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Abstract— The demand for non-invasive vehicle counting and
classifying devices has grown significantly in past decades due
to contributing factors from occupational health and safety
standards developed by state road authorities. In this paper, we
present an automated vehicle classification system based upon
the laser sensor technology. The system is capable of classifying
vehicles in multi-lane, high speed environments, and requires
no apparatus be placed on the carriageway. As opposed to
the conventional Fourier-based filtering method, this paper also
proposes a novel wavelet-based noise reduction technique to
enhance performance.

I. INTRODUCTION

Contemporary traffic engineers have long relied upon traffic
surveys for collection of data. Most traffic control and design
problems demand a fairly detailed knowledge of the operating
characteristics of the traffic concerned, e.g., traffic counts and
classifications, speed surveys, vehicle dimensions, etc. [1], [2].

Extensive research in automated traffic surveys, produced
by sensors either embedded in or above the road surface,
have been conducted over past decades. Counting and clas-
sification systems developed from a wide variety of methods
include pneumatic tubes, inductive loops, infrared traffic log-
ger (TIRTL), radar, ultra sonic, video, etc. These counting
systems can be generally classified into two distinct groups,
namely, invasive and non-invasive systems. Invasive systems
refer to the ones where sensors are installed within or upon
the carriageway, whereas for non-invasive systems sensors
are installed above or adjacent to the carriageway with no
disruption to traffic flow [3].

The demand for non-invasive counting and classifying de-
vices has grown significantly in past decades due to con-
tributing factors from occupational health and safety standards
developed by state road authorities. There is significant risk
associated with departmental personnel working in proximity
to high traffic volume environments.

In the paper, we discuss the development of a non-invasive
automated vehicle classification (AVC) system based upon
the laser sensor technology. The AVC system is capable of
classifying vehicles in multi-lane, high speed environments,
and uses an advanced wavelet-based noise reduction technique
to enhanced performance. The remainder of the paper is
organised as follows. Section II introduces the Austroads
classification standard. Section III is dedicated to the universal
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laser sensor. Fourier and wavelet based signal noise reduction
techniques are discussed in Section IV. The vehicle classi-
fication algorithm and experimental results are presented in
Sections V and VI, respectively. Finally, concluding remarks
are given in Section VII.

II. AUSTROADS CLASSIFICATION STANDARD

An AVC system classifies vehicles into one of a number of
distinct groups. It is usually applied in the disaggregation of
traffic data, for example in the analysis and reporting of weigh-
in motion data or the determination of annual average daily
traffic (AADT). The current Austroads vehicle classification
system, comprising 12 classes, has served well in its current
form for the past five years [4].

The Austroads standard, updated in 1994 following Aus-
troads project RUM.3.D.8 [4], is summarized in Table I. The
standard determines the classes of vehicles based upon three
levels, namely, length, axles and axle groups, and vehicle type.

TABLE 1
AUSTROADS VEHICLE CLASSIFICATION SYSTEM SUMMARY

Class Description
1 Short vehicle
2 Short vehicle towing
3 Two axle truck or bus
4 Three axle truck or bus
5 Four axle truck
6 Three axle articulated
7 Four axle articulated
8 Five axle articulated
9 Six axle articulated
10 B-double
11 Double road train
12 Triple road train

A. Evaluation of existing sensor detector methods

We evaluate two typical sensor detector methods for design-
ing AVC systems in this section. The first method called the
pneumatic road sensor is currently the most common system
used in Australia for counting and classifying vehicles. The
sensor was invented in the 1920s as the first intrusive traffic
detector technology. Due to its simplicity and low cost, the



pneumatic road sensor is still widely in use today. Although
the accuracy of the sensor is high, the pneumatic sensor system
requires that technicians enter the carriageway to secure the
sensors to the carriageway, exposing the workers to inherent
dangers in high volume traffic environments.

The second method termed the infrared traffic logger
(TIRTL) is a portable, light based vehicle counter, classifier
and speed measurement device that measures vehicle axle
breaks. The system consists of a pair of infra-red (IR) beam
transmitter and receiver located on opposite sides of the
carriageway. The system uses the order of timing of IR beams
to determine the location and speed of passing vehicles. The
TIRTL requires a receiver unit on the opposite side of the
carriageway, so the installer may be exposed to road dangers.

B. Laser Sensor Detector

Due to the deficiencies of the two popular sensor detectors
discussed in the preceding section, the laser sensor technology
has been identified as the method for our AVS system. The
laser sensing technology has the advantage of accuracy, and
requires no human intervention for devise deployment and data
collection. The laser sensor product we choose is the Univer-
sal Laser Sensor (ULS), manufactured by Laser Technology
Incorporated [5].

