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Abstract- We designed a quality guaranteed multimedia 

streaming system especially when a server peer has insufficient 
bandwidth and has to perform both media streaming and con-
tent file transmission service simultaneously.  To guarantee the 
bandwidth of a streaming session, the server uses multiple TCP 
connections in our proposed system. At this time, multiple TCP 
connections are dynamically created based on estimated play 
out buffer status of a streaming client. Simulation results show 
proposed algorithm can enhance streaming quality by success-
fully reducing the occurrence of playout buffer underrun. 

I. INTRODUCTION 

1
Owing to a great proliferation of the broadband Internet 

access, various multimedia services over the Internet such as 

IPTV broadcast and VOD (Video-On-Demand) prosper more 

and more these days. For these multimedia streaming servic-

es, UDP was thought as a preferable transport layer protocol 

than TCP in general.  That is because as TCP uses retrans-

mission and congestion control mechanism, TCP was re-

garded as not appropriate protocol for real-time application. 

However, the recent development of broadband Internet 

access and Internet infrastructure provides sufficient band-

width and relatively short delay for each user and this leads 

successful multimedia service even with TCP transport [1]. 

Besides, various multimedia streaming services with TCP 

transport have been largely deployed more and more because 

TCP has many advantages over UDP such as firewall traver-

sal issue, bandwidth fairness with other flows, and built-in 

reliable features [1].  

In this paper, among various multimedia streaming service 

scenarios based upon TCP transport, the case of server with 

insufficient first-mile bandwidth is mainly addressed. 

(Through this paper, the term of first-mile means the link 

from a server to the next first hop in uplink direction.) For 

the example of this concerned environment, we can choose 

the P2P (peer-to-peer) network with broadband Internet 

access and mobile ad-hoc network. In our service model, a 

multimedia server with insufficient first-mile bandwidth tries 

to deliver multimedia content to other peers via both file 

transmission and media streaming service. During this 

process, the server uses FTP/TCP protocols for file transmis-

sion as usual and HTTP/TCP for multimedia streaming. 

Then, if both file transmission and media streaming service 

take place simultaneously, it is natural that each TCP flow 

fairly shares limited uplink bandwidth. 
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For a TCP flow fairly shares channel bandwidth with other 

TCP flows, the bandwidth of a media streaming flow can be 

shrunk accordingly as other TCP flows are created. If the 

bandwidth for a media streaming shrank below encoding rate 

of media content, then it can cause PoB (Play-out-Buffer) 

underrun which requires rebuffering time for a client. Fur-

thermore this rebuffering eventually results in unwilling 

playback pause. As recent many researches such as [2][3] 

remarked, this unwilling playback pause due to rebuffering 

usually perceived as a severe quality degradation of stream-

ing service. Thus, the streaming bandwidth shrinking due to 

fair-share characteristics of TCP can be directly connected to 

QoS (Quality-of-Service) degradation issue in this case. 

In this paper, we proposed DMTS (Dynamic Multiple TCP 

connections for Streaming) algorithm to guarantee streaming 

quality when a server performs both media streaming service 

and file transmission service with limited first-mile band-

width. To achieve this, multiple auxiliary TCP connections 

are created in order to guarantee the bandwidth of a stream-

ing session when bandwidth shrinking is detected due to 

bandwidth fair-share among TCP flows. During this process, 

the creation of auxiliary TCP connections is controlled by 

the server based upon the PoB (play-out-buffer) status of a 

streaming client to minimize occurrence of possible buffer 

underrun. More specifically, the server gets feedback infor-

mation from the client on current PoB status and measured 

packet arrival rate and then with these data, estimates the 

PoB status of near future. Based on this PoB estimation, if 

needed, server creates more auxiliary TCP connections to the 

streaming client. This scheme which uses multiple TCP con-

nections is similar to the algorithm of [6]. In [6], fixed num-

ber of multiple TCP connections was used to prevent short-

term bandwidth fluctuation during the streaming but we used 

multiple TCP connections to reserve enough bandwidth for 

media streaming and minimize the occurrence of PoB under-

run in the view of long-term fair-share characteristics among 

TCP flows. And also due to dynamic control of the number 

of TCP connection, proposed DMTS algorithm utilizes sys-

tem resource (e.g. TCP socket) effectively.  

