
Hypercube Architecture for Resource Management
in a Video-on-Demand System

D. N. Sujatha*, Girish K*, Rajesh Srivastava*, Venugopal K. R*, L. M. Patnaik**
*Department of Computer Science and Engineering

University Visvesvaraya College of Engineering, Bangalore University, Bangalore-560001, India.
**Microprocessor Applications Laboratory, Indian Institute of Science, Bangalore-560012, India.

suj sat@yahoo.com

Abstract— A challenging problem faced by researchers of dis-
tributed real-time systems like Video-on-Demand (VoD), is devis-
ing and implementing adaptive resource management strategies.
The traditional resource management model such as hierarchical
model does not address the ever-growing resource requirement of
a VoD system. This paper examines the hypercube approach and
designs a scalable architecture which addresses the heterogeneous
requirements of the clients. This work also attempts to reduce
the search space as each node in the hypercube has only �log N�
neighbors where N is the total number of nodes. However, for
simulation studies we have considered hypercube with N=8.
The analytical and simulation results confirm that HARM :
Hypercube Architecture for Resource Management is scalable as
storage and delivery capacity grows with the number of clients in
the system and is cost effective as the videos are not replicated.
HARM increases system performance with less rejection ratio
and the bandwidth utilization is 85 % compared to hierarchical
scheme. The result indicate that the resources are appropriately
allocated within the network.

Index Terms: Bandwidth, Cluster, Hypercube, Resource
Management, Video-on-Demand.

I. INTRODUCTION

In this era of digital information the emergence of the
Internet as a pervasive communication media has enabled the
convergence of voice, video and data. This convergence has
enabled a wide spectrum of multimedia applications including
distance learning, entertainment and information services to
be incessantly used on the Internet. These multimedia applica-
tions require a sizable quantity of multimedia data to be moved
to and fro. Multimedia data contains an enormous amount of
embedded information. They have the potential to convey an
infinite amount of derived or associated information.

Compared to traditional data multimedia data incorporates
two distinct characteristics: delay sensitivity and network
bandwidth. Delay Sensitivity is the timing constraint associ-
ated with multimedia data. Timing in delivering multimedia
data is of the essence. The delayed arrival of the data may be of
little or no use. Delivering multimedia data to users consumes
large amount of network bandwidth as multimedia systems
need to transfer enormous amount of data within a short span
of time thus, requiring a large quantity of bandwidth from the
underlying network.

The Video-on-Demand (VoD) system takes the basic tele-
vision concept of providing instant entertainment to a level

that can cater to the individual selection of the viewer. The
VoD system either streams the content, enabling viewing while
the video is being downloaded, or download the program
entirely to a set-top box before the viewing starts. VoD systems
operating in cable networks will see significant change in
usage patterns and demand over the next five years. The peak
usage of VoD system is likely to increase from the current 5%
to approximately 30% as a result of larger deployments and
the introduction of new and innovative applications [1]. Such
a system maintains large quantity of resources needed to be
harnessed to develop a reliable architecture.

A resource can be defined as an available supply that can be
drawn from when it is needed. The parameters to be addressed
in resource management in a VoD system are content manage-
ment, delay, reliability, operating costs, bandwidth, buffer and
storage capacity. Resource management include efficient and
effective managing, handling, supervising and controlling of
these resources. Content management deals with managing the
content (video) that is streamed to the client from the video
server. The content which is streamed should be delivered with
the highest quality that can be achieved. The content should
be reliable in the sense that the quality of the video should not
vary while streaming. To achieve this, a sufficient bandwidth
should be allotted by the video server to each client or for
each request made. The bandwidth for a video server is fixed
and therefore an efficient mechanism is made to utilize the
entire bandwidth effectively.

To handle the incoming stream the client should have a
sufficient buffer to store the streaming content as they are
being processed. The buffer should be utilized in a manner
that would maintain a balance that would not effect the speed
of the video server and the processing ability of the client. The
streaming cannot be faster than the processing ability of the
client as number of frames would be lost. The speed should not
be too slow as this would create a jitter that would affect the
client viewing the video. Therefore the buffer should maintain
this balance efficiently.

Resource management is a process of guaranteeing the
availability of resources for the admitted requests in the
VoD system. Distributed continuous media application are
expected to provide service to a large number of clients
often geographically dispersed. The challenging task of these
type of application is how efficiently resource allocation are

implemented in a cost effective manner. The bandwidth is
arguably the most important resource in a video server and
therefore the most expensive resource. The bandwidth is
inexplicably linked to all other resources and therefore should
be handled delicately. To address this problem researchers have
focused on various techniques to reduce the overall bandwidth
requirements.