ITI. UNIVERSAL LASER SENSOR

The ULS is a user-configurable distance measuring device.
The ULS rangefinder sends a single laser pulse, typically
8ns in duration, to a target. The reflection from the target
is then received by the sensor. It measures the time it takes
for the pulse to return to the rangefinder. Since the speed of
light is relatively constant across a large range of atmospheric
conditions, the distance to the target can be calculated reliably.

The ULS allows adjustment of settings to optimize mea-
surement performance depending upon the application. The
device allows setting of the laser pulse firing rate frequency
(PRF) ranging from 10 to 5000 Hz. To determine a distance to
a target, the device averages the distance over a user defined
number of pulses, which is termed pulses per measurement
(PPM). This is because one individual pulse would not provide
a very accurate measurement, since its travel time is too short
(in the order of 10~'2 seconds).

The measurement output data rate can be established as

PPM
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In our AVC system, we choose PRF = 4000, and PPM = 16.
Therefore, the resulting measurement date rate R, = 0.004s,
implying a single measurement every 0.004 seconds or equiv-
alently a measurement frequency of 250 Hz.

To achieve a higher output data rate, one can either decrease
the PPM, or increase the PRF. Considering the case of a
semi-trailer as shown in Fig. 1, where the grouped axles are
considerably closer than in a passenger vehicle, there must
exist sufficient laser pulses between axle detections in order
to be able to distinguish between axles.
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Fig. 1. ULS sampling of a typical semi-trailer axle group.

There is a trade-off between having a faster measurement
rate with lower accuracy and a slower measurement rate with
higher accuracy. For practical purposes, the measurement rate
should be as low as acceptably possible.

In the proposed AVC system, two laser sensors were placed
adjacent to the carriageway, approximately one metre apart. In
order to be able to detect only axles, the laser must be low
enough to the road surface so as to detect the wheels of the
vehicle, but not the underside of the vehicle.

IV. SIGNAL NOISE REDUCTION TECHNIQUES

As mentioned in Section III, the AVC systems under
consideration has a designed measurement frequency of 250
Hz. According to Nyquist Theorem [6], the system is able
to reliably detect frequencies up to 125 Hz. Unfortunately,
there is a considerable amount of noise in the measurement
data due to the high PRF and low PPM parameters of the
ULS. Moreover, the sensor signal output from the ULS is
subject to severe additive white Gaussian noise (AWGN)
when deployed in busy motorways. Therefore, advanced noise
reduction techniques are imperative for developing the AVC
system. Both Fourier and wavelet analysis methods for noise
reduction are experimented and compared in this paper.

A. Fourier-based Noise Reduction Technique

Fourier analysis is widely utilised to remove noise in com-
munications systems. One can use low pass filters to extract
user information from noisy signals. The idea is to pass low
frequencies but attenuate frequencies higher than a set cut-off
frequency. Such a filter is normally specified in the frequency
domain but designed in the time domain [6].

The Fourier-based noise reduction techniques is very effec-
tive if the noise presented in the laser sensor output is not time-
varying. However, this is not always true as we observed from
our field experiments. The major challenge of removing time-
varying noise using low pass filters lies in the inherent problem
of Fourier transform lacking adequate time resolution. This
leads us to consider the application of advanced wavelet-based
denoising techniques as discussed in the following section.



B. Wavelet Denoising Technique

It is observed that the laser sensor output may be corrupted
by non-stationary noise resulted from time-varying traffic in
motorways. Due to poor time resolution of Fourier transform,
wavelet analysis is more suitable for removing such noise.

Unlike the conventional Fourier transform, whose Dbasis
functions are sinusoids, wavelet transforms are based on small
waves, termed wavelets, of varying frequency and limited du-
ration. This enables wavelet transform to reveal both frequency
and temporal information of the signal being analysed.

A wavelet transform maps a time function into a two-
dimensional function of a and ¢ [7]. The two parameters, a and
t, represent scale and translation respectively. The continuous
wavelet transform (CWT) is mathematically defined as [8]

Wy (a,t) = % /s(tw (t;T) dt, )

where () is the mother wavelet. Conversely, if the mother
wavelet ¢ (t) is invertible, the inverse transform can be defined
as

1 & 1 — 1
s(t) = Cw/— Ww(a,t)%?ﬂ (ta7-> a—Qda dt, (3

where a is a positive number, and Cy;, is a constant.

For discrete signals, however, one can not directly apply (2)
due to the fact that the calculation of this transform requires an
infinite amount of data. Mallat proposed an efficient method
to implement the discrete version of the wavelet transform [9].
The Mallat algorithm is graphically illustrated in Fig. 2
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Fig. 2. Mallat wavelet decomposition.