Through the simulation result, it is shown that proposed 

DMTS algorithm enhances the quality of multimedia stream-

ing especially when media streaming and file transmission 

take place simultaneously from the server with limited first-

mile bandwidth. That is, proposed system shows less fre-

quent occurrence of PoB underrun and rebuffering rather 

than conventional system with one TCP connection or the 

system in [6] which has fixed number of multiple TCP con-

nections. Thus, proposed DMTS algorithm can be effectively 



applied to the multimedia content sharing service in P2P 

network or mobile ad-hoc network to enhance streaming 

quality without the network socket resource in a server sys-

tem overused. 

We present the major ideas in our paper as follows. In sec-

tion II, we addressed related existing researches with con-

cerned problematic service scenario. In section III, we cover 

the network and service environments, and some assump-

tions. In section IV, we show proposed whole DMTS algo-

rithm which includes both of server and client roles. In sec-

tion V, we present simulation result from network simulator. 

Last but not least, we address conclusion and future research 

interest in section VI. 

 

II. RELATED WORKS 

In [4], Mehra and Zakhor suggested BWSS (receiver-

driven bandwidth sharing systems) for the solution to the 

case which is opposite to the one we have focused on. That is, 

in the case that a client has insufficient last-mile bandwidth, 

they solved the problem of bandwidth guarantee for multi-

media streaming caused by TCP fair-share between stream-

ing flow and other flows to the client. To achieve this, client 

regulates window size of each acknowledgement packet for 

whole receiving TCP flows to guarantee the bandwidth of 

streaming flow. Although BWSS shows good performance 

on guaranteeing streaming bandwidth in the case that client’s 

last-mile bandwidth is not enough, it is not applicable to our 

concerned case that a server has limited first-mile bandwidth. 

Gürses et al. adapted SFD (Selective Frame Discard) algo-

rithm to streaming with TCP transport in which a server has 

limited bandwidth [5]. In this case, to achieve best quality of 

streaming service, the server measures available streaming 

bandwidth with the help of modified TCP stack and it con-

trols streaming rate below the available rate by dropping 

chosen frames which can trigger minimum distortion. If the 

SFD algorithm applied to our concerned service scenario, the 

more file transmission flows increase, the more streaming 

clients suffer quality degradation by intentional frame drop. 

Nguyen and Cheung suggested the use of multiple TCP 

connections (MultiTCP) for one streaming session in [6] to 

cope with short-term fluctuation of streaming bandwidth. In 

a streaming server, MultiTCP control unit which is located in 

the middle of TCP stack and application opens multiple TCP 

connections. Using these multiple TCP connections, conges-

tion window is reduced less than at the case of one TCP con-

nection during the congestion control stage; this contributes 

to decrease short-term bandwidth fluctuation. Although Mul-

tiTCP can prevent short-term bandwidth fluctuation, it can-

not properly handle the long-term decrease in available 

bandwidth which has been caused by fair-share characteris-

tics of TCP. That is because it uses fixed number of TCP 

connections for a streaming session regardless of currently 

available bandwidth. 

 

III. NETWORK AND SERVICE ENVIRONMENT 

The service architecture and network model is depicted in 

Fig. 1. As shown in the figure, each peer which spreads out 

in the Internet can be both of server or client for multimedia 

contents sharing service via media streaming and file trans-

mission. Because each peer connects to the service network 

through using broadband Internet access or wireless Internet 

access, it has relatively smaller bandwidth rather than back-

bone network.  Especially, more often than not, uplink 

bandwidth of each server is also much smaller than its down-

link bandwidth due to bandwidth asymmetry characteristics 

of commercial broadband Internet access such as A(V)DSL 

and wireless Internet such as WCDMA, mobile WiMAX. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Multimedia contents sharing service architecture. 

 

With this network architecture, to cope with firewall tra-

versal issues and achieve reliable transmission, TCP is just 

used for multimedia streaming for transport layer protocol. 

Also, media file transmission is performed with FTP/TCP 

protocols used in general.  

