recovery properties of the under-
lying DHT. Although the DHT has methods to guarantee a
certain level of data availability and fault tolerance [7], the
DAST can still lose data if all replicas in the DHT fail. To
avoid this catastrophic failure, DAST employs a soft state
refreshing mechanism. Each data item that is inserted to the
DHT through the DAST layer has a time-to-live (TTL) asso-
ciated. Peers have to regularly update the data items against a
TTL of seconds, otherwise, the data items are automatically
deleted from the DHT. Hence, even if all replicas for a data

item in the DHT are lost, the item will eventually be restored
by the supporting refresh mechanism.

IV. EVALUATION

In this section, we evaluate the performance of DAST. First
we investigate the internal structural properties of DAST. We
then compare the range query operations of DAST, DST and
PHT. Finally we compare their range query efficiencies in an
OpenDHT deployment.

A. Implementation
We implement two versions of DAST, the first as a simula-

tion and the second as a full-scale deployment. In both ver-
sions, the source codes for the mechanisms of DAST are ex-
actly the same. The only difference is that the simulation ver-
sion of DAST utilises a Java Hashtable object to simulate the
underlying DHT, while the deployed version is layered on top
of OpenDHT.

To shorten the time to conduct the experiments, we use the
simulation version to investigate the structural properties of
DAST and compare the range query operations of DAST,
DST and PHT. For comparisons of the real range query effi-

ciencies, we use our deployed version of DAST that accesses
OpenDHT service on the Internet.

B. Setup
In the simulations, we assumed the segment tree range to

be [0, 216-1] and generated 214 keys for insertions. The keys
are uniformly distributed over the segment tree range space.
The values associated with the keys are empty, i.e., the sizes
of the values are zero. This is because the sizes of the data
items do not affect the investigation of the internal mecha-
nisms of DAST, DST or PHT - such a configuration also im-
proves the simulation efficiency. We also randomly generate
five sets of range queries, each of which has 1000 queries
with span lengths of 512, 1024, 2048, 4096 and 8192, respec-
tively.

In the deployment, the segment tree range remains the
same but we generate only 210 random keys. We chose a rela-
tively small number of insertions because 210 insertions are
enough to demonstrate the insertion efficiency of all three
approaches. Every key has 1KB of data associated with the
value (the maximum size of a value in OpenDHT is 1KB). All
the experiments were prototyped on a single PC to guarantee
the correctness of the comparison of results. The range query

0 2 4 6 8 10 12 14 16 18

0

5

10

15

20

25

30

35

A
ve

ra
ge

 n
um

be
r o

f D
H

T
in

se
rti

on
s

Maximum number of childre for each node (M)

 DAST implementation

512 1024 2048 4096 8192

10

20

30

40

50

60

A
ve

ra
ge

 n
um

be
r o

f D
H

T
re

tri
ev

al
s

Span of query range

 M = 2
 M = 4
 M = 8
 M = 16
 M = 32

(a) The average number of DHT insertions for one DAST in-

sertion

(b) The average numbers of DHT retrievals for one DAST
range query

Figure 2: Plots of DHT operations for different values of M (Maximum number of children): (a) the plot of the average number
of DHT insertions for one DAST insert request; (b) the plot of the average number of DHT retrievals for one DAST range query
request

3 4 5 6 7 8

1

2

3

4

5

6

Av
er

ag
e

nu
m

be
r o

f D
H

T
in

se
rti

on
s

The tree level to start insertions (N)

 DAST implementation

512 1024 2048 4096 8192
10

20

30

40

50

60

A
ve

ra
ge

 n
um

be
r o

f D
H

T
re

tri
ev

al
s

Span of query range

 N = 1
 N = 2
 N = 3
 N = 4
 N = 5
 N = 6

(a) The average number of DHT insertions for one DAST in-

sertion

(b) The average numbers of DHT retrievals for one DAST
range query

Figure 3: Plots of DHT operations for different values of N (the level number that DAST starts to insert data items): (a) the plot
of the average number of DHT insertions for one DAST insert request; (b) the plot of the average number of DHT retrievals for one
DAST range query request

setup is similar to that in the simulation except that each
query set consists of 100 queries.

Each of the simulation experiments were conducted 100
times and the experiments on the OpenDHT deployment were
repeated 30 times.

C. Structural Properties of DAST
We study the number of children allowed in AST, the load

balancing mechanism and the performance impacts from dif-
ferent values of AoR. Clients can choose their own settings to
suit the demands or adapt to the different computing envi-
ronments.

