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Abstract
In this paper we assume multi-antenna communication sys-
tems which are able to transmit and receive signal in a
same or very near frequency bounds. Our goal is to im-
prove the system performance by using weighting matri-
ces at transmitter and receiver. We propose and study a
cooperative algorithm in order to find the proper transmit
beamforming and receive combining matrices for increas-
ing the system performance without direct channel mea-
surement and additional computations for beamforming.

1. INTRODUCTION

Using multiple antennas at both transmitter and receiver
is an attractive method to combat the destructive effect of
channel fading and significantly increase the spectral effi-
ciency in wireless systems [1][2]. Multiple-input multiple-
output (MIMO) systems can provide a diversity gain in
proportion to the product of the number of transmit and re-
ceive antennas. One method for exploiting the significant
diversity gain and simplifying the detection in a MIMO
communication system is to use some proper set of trans-
mit beamforming vectors and some proper set of receive
combining vectors (through this manuscript they are called
the transmit beamforming matrix and receive combining
matrix, respectively) [2]. Such a transmit/receive scheme
can result in considerable improvement in signal to noise
ratio [3].

Gaining all of the advantages related to beamforming,
requires knowledge about the channel matrix or knowl-
edge of proper beamforming matrices at both transmitter
and receiver.

Channel training is an important way to extract the
channel information at the receiver side[4]. It is also pos-
sible that receiver inform the transmitter about channel for
proper beamforming with some sort of feedback through a
low bandwidth feedback channel [5][6].

We assume multi-antenna communication systems which
are able to both transmit and receive data. Our goal is to
improve the system performance by using weighting ma-
trices at both sides. Here, a cooperative scheme is pro-

posed to directly compute the beamforming matrix at trans-
mit and receive stations. Thus, it is possible to compute a
proper beamforming matrices at transmitter and receiver
without direct channel knowledge.

Throughout this paper E{.}, ‖.‖, (.)T , (.)∗, (.)H denote
the expected value, Frobenius norm, transpose, conjugate
and hermitian of matrix, respectively. Notation [A]ij shows
the element which lays in the ith row and jth column of
matrix A. Ik shows k-dimensional identity matrix. C

m×n

is used to show the set of m×n dimensional complex ma-
trices and C

m shows the set of m dimensional complex
vectors.

2. SYSTEM MODEL

We consider two transmit/receive systems where one is
equipped with MA antennas and the other has MB anten-
nas. Here, these two systems are called node A and node
B, respectively. Node A has the ability to transmit signal
at carrier frequency fA for B via channel matrix HAB and
to receive the transmit signal from B at carrier frequency
fB via channel matrix HBA and vice versa.

In a general case, HAB and HBA may differ from each
other, but in the case that fA and fB are the same (like
in a time division duplex system) or when these two fre-
quencies are close to each other, because of the reciprocity
principle, it is logical to assume that,

HAB = HT
BA

def
=H

We also assume that the channel is stationary during a suf-
ficiently long period of time. Additionally, the elements of
MB × MA channel matrix H are considered to be identi-
cally independent with complex Gaussian distribution and
unity variance. Such a distribution for the elements of
channel is a proper model in full scattering environments.

In such a scenario, when the baseband vector at =
[at,1, . . . , at,MA

]T is transmitted from node A, the base-
band signal vector br = [br,1, . . . , br,MB

]T received by
node B can be expressed as,

br = Hat + nB (1)



Here, nB ∈ C
MB is a zero mean, circularly symmet-

ric complex Gaussian noise vector with covariance matrix
E{nBnH

B } = σ2
BIMB

.
In a similar way, if bt = [bt,1, . . . , bt,MB

]T is the
baseband transmitted signal from node B the baseband re-
ceived signal vector ar = [ar,1, . . . , ar,MA

]T by A can be
written as,

ar = HT bt + nA (2)

where nA ∈ C
MA is the additive Gaussian noisev with

covariance matrix E{nAnH
A } = σ2

AIMA
.

3. BEAMFORMING AND COMBINING FOR
MAXIMUM CHANNEL CAPACITY

As shown in Fig. 1a, we would like to use some MA×mA

mapping matrix WA at node A, in order to transmit the
mapped signal at = WAsA where sA = [sA,1, . . . , sA,mA

]T

is the desired transmit vector. Also, at node B, we use an
MB × mB combining matrix ZB as shown in Fig. 1b be-
fore further processing for transmit signal detection (here,
we also call ZB as the receive beamforming matrix).

In this way, the received signal xB at the output of
combiner can be expressed as,

xB = ZH
BHWAsA + ZH

BnB (3)
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Figure 1. (a) Multi-antenna transmit system with beam-
forming matrix WA, (b) multi-antenna receive system
with combining matrix ZB .