In application layer, a streaming client sends feedback on 

its PoB status and measured data arrival rate periodically 

with configured interval. On the other hand, a streaming 

server sends out pre-stored CBR (constant bit rate) multime-

dia streaming data when a client requests. And to guarantee 

streaming quality, the server application analyzes and esti-

mates the status of client PoB in the near future. Media 

streaming services and media file transmission services can 

take place simultaneously at the server by various requests 

from different clients. Then, because both media streaming 

and file transmission service use TCP for transport layer, 

each flow fairly shares limited uplink bandwidth as shown in 

Fig. 2.  

In this paper, we assumed that streaming service gets 

higher priority than media file transmission service. In other 

words, we evaluated entire service quality based upon 

streaming service quality, not based upon file transmission. 

Also, streaming service quality is just measured by the count 

of PoB underrun occurrence rather than frame distortion be-

cause we have decided to achieve reliable and lossless 

transmission using TCP transport. The count of PoB under-

run occurrence is closely related to subjective streaming 



quality as noticed in recent many researches such as [2] and 

[3]. 

 

 

 

 

 

 

 

 

 

Figure 2. Example of bandwidth fair share among streaming flow and file 

transmission flows. 

 

IV. PLAYOUT BUFFER EFFICIENT DYNAMIC MULTI-TCP AL-

GORITHM 

A.  Streaming Models 

Streaming model for proposed algorithm is described in 

Fig. 3. Let )(tA denote the total arrived bytes at a client by 

time, t .  Because )(tA is dependent on network status, we 

just let this as a random process.  And let )(tP  denote the 

total played bytes at the client by the time t . As usual, 

streaming client application uses pre-roll buffering to reduce 

the effect of delay variation from the network. We denoted 

this pre-roll buffering time as τ . And CBR playback rate 

which is same with encoding rate of media content is de-

noted as µ . Then, )(tP  can be expressed as (1). 

 

 

                                                                                     (1) 

 

 

Also let )(tB as the total remain bytes at the client PoB by 

the time t  and then we can denote )(tB  with (2). 
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Figure 3. Streaming model 

 

B. Playout buffer estimation at streaming 

To guarantee streaming bandwidth while performing both 

media streaming and file transmission service simultaneously 

over limited uplink bandwidth of a server, a server applica-

tion should estimate the status of client PoB in the near fu-

ture during the service. That is, )( ttB curr ∆+  should be 

estimated in the server at time currt .   

Although )(),( currtttA ≤ is known to the server using 

periodic feedback information from the client, 

)( ttA curr ∆+  is not deterministic because of network dy-

namics. Therefore, we used window based linear regression 

to estimate )( ttA curr ∆+  approximately. That is, )(tA  can 

be modeled with the form of (3). 

 

εβα +⋅+= ttA )(                          (3)  

 

Where α and β are regression parameters, and ε means 

zero mean Gaussian random variable.  With previous w  

samples, the server module estimates regression parameters 

which yield least mean square error as follows. [7] 

 

 

 

                                                                                    (4) 

 

tA βα −=  

 

Where A  and t  means average arrived bytes and average 

sample time among previous w samples at currt . 

 

C. Guard interval for new TCP connections 

As known well, if a new TCP connection created, then 

TCP connection probes available network bandwidth by us-

ing congestion control algorithm. Then, if there is no other 

network change such as the creation of another TCP flows 

and etc, the bandwidth of TCP connection would be stabi-

lized to some level after a few second. We call this period as 

a guard interval.  If a server dynamically has created one or 

more new TCP connections, then it should stop creating new 

TCP connections during this guard interval. This is because a 

guard interval itself means expected time until newly created 

TCP connection shows some effect. Therefore, guard inter-

val can prevent excessive use of socket resource of the server 

system.  

Since guard interval depends on network condition and 

characteristics, it is better to choose appropriate value by 

real-time estimation rather than pre-fixed one. To determine 

guard interval, the server module uses the measured arrival 

rate which is embedded in feedback information from the 

streaming client. Using these data, the server module calcu-

lates moving average of arrival rate from the beginning of 

the streaming session. By definition, guard interval can be 

written with (5). 