A. Our Contribution

The enlarging market in networking and multimedia tech-
nology is focused on the development of distributed multime-
dia applications with suitable resource management schemes.
In this paper, we propose a hypercube architecture in order to
optimize resources requirements and to efficiently allocate the
resources. The hypercube architecture enhances scalability and
robustness of the VoD system. The advantage of the proposed
scheme is that the clients experience less delay when compared
to hierarchical scheme which attracts more number of clients
thereby increasing the profit of the VoD system. The algorithm
ensures maximum system throughput with 85% bandwidth
utilization.

B. Organization

The reminder of this paper is organized as follows. Section
II presents literature survey. The model for providing efficient
resource management is discussed in Section III. The hyper-
cube architecture for resource management is explained in
Section IV. The analytical approach along with cost calculation
for hypercube is discussed in section Section V. The algorithm
along with the illustrated example is discussed in Section
VI. We elucidate the usefulness of our algorithm through
simulation in Section VII. Finally, we provide concluding
remarks in Section VIII.

II. LITERATURE SURVEY

In [2] a new architecture for server-side communication
which supports the concept of Quality-of-Service (QoS)
contracts is suggested. A QoS contract which specifies
an acceptable QoS levels along with their utility function
was proposed and the results were compared with simple
reservation-based solutions. In [3] a overview of the recent
developments in the area of QoS support for multimedia
applications is explored. Time-dependent multimedia data
types are saved with various formats and the support of
operating system in system resource management, scheduling
and adaptation as per real time requirements is studied. This
paper only concentrates on OS issues overview but does not
do a detailed survey.

In [4] the benefits of chaining is discussed and an optimal
chaining scheme that utilizes not only the backward and
forward buffers, but also all the available client buffer in a
collaborative network is analyzed. This method reduces the
server load and avoids the network bottleneck at the server.
However, this method does not discuss the QoS issue while
video streaming. Determining the proper amount of resources
to be allocated is crucial for optimizing the performance of

VoD systems, so as to maintain the benefits of data sharing
technique.

In [5] segmentation and multicast techniques for VoD
system is evaluated and their impact on performance of
the system is studied. In this method multicast technique is
adapted assuming all the videos have equal popularity which
is not possible in real time and and does take unpopular video
into account. Orallo et al. [6] deals with transmission of VoD
service over the Internet. The scheme introduce a fast method
to optimize network resources which is based on generating
envelope points from empirical envelope. This process is
done off-line using the stored video. This method is not
checked for larger real-time application. Shahabi et al. [7]
deals with distributed resource management for decentralized
media server and minimizes the communication storage cost.
To achieve this objective, Redundant Hierarchy (RedHi)
topology was proposed with the following goals: (i) to reduce
start-up latency and reduce resource management overhead.

Yu et al. [8] addresses the resource management problem
in VoD system. In order to manage resources efficiently
allocation, video server selection, replication, cache
management are considered by making use of video
title characteristics and to efficiently utilize system resource
and minimize waiting time. However, this scheme does not
address admission control. Raman et al. [9] proposed a
scheme developed and implemented the classified (classads)
matchmaking framework for resource management in a
distributed environment with decentralized ownership of
resources. The framework include a semi-structured data
model that combines schema, data and query in a simple
but specification language and a separation of matching and
claiming phases of resource allocation. The technique of
aggregating classadds so that matches can be performed in
groups is not considered.

Cahill et al. [10] examines issues of resource management
and content placement within a Video Content Distribution
Network. A placement heuristic is proposed which reduces
the search space. The placement algorithm uses cost model
to determine best proxy for each cluster and the proxy is
the potential location for replica requested by the cluster.
Golubchik et al. [11] have considered as K-server threshold-
based queuing system with hysteresis and is governed by
forward and reverse threshold vector. The use of hysteresis
was to control the cost during workload fluctuation. The
time required to add server is negligible which needs to be
calculated accurately for many real time applications.

Leung et al. [12] propose a combination of data sharing
techniques (batching with static partitioning) which result in
efficient resource management and system sizing for a large
scale VoD system. The problem of achieving fairness in the
allocation of the bandwidth when a link is shared by multiple
flows of traffic has been extensively study in [13] and arrive
at a solution defining fairness. This method assumes that
each flow has a unique weight which determines its relative
rightful share of each of the resources.