For the case that mA ≤ MA, to maximize the achiev-
able data rate when the total transmit power is bounded to
value P , it can be shown that the transmit beamforming
matrix WA has to be computed as [1],

WA = D
+

UmA
(4)

where D
+

is obtained from water-filling (also known as
water pouring) as,

D
+

= diag
(√

D1, . . . ,
√

DMA

)
(5)

Here, Di = max{µ−σ2
B/λi, 0} where λi is the ith eigen-

value of HHH (we assume that λ1 ≥ λ2 ≥ λ3 ≥ · · · )
and µ is a constant adjusted to satisfy the power constraint

‖WAsA‖2 = P . mA is equal to the nonzero diagonal ele-
ments of matrix D

+

, and the columns of UmA
∈ C

MA×mA

are the first mA principle eigenvectors of HHH.
To simplify the detection of transmitted symbols, it can

be readily shown that the receive combining matrix has to
be computed from,

ZB = VmB
(6)

where the columns of VmB
contains the first mB principle

eigenvectors of HHH . Interestingly, mB is not required
to be more than mA. That is because for i > (mB −mA),
[xB ]i is just a signal free noisy term which bear no infor-
mation about the transmitted data. Additionally, it can be
shown that mB has not to be less than mA.

Therefore, for optimal beamforming and proper com-
bining the transmitter has to know the eigenvectors and
eigenvalues of HHH and the receiver has to have the eigen-
vectors of HHH .

4. COOPERATIVE METHOD FOR
TRANSMIT/RECEIVE BEAMFORMING

4.1. Finding the desired eigenvectors

Let us assume that A sends an arbitrary normalized vec-
tor a1

t . Due to this transmission, node B receives b1
r and

transmits back b1
t = N (b1

r) to A, where

N (x) =
x∗

‖x‖

For transmit signal b1
t , A receives a1

r and transmits a2
t =

N (a1
r) in turn. This procedure is repeated and can be

stopped at kth loop of iteration whenever ‖ak
t − ak−1

t ‖
is less than ε, where ε is some sufficiently small positive
value.

Using the above procedure, at kth iteration the transmit
signal ak

t at node A and the received signal bk
r at node B,

can be expressed in terms of a1
t as,

ak
t =

(HHH)(k−1)

‖(HHH)(k−1)a1
t‖

a1
t (7)

bk
r =

(HHH)(k−1)

‖(HHH)(k−1)Ha1
t‖

Ha1
t (8)

It is interesting to note that the above relations are similar
to the so called power method that is widely used for ob-
taining the principal eigenvector of a square matrix[7, 8].
Using the same principle, it is straight to show that ak

t and
bk

r converge to the principal eigenvectors of HHH and
HHH , respectively.

Now, let us assume that the eigenvectors q1, . . . ,qi

for HHH are known at node A. Thus, node A is able to
compute the projection matrix Pi as,

Pi =

i∏

k=1

(
IMA

− qkq
H
k

‖qk‖2

)
(9)



Then, A sends N (Pia
1
t ) where a1

t is an arbitrary vector.
Node B receives b1

r and transmits back b1
t = N (b1

r) to
A. For transmit signal b1

t , A receives a1
r and transmits

a2
t = N (Pia

1
r). This procedure is repeated and can be

stopped whenever ‖ak
t − ak−1

t ‖ < ε for some sufficiently
small positive value ε.

Using this procedure, in a similar way as before, it can
be shown that ak

t converges to qi+1 and bk
r converges to

the (i + 1)th eigenvector of HHH .
As a result, knowing the principal eigenvectors of HHH

and HHH , with the above mentioned cooperative method,
the transmitter and receiver are able to find the second
principal eigenvectors required for their transmit and re-
ceive beamforming matrices. The same procedure can be
applied to compute all columns of matrices UmA

and ZB .

4.2. Finding the desired eigenvalues

The eigenvalues of matrix HHH has to be known at the
transmitter in order to compute D

+

and calculate WA from
(4).