 

initstabguard ttt −=                          (5) 

 

Where, initt  means the time at which first feedback infor-

mation received and stabt  means the time at which (6) would 

be satisfied.  
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Where, )(tRavg  means the moving average of arrival rate 

at the client and )(tRmeasured means measured arrival rate at 

the client. Definitely, )(tRmeasured  would be reported to the 

server via feedback information periodically.  In (6), m and  

n  are moving average parameters and σ  is the parameter 

for affordable bandwidth variation. 

 

D. Dynamic MultiTCP streaming Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Flow chart of server process 

 

Fig. 4 shows entire procedure of proposed DMTS (Dy-

namic MultiTCP streaming) algorithm at the server when it 

received feedback information from the client. At the begin-

ning of streaming service, the server firstly determines guard 

interval for one TCP connection using measured arrival rate 

from the client. And then, whenever the server receives 

feedback information from the client, it anticipates the PoB 

status of near future using linear regression model of arrived 

bytes and deterministic playback model. At this time, we use 

guardt  for the estimation interval of arrived bytes ( t∆ ) 

based upon the definition of guard interval. If estimated PoB 

status falls below the configured threshold, then the server 

module creates auxiliary TCP connections. To reduce com-

putational complexity of the server application, the number 

of auxiliary TCP connections that will be newly created is 

determined by following simple proportional equation.   

 

    

 (7) 

 

 

In (7), l stands for the number of total file transmission 

flows, currk  for the number of currently opened TCP con-

nections for a streaming session, +newk for the number of 

auxiliary connections which are newly required, and totR  

means total bandwidth of server’s uplink channel. We as-

sumed that totR  is pre-configured to the server application. 

Then, proportional equation of (7) yields +newk  as follows, 

 

 

                      (8) 

 

 

 Once a server created new auxiliary TCP connections, it 

would not perform PoB estimation and threshold check algo-

rithm any more during the guard interval. This is due to pre-

vent unnecessary overuse of TCP connections as explained 

in section C. 

 

V. SIMULATION RESULTS 

In this section, we verify the quality enhancement of pro-

posed DMTS algorithm by simulation results. For simulation, 

we used network simulator, NS-2 [8] and EvalVid [9] mod-

ule with some changes to support TCP streaming. We used 

MPEG-4 compressed bitstream which is encoded with CBR 

512kbps, 30 frames/sec. Pre-roll time of streaming client is 

set to 5 sec and feedback period of the client is set to 300 

msec. Through various experiments, we choose 8.0=m , 

2.0=n and 05.0=σ  which show good overall estima-

tion result for average arrival rate. And also linear regression 

window size w  is fixed as 20 samples to provide reliable 

estimation and ensure low complexity. To simulate simulta-

neous file transmission service during the streaming service 

period, we used general FTP module in NS-2. Other parame-

ters that related with network topology are show in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Simulation Network Topology. 

 

With these parameters and network topology, we build 

two service scenarios to show quality enhancement of pro-

posed algorithm over various situations.  

 

� Scenario 1:   

- Multimedia streaming starts at time 1 sec 

- File transmissions start at time 15, 25, 35, 40 sec re-

spectively 

� Scenario 2: 

- File transmissions start at time 1 , 10 sec 

- Multimedia streaming starts at time 30 sec 
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- Other file transmissions start at time 45, 60 sec re-

spectively 

 

For comparison, we simulated above scenarios with 3 dif-

ferent types of system. That is, systems with proposed algo-

rithm, traditional one TCP connection for a streaming, and 

fixed number of MultiTCP connections [6] are used respec-

tively. Fig. 6 and Table I show the simulation result on sce-

nario1 among three systems. As shown in Fig. 6, after file 

transmission services started (after about 30 sec in Fig. 6), 

the stocked data in the PoB of a streaming client decreases. 

At that time, because the streaming server with the proposed 

DMTS creates more auxiliary TCP connections for stream-

ing session, it can quickly recover enough data to play out, 

whereas the server with other systems suffers sluggish play-

back due to PoB underrun.  
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Figure 6. PoB status result (service scenario 1) 

 

TABLE I  

Simulation result on scenario 1 

 Number of TCPs for 

one streaming session 

Rebuffering  

occurrence 

Conventional 1 60 

MultiTCP [6]  5 31 

Proposed DMTS 13(max) 0 
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Figure 7. PoB status result (service scenario 2) 

 