III. MODEL

A. BACKGROUND

Fig. 1. Elements of Hypercube

A hypercube of dimension n has 2n sides. The number of
vertices (points) of a hypercube is 2n (a cube has 23 vertices,
for instance). The number of m-dimensional hypercubes on
the boundary of an n-cube is 2n−m (n

m). The advantages of
hypercube is that each node has only �log N� neighbors
and also the longest route in the hypercube is �log N�.
However Hypercube construction must be done sequentially
i.e. one node at a time and also physical network structure is
completely ignored.

DEFINITION : The logical Hypercube overlay network
topology organizes the applications with a logical n-
dimensional Hypercube. Each node is identified by the label
(e.g. 010) which indicates the position of the node in a
logical Hypercube.

Theorem 1. Each and every node in a Hypercube has
only �log N� neighbors where N is the total number of nodes.

Proof.

Let us consider a Hypercube with 8 nodes
(i.e. Hexahedron N=8) and each node is
numbered from node 1 to node 8. Now,
let us take node 1 its adjacent nodes are
node 2, node 3 and node 4 respectively i.e.

3 nodes. Similarly consider node 8, its adjacent nodes are
node 5, node 6 and node 7 respectively i.e. 3 nodes. In the
same manner if we consider node N, then its adjacent nodes
are N-1, N-2 and N-3 respectively i.e. 3 nodes.

= 3

= 3 ∗ 1

= 3 log2 2 [log2 2 = 1]

=log2 23

= log2 8

= log2 N [From assumption N=8].

This proves that each and every node in a Hypercube
has only [log N] neighbors.

Theorem 2. The longest route in the Hypercube is �log N�
where N is the total number of nodes.

Proof.

Let us consider a Hypercube with 8
nodes (i.e. Hexahedron N=8) and each
node is numbered from node a to node
h. Consider all the paths from node a
to node h of all possible length.
Path of length 1 are : a −→ b, a −→
c, a −→ d.

Path of length 2 are :

a −→ c −→ e, a −→ d −→ e, a −→ e −→ g,
a −→ b −→ g, a −→ d −→ f, a −→ b −→ f.

Path of length 3 are :

a −→ c −→ g −→ h, a −→ c −→ e −→ h,
a −→ d −→ e −→ h, a −→ b −→ f −→ h,
a −→ b −→ g −→ h.

This shows that maximum path length is 3.

= 3

= 3 ∗ 1

= 3 log2 2 �log2 2 = 1�

= log2 23

= log2 8

= log2 N [From assumption N=8].

This proves that longest route is log N .

Fig. 2. Overview of Hypercube Architecture.

IV. ARCHITECTURE

A. PROBLEM FORMULATION

Given a physical network HC = (V, L) consisting of a finite
set of nodes V = {v0, v1, v2, . . . , vN−1} and a finite set of
links L ⊆ {(ni, nj) /ni, nj ∈ n ∧ ni �= nj}. The objectives
of resource management is to guarantee steady flow of
continuous media data for each session, minimize the system
overhead and maximize the total number of concurrent
streams. It also eliminates client side storage, efficiently
manages system resources such as storage and bandwidth.
Fig. 2, depict Hypercube Architecture for resource
management in VoD system. It consists of a database,
management server, root server and cluster.

Database is an information repository that maintains
state of the network such as the list of management servers,
root server and clients and the location of video in the
architecture and all the meta data that is associated with
the video. The meta data will be used to facilitate client
searching and browsing of archived videos. It also stores all
the complete videos which need to be streamed to clients on
request.

Management Server is used to monitor the entire network.
The functions of management server include collecting
statistical data to check video popularity, accounting details
help in billing the videos watched. It also helps in performing
content control. In the proposed hypercube architecture the

management server is used to grant or revoke access to
content.

Root Server is used to provide the requested videos to
the client which are in the Hypercube cluster. The root server
which is directly attached with the cluster is known as local
server. Initially, the requested video is searched in the local
server if it is found it is streamed to the client else if it is
not found it will send request to neighboring root server and
continues till the requested video is found.

Cluster is a group of clients who are situated in close
proximity within a specific network. The usage of clusters
decreases content placement decisions. For an average sized
cluster optimal placement of videos for the cluster is optimal
for all the clients within the cluster. Here, we are arranging
all the clients in the form of Hypercube so that, latter
the Hypercube can grow dynamically which enhance the
scalability of the architecture.

V. ANALYTICAL APPROACH

Fig. 3. Coordinate Representation of Hypercube Architecture.