Consider that we want to estimate the principal eigen-
value λn. At the kth iteration of the proposed method for
finding the nth column of UmA

and ZB , A sends ak
t =

N (Pn−1a
k−1
r ) and B receives bk

r . Then B transmits the
vector bk

t = N (bk
r ) and A receives ak

r for it.
With such a procedure, it is easy to show the following

relation between ak
r and ak

t .

ak
r =

(
HHHak

t

)
∗

‖Hak
t ‖

(10)

Whenever ak
t is converged to qn, (10) becomes,

ak
r =

(
HHHqn

)
∗

‖Hqn‖
(11)

From singular value decomposition, we know that,

H =
r∑

i=1

√
λi

Hqiq
H
i

‖Hqi‖
(12)

where r = Rank(H). Thus we have,

Hqn =
√

λn

Hqn

‖Hqn‖
→ ‖Hqn‖ =

√
λn (13)

Putting (13) back into (11) and using the fact that HHHqn =
λnqn we have,

ak
r =

√
λnq∗

n (14)

As a result, the nth eigenvalue of HHH can be approx-
imated from the norm of received signal vector at node A,
i.e. λ̂n = ‖ak

r‖2.
Thus, in conjunction with the algorithm of previous

subsection, the nth eigenvector and eigenvalue can be found
at node A, simultaneously.

It is interesting to note that the advantage of the above
method for finding the required eigenvectors and their cor-
responding eigenvalues, is that it can be used to avoid ex-
tra transmission for finding the eigenpairs that are not re-
quired for transmit/receive beamforming.

Our proposed procedure is briefly described in follow-
ing steps,

Initialization: i = 1, D
+

= 0MA
.

Step 1: Find the ith eigenvector and eigenvalue of HHH

at node A and the ith eigenvector of HHH at node
B with the proposed cooperative method.

Step 2: Using (5) to compute the Dj for 1 ≤ j ≤ i

Step 3: If Di ≤ 0 : go to step 4. If Di > 0 : [D
+

]jj =
Dj , jth column of UmA

= jth eigenvector of HHH

and jth column of VmB
= jth eigenvector of HHH

for 1 ≤ j ≤ i, i = i + 1; go to Step 1.

Step 4: mA = i − 1, WA = D
+

UmA
and ZB = VmB

Using this procedure, mA, WA and ZB are computed at
nodes A and B, respectively.

5. COMPUTER SIMULATIONS

For the first simulation, we have assumed that MA = 6,
MB = 6 and ε = 10−4 for checking the algorithm con-
vergence. Also, the initial vector a1

t for estimation of each
eigenvector is selected as [1, 1, ..., 1]T /

√
MA.

The Ferobenus norm ‖qi − q̂i‖, for i = 1, 2, 3, is plot-
ted in Fig. 2 as a function of the number of iterations in a
noise free scenario. Here, qi is the exact ith eigenvector
of HHH and q̂i is its estimated value using our proposed
method. As this figure shows the error decreasing with the
number of iterations.

Relative error in the eigenvalues estimation is plotted
in Fig. 3. Here, the additive noise is considered in our sim-
ulations assuming that the noise power is the same at both
nodes and the training SNR is the system SNR during our
proposed cooperative method for eigenpairs and eigenval-
ues estimation. In this simulation, the eigenvectors are the
output of our algorithm at 5th iteration. The relative error
in estimation of λi increases with index i as shown in this
simulation.

For the next simulation we have assumed that MA = 2
and MB = 2. Fig. 4 compares the Shannon capacity of
a system which uses proper beamforming matrices com-
puted from

C = log2 |ImB
+ 1

σ2 Z
H
B HWAWH

A HHZB | (15)

with the capacity of the other one which uses estimated
weight matrices with our method. These estimation results
are plotted for training SNRs= 5, 10, 20dB. From this fig-
ure it is easily seen that the capacity of our system with es-
timated beamforming matrices has a trivial difference with
the capacity of the system when the exact weight matrices
are used for transmit and receive beamforming.
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Figure 2. Error = E{‖ qi − ak
t ‖} versus number of

iteration(k) for MA = 6 and MB = 6.
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Figure 3. Relative error in eigenvalue estimation as a
function of training SNR for MA = 6 and MB = 6.

6. CONCLUSION

In this manuscript we considered MIMO communication
systems which are able to transmit and receive data at both
sides in a same or very near frequency band. An itera-
tive cooperative method was proposed to obtain the proper
transmit matrix at transmitter and receive beamforming
matrix at receiver without direct measurement of the chan-
nel. The advantage of the above method for finding the re-
quired eigenvectors and their corresponding eigenvalues,
is that it can be used to avoid extra transmission for finding
the eigenvalues and eigenvectors that are not required for
beamforming and combining regarding the transmit power
budget. Simulation results show that the system perfor-
mance is near to the case that precise optimal weight ma-
trices are known the transmitter and receiver.
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Figure 4. System capacity with perfect beamforming
matrices and the capacity of system when our estimated
beamforming matrices are used for a system with MA =
MB = 2 antennas (the SNR during the proposed scheme
are 5,10, and 20dB.
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