Maximum number of children (the value of M): As de-
scribed in section III, the value of M controls both the number
of DHT insertions and the number of DHT retrievals for
range queries. Recall that the height of AST is log

logO()R
M , if M

is too large, AST may have only a very small number of lev-
els (the extreme case is that the whole AST has only the root
node when M = R). Thus to maintain the AST we choose the
candidate M to be 2, 4, 8, 16 and 32. For each of the DAST
examples with those M candidates, we insert the preloaded
keys (for now we do not consider the load balancing problem
and AoR) and plot the average number of DHT insertions in-
volved. As depicted in Fig. 2(a), the number of DHT in-
sertions drops sharply when M increases from 2 to 4 and this
trend slows as M increases. When M reaches 16, the number
of DHT insertions remains constant. To see how the value of
M affects the range query, we send the five sets of predefined
range queries to DAST and plot the results in Fig. 2(b). We
can see that the higher the value of M leads to a larger number
of DHT retrievals. The distance between the curves for M = 8
and M = 16 is large, indicating a sudden increase of DHT
retrievals. Comparing Fig. 2(a) and (b), we thus suggest that
M = 4is the optimal in our experiments.

Load balancing (the value of N): Our load balancing
mechanism is simply that we start to insert data items from
tree level N (if the root node is on level 1). The top N levels
therefore contain no items. Using the result of M = 4 from the
previous experiments, and testing N values from 1 to 6, the
insertion and query range results are plotted in Fig. 3(a) and
3(b) respectively. The number of DHT insertions is reduced
by one if N increases by one, which is apparent in Fig. 3(a). In

Fig. 3(b), it is not easy to see the plots where N = 1, 2, 3 be-
cause they are overridden by N = 4, which implies the results
for these three values of N are similar. When N = 5, the num-
ber of DHT retrievals starts to rise as the nodes on levels 1 to
4 do not have data items and cannot contribute to the range
query. The increment is more pronounced when the value of
N reaches 6. The results in Fig. 3(b) narrow our choice of N
down to 4 or 5. We do not consider 3N ≤ because N = 4
gives better load balancing while providing a similar number
of DHT retrievals. We present the detailed experimental re-
sults for N = 4 and N = 5 in Table I to illustrate choosing the
optimal N. As we can see, the differences between the num-
bers of DHT retrievals of the two cases become larger when
the span of the query increases. However, we should also note
that the number of nodes on tree level 5 is 256, which is four
times more than that on level 4. Considering that lowering
AoR in DAST can further reduce the number of DHT retriev-
als, we thus chose 5 as the optimal value for N. This conclu-
sion is validated in the next experiments considering AoR.

512 1024 2048 4096 8192
2

4

6

8

10

12

14

16

18

20

22

24

A
ve

ra
ng

e
nu

m
be

r o
f D

H
T

re
tri

ev
al

s

Span of query range

 AoR = 100% AoR = 95%
 AoR = 90% AoR = 85%
 AoR = 80% AoR = 75%
 AoR = 70%

512 1024 2048 4096 8192
0

20

40

60

80

100

120

A
ve

ra
ng

e
nu

m
be

r o
f D

H
T

re
tri

ev
al

s

Span of query range

 DAST with AoR = 100%
 DAST with AoR = 95%
 DAST with AoR = 70%
 DST
 PHT

Figure 4: Plot of the average number of DHT retrievals for one DAST

range query request with different values of AoR (the accuracy of result).
 Figure 5: Comparison of DAST (with different AoR) against DST

and PHT on average number of DHT retrievals for one range query.

512 1024 2048 4096 8192

6

8

10

12

14

16

18

20

22

A
ve

ra
ge

 ra
ng

e
qu

er
y

la
te

nc
y

(s
ec

)

Span of query range

 DAST with AoR = 100%
 DAST with AoR = 95%
 DAST with AoR = 70%
 DST
 PHT

Figure 6: Comparison of DAST (with different AoR) against DST
and PHT on query latency.

Table I
The experimental results for N = 4 and N = 5

Query span N # of nodes 512 1024 2048 4096 8192
4 64 12.8 13.7 14.4 15.35 16.7
5 256 12.8 13.7 15.4 18.4 23.3

Note, N = 5 is not universally optimal and clients should test
for their own value of N.

The accuracy of the result for range query (AoR): To
provide an analysis from the point of view of the AoR, we
queried DAST for the same range sets seven times and each
time we tested a different value of AoR. The value set of AoR
are shown in Fig. 4. We do not present the results when AoR
< 70% because these plots are masked by the plot for AoR =
70%, which means the value of AoR stops affecting DAST
when it is below 70%. As we can see in Fig. 4, the number of
DHT retrievals needed for the range query drops along with
the reduction of AoR. We confirm the precise percentile of the
drop (compared to that when AoR = 100%) with the corre-
sponding value of AoR in table II. Through comparisons, we
can see that if we reduce the value of AoR by even 5%, the
number of DHT retrievals drops significantly (by 21.62%). If
we allow 30% of the result to be unnecessary (AoR = 70%),
the number of retrievals drops further to 57.43%.