As can be seen from Fig. 2, the input signal is convolved
with both a high pass and a low pass filter, producing two
arrays of coefficients twice the size of the original signal.
Downsampling is performed upon each array of coefficients,
keeping only the even numbered coefficients. The signal is
now separated into two discrete frequency bands. CA repre-
sents the approximation coefficients, i.e., the lower frequency
coefficients, whereas CD represents the detail coefficients, i.e.,
the higher frequency coefficients.

The strength of wavelet transform representations is that
signals that have similar features to the wavelet function at any
scale may be well represented by only a few of the wavelet
basis functions. As different families of wavelets have different
properties, the choice of the mother wavelet must be carefully
considered.
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Fig. 3. Haar and Daubechies wavelet functions.

Figs. 3(a) and 3(b) illustrate two popular wavelet functions,
i.e., Haar wavelet and Daubechies wavelet. The Haar wavelet
function resembles the ideal noise-free laser sensor signal,
which has very sharp edges indicting the transition from no
axle present to an axle present. As a result, we choose the
Haar wavelet function as the mother wavelet for our wavelet
denoising scheme.

Wavelet denoising of a signal involves computing the dis-
crete wavelet transform of the signal and then decreasing
or discarding the smallest wavelet coefficients. The inverse
transform of these coefficients will then be a filtered version
of the signal. More specially, wavelet denoising can be ordered
into three steps. First, decompose the signal to a level of IV
using the selected mother wavelet. Second, detail coefficients
thresholding: for each level from 1 to IV, select a threshold and
apply thresholding to the detail coefficients. Third, reconstruct
the signal based upon the original approximation coefficients
of level NV and the modified detail coefficients of levels from
1 to N. The second step is the most critical one, which largely
determines the performance of the wavelet filter.

V. VEHICLE CLASSIFICATION ALGORITHM

In order to classify vehicles, a number of parameters are
required. These parameters are then used to determine the
vehicle and their appropriate classes. According to the Aus-
troads standard, the classifying system bases classification
upon combinations of four parameters, namely, number of
axles, number of axles groups, axle spacing of first and second
axles, and axle spacing of second and third axles if it exists.

There is a specific sequence of events that the classification
algorithm uses to successfully count and classify vehicles
detected by the AVC system. The events can be summarised
into the following ordered processes

1) Load the sensor output file containing the measured data;

2) Denoise data from both lasers using wavelets;

3) Calculate the position of each lane relative to the sen-
SOrs;

4) Separate vehicles into particular lane for analysis;

5) Select the first lane to classify;

6) Detect axles in the current lane;

7) Determine speed of the first axle in data;

8) Calculate axle spacings at axle speed;



9) Select axles, until axle spacing exceeds 10m as part of
current vehicle;
Determine the number of axles and axle groups in
current vehicle;

10)

11) Determine separation of first and second axles;

12) Determine separation of second and third axles if it
exists;

13) Continue determining individual vehicle data for partic-
ular lane;

14) Increment to the next lane;

15) Go back to Step 6) and repeat the classification process

until the last lane.

A couple of crucial techniques in the classification process
are explained in more detail in the following subsections.

A. Axle Detection

Edges characterise the boundaries of leading and trailing
edges of wheels of the vehicle, and are therefore a problem
of fundamental importance in processing the signal. Edge de-
tecting significantly reduces the amount of data and filters out
useless information, while preserving the important structural
properties of the signal.

Edge detection algorithms can be divided into two major
categories, i.e., methods using Gradient and Laplacian fil-
ters [0]. The Gradient filter uses the first derivative to find
changes in amplitude of the signal. Peaks in the Gradient fil-
tered signal indicate edges in the original signal. The Laplacian
filter uses the second derivative to find changes in the first
derivative. The Laplacian method can be used to find edges
in the original signal by finding the zeros crossings in the
Laplacian filtered signal.

A positive peak identified by the axle detection algorithm
indicates the leading edge of the wheel, and a negative peak
indicates the trailing edge. Typically, only the leading edges of
the wheels will be required, from which the distance between
axles can be calculated.

B. Axle Grouping

An axle is defined as part of a group if the distance to an
adjacent axle is less than 2.1 metres. The distance between
axles is found easily from the detection of the front edge of
the wheel. The time between the first positive peak produced
from the gradient filter on Laser 1 and the first positive peak
on Laser 2 is taken as the time the vehicle took to travel from
Laser 1 to Laser 2. Since the distance between the two lasers
is known to be one metre, the speed of the vehicle can be
easily calculated as v = d/t.