Fig. 3 depicts the coordinate representation of Hypercube
architecture. Let us consider two position vectors �Vs : (̂is, ĵs

, k̂s), �Vd : (̂id, ĵd, k̂d) and the magnitude or resultant of the
length of the path between the two position vectors �Vs and
�Vd can be calculated as:∣∣∣ �Vs

�Vd

∣∣∣ = (̂is + îd, ĵs + ĵd, k̂s + k̂d) (1)

TABLE I

MODULUS TABLE (+2).

+2 0 1

0 0 1

1 1 0

(1) is obtained by using (Z2, +2) operation (Refer Table 1.)

A. State Transition Diagram For Hypercube Architecture

Fig. 4. State Transition Diagram for N=8.

In this subsection, we describe our model which is
illustrated in Fig. 2. There are N servers with N/2 management
servers and N/2 root servers in the system, where N is
unrestricted, each with service rate µ and the client request
for video process is with rate λ. Formally the transition
structure of N homogeneous servers, where N is unrestricted
is specified as follows:

(0,0,0) → (1,1,1)

λ

(̂is, ĵs, k̂s) → (̂id, ĵd, k̂d)

λf
{̂
is + îd, ĵs + ĵd, k̂s + k̂d

}
[See Table 1]

(̂id, ĵd, k̂d) → (̂id, ĵd, k̂d)

λf
{̂
id + îd, ĵd + ĵs, k̂s, +k̂s

}
[See Table 1]

(1,1,1) → (0,0,0)

µ

where f {x} which is a function of x which calculates
the length of path from source node Vs to destination node
Vd. The state transition diagram for N=8 is shown in Fig. 4.

B. Path Matrix Geometric Approach

The path matrix P represents all the values which
represents path from one node to another node. The element
of path matrix P [i, j] can be expressed mathematically as

P [i, j] =
{

0 when i = j
li,j when i �= j.

where 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ N − 1 and li,j
value can be calculated by using (1). The length of path from

Fig. 5. Path Matrix

node �Vi to �Vj is given in Fig. Path matrix.
l0,1 represents transition rates from l0 to states l1. After
calculating all the values of li,j and matrix representation of
Hypercube is shown in Fig.6.

Fig. 6. Matrix Representation of Hypercube

C. Cost Function for Hypercube

The storage space and link efficiency are the two important
resources which influences high-quality video over shared

TABLE II

THE PARAMETERS USED IN COST FUNCTION CALCULATION.

Sl. No. Symbol Definition

1. Ls Local server.

2. S(m) Video title of size m bytes.

3. Bc Remaining part of video (in bytes) to be delivered to cluster c.

4. αLs,c Bulk delivery cost is the cost associated with bulk delivery of i bytes between the local server Ls and the cluster c.

5. βLs,c Stream delivery cost is the cost associated with the streaming i bytes on the link between local server Ls and a cluster c.

6. ξLs Storage cost is the cost for storing i bytes between the local server Ls and the cluster c.

7. Tc The time when the last client within the cluster will reach the end of video stream.

infrastructure. These days the clients request for high quality
video with optimal cost. Hence video placements in the
network has an immense impact on the required resources
to deliver the objects with optimum cost. A cost function
is proposed which calculates the resource requirements
for delivering content from any server to the cluster. The
Parameters used in cost function calculation is shown in
Table II.

The cost of delivering an object from any server to cluster
is comprised of following costs:
(i) Storage cost−SCLs,m is the cost of storing the video m
on local server Ls and is a function of time. It is represented
by (2).
(ii) Delivery cost − DCLs,c is the cost of streaming
contents from Ls to the clusters and is shown in (3).
The total cost of serving all the clients in the cluster is given
by (4).

The cost of using local server Ls to N clients in a cluster,
all viewing the video m is given by the following equations.

SCLs,m,c = ξLs * S(m) * Tc (2)

DCLs,c =
N∑

c=1
(αLs,c * βLs,c * Bc) (3)

CostLs,m,c = SCLs,m,c + DCLs,c (4)

VI. ALGORITHM.

The HARM algorithm (Refer Table III) is called when the
client requests for a video. The request for the video is routed
to the root server N. The root server would initiate a search
for that particular video in its information repository. If the
search is successful, the root server would then check its
buffer for sufficient space. If the buffer has sufficient space,
then move the video block by block to the buffer and then
stream it to the client. If sufficient space in the buffer is not

TABLE III

HARM MAIN ROUTINE

Found = false

Request(Video,Node)

begin

found=search(VideoId, Node)

if(found)

if(buffer not full)

move the video block by block to buffer and stream the

video block to client

else

VideoPlacement(VideoId, Node)

else

GenerateRequest(VideoId)

end

available then the Video Replacement algorithm (Refer Table
V) is called. If the search is not successful then the Generate
Request algorithm (Refer Table IV) is called.