Clients should be aware that lowering the value of AoR can
also affect the response latency of the query depending on the
sizes of the data items. If the size of the data item is small in
the client application and the frequency of the range query
request is high, having AoR of 70% can result in an approxi-
mate 50% lower overhead to the underlying DHT and may
not negatively affect the response latency. Even if the size of
the data items is large and the frequency of the request is high,
allowing AoR to be 95% is worth considering since it still
results in over 20% lower overhead to the DHT. A detailed

analysis of the tradeoffs among the data size, overhead and
AoR is required; this is precluded in this study as the imple-
mentation and evaluation of DAST is done entirely on a third
party DHT layer. The results here provide suggestions rather
than quantitative conclusions for reducing the potential DHT
overhead through adjusting AoR in DAST.
D. Range query operations in DAST, DST and PHT

We compare the number of DHT operations (insertions and
retrievals) that are needed for range queries in DAST, DST
and PHT. The parameter settings M = 4 and N = 5 are se-
lected for DAST and a block size of 60 is chosen for DST and
PHT, which means that on each of the DST and PHT nodes
they can have at most 60 data items stored (these settings rep-
licate those found in related literature [5]). We insert the same
set of data items to DAST, DST and PHT, and execute range
queries using the same query sets in each of the three ap-
proaches. In DAST however, we also conduct range query
experiments for three different values (100%, 95%, and 70%)
of AoR; these results can be found in Fig. 5.

For an insertion request of one data item, PHT always re-
quires only one DHT insertion, however, it requires a number
of DHT retrievals for the lookup of the leaf node. For PHT,
we hence add the number of DHT retrievals for the lookup to
the one DHT insertion and treat the sum as the number of
DHT operations needed for one data item insert request. The
simulation results indicate that the average numbers of DHT
operations for one data item insert request are 5, 13, and 8,
respectively for DAST, DST and PHT. DST requires on aver-
age 13 DHT insertions for one data item insert request and
duplicates the data item 13 times in the DHT storage. DAST
requires less than half the DHT insertions and one data item
requires only 5 copies in DHT, which significantly reduces
the storage load in DHT. PHT on the other hand needs only
one DHT insertion and requires only one copy of a data item.
However, it requires on average 7 DHT retrievals, which im-
poses a higher operational overhead than DAST. To conclude,
DAST is demonstrably superior to DST for insert requests
and trades extra storage for insertion performance when com-
pared to PHT.

Fig. 5 depicts the simulation results for the range queries.
For one range query, PHT performs many more DHT retriev-
als than DAST and DST, which represents potentially high
DHT overheads. When DAST is configured with AoR set to
100% it requires more DHT operations than DST. This is
because each DST node has fewer children and the splitting
of segments is slower than in DAST; DST therefore has
longer segment spans, leading to fewer query unions of seg-
ments and fewer DHT retrievals. Nevertheless, when the AoR
of DAST is set to 95%, DAST achieves approximately the
same number of DHT retrievals as DST. When AoR is con-
figured to 70%, DAST surpasses DST.

PHT does not always achieve 100% AoR in the results of
the range queries. We calculate the AoR and the average
number of DHT retrievals for PHT and DAST responses, and
present the results in Table III. Through comparing the values
of AoR in PHT and DAST together with the average number

Table II
The experimental results for AoR

AoR Average # of
retrievals

Dropping per-
centiles for AoR

Dropping percentiles
for # of retrievals

100% 16.84 N/A N/A
95% 13.26 5% 21.62%
90% 11.54 10% 31.78%
85% 9.76 15% 43.19%
80% 8.32 20% 51.94%
75% 7.72 25% 55.98%
70% 7.5 30% 57.43%

Table III

The comparison of AoR between PHT and DAST

PHT DAST
AoR 79% 86% 92% 96% 98% 70% 95% 100%

of
DHT

retrievals

10.7 17.9 32.3 58.6 111.9 7.5 12.0 16.5

Table IV

The experimental results for the average latencies of insert and range

query in DAST, DST and PHT

DAST (M = 4, N = 5) AoR =100% AoR=95% AoR=70% DST PHT

Insert (sec) 4.5 6.7 9.6

Query (sec) 7.9 8.37 9.606 8.32 15.88

of DHT retrievals, we can see that DAST performs fewer
retrievals while maintaining higher AoR.

E. Comparison of the latencies for insertions and range queries in
DAST, DST and PHT

In this experiment, we deploy our DAST implementation
on OpenDHT together with DST and PHT. We insert the pre-
loaded data items into OpenDHT through DAST, DST and
PHT, respectively. The latency of every insertion is recorded
and the average of these values is presented in Table IV. The
results clearly indicate one DAST insertion takes on average
only 67% of the time that DST insertion requires. The advan-
tage of DAST over PHT is more pronounced in that PHT in-
sertions take twice as long as DAST insertions.