Once the speed of the vehicle is known, this distance
between consecutive axles can be found from edge detections
on one set of the laser data. The spacing between consecutive
axles is calculated by multiplying the time between edges by
the speed of the first axle. When the distance between axles
exceeds the Austroads standard of 10m for maximum axle
spacing, the remaining axles in the data are not considered to
be part of the current vehicle.

VI. EXPERIMENTAL RESULTS

In this section, we present our testing procedure and experi-
mental results for the AVC system we propose. We first present
the comparative results between Fourier-based and wavelet-
based noise reduction techniques.

Fig. 4 demonstrates the application of a low pass filter to
a real laser sensor output signal. The original noisy signal
is shown as the dotted line. As can be seen from Fig. 4,
ringing is produced before and after any axle event, further
complicating axle detection, whilst the noise is attenuated
well between axle events. The filtered signal peaks have been
attenuated substantially. While the original signal shows the
vehicle at approximately 1.5 metres from the sensor, after
filtering the signal, the vehicle ranges from four to five metres
from the sensor. This makes the lane identification unreliable,
and further discredits the use of a low pass filter in the system.
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Fig. 4. Denoising of real sensor output using a low pass filter.

Fig. 5 demonstrates the result of applying a wavelet filter to
a real laser sensor output signal. The data was denoised using
six levels of decomposition. As compared with the results in
Fig. 4, it is evident that the Haar wavelet denoising technique
offers much better noise reduction performance for this par-
ticular application, and is therefore chosen as the method for
denoising the measurement data in the classification algorithm.

To evaluate the performance of our AVC system, a field
testing procedure has been developed. The objective of the
testing procedure is to determine the accuracy at which the
developed system can detect axles and calculate the axle
separation of known vehicles.

Both single-lane and multi-lane scenarios are considered in
the testing procedure. Fig. 6 shows the layout for the multi-
lane scenario. For this configuration, field experiments were
conducted on Bridge Street in Toowoomba, Queensland, a
single direction, double lane uncontrolled environment, where
the existing speed limit was 60 km/hr. Video footage of the
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Fig. 5. Denoising of real sensor output using a wavelet filter.

passing vehicles was recorded so as to later compare the
vehicle types determined by the system with vehicle types
visually observed.
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Fig. 6. Multi-lane test procedure layout.

Table II shows the first 20 classified vehicles of a 57 vehicle
classification sample. 39 of the 57 vehicles in the classification
sample were classified successfully. Of the 39 vehicles that
classified successfully, the speed of each vehicle appears to
be marginally high.

For the misclassified vehicles, the visual inspection indi-
cated that nearly all misclassified vehicles were the larger
wheel base type vehicles such as four wheel drive utilities.
These vehicles tend to have wheel bases closer to the the limit
of 3.2 metres between class 1 and class 3 classification. The
incorrect determination of speed would cause the vehicle to
be determined to have a longer wheel base if the speed was
recorded too high. It should be noted that speed inaccuracy,
which is responsible for misclassification, is largely due to
the synchronisation problem between two laser sensors when
date is being reading out from them. It appears that the only
solution to this problem will be via the use of two designated
processors for reading out data from each of the sensors
simultaneously. Our future work will address this issue.

VII. CONCLUSIONS

In this paper, we discussed the development of an automated
vehicle classification system for the Austroads standard based
upon the laser sensor technology. A novel wavelet-based

TABLE I
AUSTROADS VEHICLE CLASSIFICATION SYSTEM TEST RESULTS

Vehicle System Visual Speed
Number Classification Classification (km/hr)
1 Class 1 Class 1 69.2
2 Class 1 Class 1 75.0
3 Class 1 Class 1 90.0
4 Class 1 Class 1 75.0
5 Class 3 Class 1 75.0
6 Class 1 Class 1 75.0
7 Class 1 Class 1 64.3
8 Class 3 Class 1 100.0
9 Class 3 Class 1 100.0
10 Class 1 Class 1 75.2
11 Class 3 Class 1 90.0
12 Class 3 Class 3 75.0
13 Class 1 Class 1 81.8
14 Class 3 Class 1 69.2
15 Class 1 Class 1 69.2
16 Class 1 Class 1 75.0
17 Class 3 Class 1 75.0
18 Class 3 Class 1 90.0
19 Class 3 Class 1 90.0
20 Class 9 Class 9 69.2

noise reduction technique was also proposed to enhance the
system performance. The concept of using laser sensors as a
replacement for pneumatic tubes, which are currently used for
vehicle classification in Australia, has been proved.

The system is truly non-invasive in the fact that it requires
only that the sensors be deployed on one side of the car-
riageway. There is no requirement for technicians to enter the
carriageway, and the system does not affect motorists. This
aspect of the system will have a positive impact on injuries
sustained by staff setting up traffic count sites. The future
development of this work will lead to commercially viable
AVC products.
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