TABLE II 

Simulation result on scenario 2 

 Number of TCPs for 

one streaming session 

Rebuffering  

occurrence 

Conventional 1 59 

MultiTCP [6]  5 10 

Proposed DMTS 12(max) 2 

 

Similar with the result of scenario 1, we were able to dem-

onstrate the quality enhancement of proposed DMTS algo-

rithm also in scenario 2 with Fig. 7 and Table II. In this case, 

because MultiTCP [6] uses fixed multiple TCP connections 

for a streaming session from the session beginning, it shows 

better performance than proposed DMTS during the first 150 

seconds interval. However after this interval, proposed 

DMTS shows much better performance than MultiTCP [6] 

because it keeps creating more auxiliary TCP connections 

until enough streaming bandwidth reserved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Conventional system case (1 TCP for streaming session) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) Proposed DMTS case (D-MultiTCPs for streaming session) 

 

Figure 8. Bandwidth variation in service scenario 1 

(File transmission service vs. media streaming) 

 

In Fig. 8, the average file transmission rate of 4 FTP ser-

vices and streaming rate in the scenario 1 is presented. As 

shown in Fig.8 (a), the streaming bandwidth of the server 

with conventional 1 TCP connection is almost analogous to 
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the average bandwidth of 4 FTP services due to fair-share 

characteristics of TCP as addressed in section II. However, 

the server with proposed DMTS can guarantee enough 

bandwidth for a media streaming as depicted in Fig. 8 (b).  

 

VI. CONCLUSIONS 

In this paper, we have designed DMTS algorithm to en-

hance streaming service quality when a media server has 

insufficient uplink bandwidth and has to serve both media 

streaming and file transmission service. To guarantee stream-

ing service bandwidth, we used multiple TCP connections 

for one streaming session. And multiple TCP connections are 

created dynamically based upon estimated PoB status of a 

client. Thus, we can successfully prevent the occurrence of 

rebuffering during the streaming under the assumed service 

scenarios. This proposed algorithm can be effectively 

adopted to streaming service environment with P2P network 

or mobile ad-hoc network in which peer user has insufficient 

uplink bandwidth. And our future research interest will be in 

this service environment, such as a quality guaranteed bi-

directional streaming over asymmetric bandwidth path. 

 

REFERENCES 

[1] B. Wang, J. Kurose, P. Shenoy, and D. Towsley, “Multimedia Stream-
ing via TCP: An Analytic Performance Study”, In Proc. of ACM Mul-

timedia, Oct. 2004, pp. 908-915. 
[2]   A. C. Dalal, and E. Perry, “A New Architecture for Measuring and 

Assessing Streaming Media Quality”, In PAM workshop 2003, Apr. 
2003, pp. 223-231 

[3] N. Terada, E. Kawai, and H. Sunahara, “Extracting Client-Side 
Streaming QoS Information from Server Logs”, In IEEE Pacific Rim 

Conference on Communications, Computers and Signal Processing, 

Aug.2005, pp.621-624. 
[4] T. Nguyen and S. S. Cheung, “Multimedia Streaming Using Multiple 

TCP Connections”, in IPCCC 2005, Apr. 2005, pp 215- 223K 
[5]    E. Gürses, G. B. Akar and N. Akar, “A simple and effective mechan-

ism for stored video streaming with TCP transport and server-side 
adaptive frame discard”, Computer Networks: The International Jour-

nal of Computer and Telecommunications Networking, Volume 
48 ,  Issue 4,  Jul. 2005,  pp 489-501    

[6] P. Mehra and A. Zakhor, “TCP-Based Video Streaming Using Receiv-
er Driven Bandwidth Sharing”, in International Packet Video Work-

shop 2003. 
[7] S.M. Ross, An Introduction to Probability and Statistics for Engineers 

and Scientists, 2nd ed., A Harcourt Academic Press, 2000, pp.325-403 
[8]    ns-2 Network Simulator, available from  

http://nsnam.isi.edu/nsnam/index.php/Main_Page, (2007).  
[9]   C. Ke, C. Lin, C. Shieh, W. Hwang, “A Novel Realistic Simulation 

Tool for Video Transmission over Wireless Network”, IEEE Interna-

tional Conference on SUTC2006, June 5-7, 2006, Taichung, Taiwan. 
 