For the range query experiment, we deploy three versions
of DAST, each of which is configured with AoR as 100%,
95% and 70%, respectively. With different values of AoR, we
investigate the impact of AoR on the query latency. These
results are presented in Fig. 6; the average latencies of the
range queries can be found in Table IV. We can see that the
average latency in DAST with AoR as 100% is very close to
the one in DST. When AoR is reduced, the latency grows due
to extra unwanted items in the results. PHT requires more
time for range queries because it needs several sequential
steps to lookup the leaf key, and the response contains unnec-
essary items. DAST does not have sequential operations and
thus performs better.

V. CONCLUSIONS

In this paper, we proposed a Distributed Arbitrary Segment
Tree (DAST), a structure built on top of public DHT services
to achieve enhanced range query functionality for clients.
DAST incorporates the Arbitrary Segment Tree (AST), yet is
designed so that the query union contains a smaller number of
segments leading to fewer DHT operations and a lower over-
head. In addition, the duplications of data items are signifi-
cantly reduced in DAST as compared with DST. Moreover
DAST introduces the concept of AoR (Accuracy of Result).
By adjusting the value of AoR, we demonstrate that DAST
can further reduce the number of DHT operations and there-
fore further reduce the overhead.

An advantage of this scheme is that DAST does not modify
the underlying DHT and instead acts as a middle layer be-
tween DHT and the applications that require range query
functionality. The approach is also designed to provide DAST
users with the flexibility to modify DAST to their application
environments for best range query efficiency. Furthermore,
the DAST structure is deterministic once the range of the key
space is decided. This is significant in terms of lack of main-
tenance, which itself simplifies and reduces the overhead to
the supported client applications.

Validations are undertaken through both simulation and ex-
tensive real-world experimentation and the results demon-
strate the effectiveness of DAST across a range of metrics.

ACKNOWLEDGEMENTS
This work is funded in part by the UK Engineering and

Physical Sciences Research Council (EPSRC) contract num-
ber EP/F000936/1.

REFERENCES

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A
Scalable Content-Addressable Network," presented at ACM SIGCOMM,
2001.

[2] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems," presented at 18th
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware 2001), Nov. 2001.

[3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
"Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions," presented at ACM SIGCOMM, 2001.

[4] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz, "Tapestry: A Resilient Global-scale Overlay for Service
Deployment " IEEE Journal on Selected Areas in Communications, 2003.

[5] C. Zheng, G. Shen, S. Li, and S. Shenker, "Distributed Segment Tree:
Support of Range Query and Cover Query over DHT," presented at
IPTPS, California, USA, 2006.

[6] M. d. Berg, M. v. Kreveld, M. Overmars, and O. Schwarzkopf, Compu-
tational Geometry: Algorithms and Applications, 2nd ed: Springer-
Verlag, 2000.

[7] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu, "OpenDHT: A Public DHT Service and Its Uses,"
presented at ACM SIGCOMM, 2005.

[8] V. Papadimos, D. Maier, and K. Tufte, "Distributed Query Processing
and Catalogs for Peer-to-Peer Systems," in The Conference on Innova-
tive Data Systems Research Asilomar, CA, USA, 2003.

[9] M. Abdallah and H. C. Le, "Scalable Range Query Processing for Large-
Scale Distributed Database Applications " presented at Parallel and Dis-
tributed Computing Systems, Phoenix, AZ, USA, 2005.

[10] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, "Design and
Implementation Tradeoffs for Wide-Area Resource Discovery " pre-
sented at HPDC, 2005.

[11] A. R. Bharambe, M. Agrawal, and S. Seshan, "Mercury: Supporting
Scalable Multi-Attribute Range Queries," presented at ACM SIGCOMM,
2004.

[12] J. Aspnes and G. Shah, "Skip Graphs," presented at ACM - SIAM Sym-
posium on Discrete Algorithms (SODA), 2003.

[13] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman,
"SkipNet: A Scalable Overlay Network with Practical Locality Proper-
ties," presented at Fourth USENIX Symposium on Internet Technologies
and Systems, 2003.

[14] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I.
Stoica, "Querying the Internet with PIER," presented at 19th Interna-
tional Conference on Very Large Databases (VLDB), 2003.

[15] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker,
and J. Hellerstein, "A Case Study in Building Layered DHT Applica-
tions," presented at ACM SIGCOMM, 2005.

[16] S. C. Rhea, "OpenDHT: A public DHT service," in Computer Science,
vol. PhD. Berkeley: University of California, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