The Generate Request algorithm is called when the video
i.e. requested by the client is not found in the root server. The
algorithm would initiate a search for the video in the rest of
the video servers. The search for the video starts from the log
N neighbors. If the requested video is not found, then it will
increment the distance by 1 and initiate a new search for the
video. When the requested video is found in the root server
it will be moved to the buffer of the requested node and then
streamed to client. If video is not found amongst the peers,
then the request is forwarded to the root node of the cluster.

Video Placement algorithm examines the storage space
available to place the video. If storage space is available, it
stores the video at the respective node otherwise it will search

TABLE IV

GENERATE REQUEST ROUTINE:

GenerateRequest(VideoId)

begin

for(distance 0 to n*a)

begin

for(log N neighbors)

begin

search video in node N

if video is found

found = true

end

if video found

Move the video blocks to requesting video server

Else

Increment distance

end

if video found

stream video to client

else

GenerateRequest(RootNode)

end

TABLE V

VIDEO PLACEMENT ROUTINE:

VideoPlacement(VideoId,Node)

begin

if(videoSize < storage space)

store video with VideoId at Node

else

begin

search least popular video

Replace least popular video with VideoId at Node

end

end

TABLE VI

INSERT ROUTINE:

insertNode(N)

begin

coord = v(000)

while(Node < N)

increment coord

assign coord to node N

for(i=0 to Node N)

begin

for(j=0 to Node N)

begin

sum = 0;

for(each vertex k in coord)

begin

sumK = (coord of Nodei+coord of Nodej) % 2

sum = sum + sumk

end

Node.distance[i][j] = sum;

end

end

end

the least popular video in the video array and then replaces
that least popular video with the new video.

The search in our architecture requires to be done in
constant time i.e. O(1). Ideally it may not be possible to
achieve this but we can achieve a performance very close to
it as we use a data structure called Hash Table. Searching
using open hashing techniques requires less amount of time.
An item can be searched using the hash address found by the
hash function h as given by:

h(k) = k mod m

The key k is to be mapped into one of the m slots
in the hash table. It is divided by m and the remainder is
taken as index for the hash table. Since it requires only one
operation hashing is fast.
The algorithm isertNode (Refer Table VI) inserts a node

into the cluster and assigns coordinates to that node which
is joined to the hypercube cluster. It also stores the distance
between the new node and all the other nodes. The distance
is found by calculating the path length from the new node to
all the other nodes in the cluster to enable efficient search for

TABLE VII

TABLE INDICATING NUMBER OF VIDEOS AT EACH NODE.

Node-id Number of Videos

0 500

1 800

2 600

3 900

4 1200

5 500

6 700

7 1500

video, by traversing a minimum distance.

A. Illustrated Example

Consider a cluster with 8 nodes indicating number of videos
at each node is as given in Table VII. At any instant of time
requests arrive at nodes or video server randomly. Considering
arrival of requests R = {R1, R2, R3, R4, R5} at node-1. The
requested video might be present in the same node or in other
nodes in the cluster. Table VIII illustrates the video requested
and the characteristics of the video and the node in which the
corresponding video is located.

If the requested video is present in node-1, request is served
immediately and the video frames are streamed to the client.
If the video is not found in node-1 video search packets are
forwarded to servers at distance-1 that are nodes 0, 5 and 6.
If the video is found the video is streamed from the node
in which the video was found to node-1 and then streamed
to the client requesting the video. If the video is not found
at distance-1 the search process is continued with distance-
2 to nodes 2, 3, 7 and then at distance-3 to node 4. The
reneging time is considered to be 8 ms. Request is rejected
if it is not serviced within this time. Table IX illustrates the
search process, bandwidth consumption and delay incurred for
requests.

VII. SIMULATION AND PERFORMANCE
EVALUATION

A number of experiments were carried out using OM-
NeT++ in order to determine the performance of the proposed
algorithm. Experiments were conducted using various sized
Internet topologies. These topologies were generated using the
BRITE topology generator. The topologies comprised of 20 to
100 servers (management/root). A small set videos of video
length ranging from 30 minutes to 150 minutes was used. The
requests for the particular video were distributed following the

Zipf distribution with the parameter θ = 0.271.
Fig. 7, plots a graph of the requests serviced and the number

 100

 200

 300

 400

 500

 600

 100 200 300 400 500 600

R
e

q
u

e
s
t

S
e

rv
ic

e
d

Number of Requests

HARM
Expected Output

Fig. 7. Throughput

of requests. As depicted in the graph, throughput which is the
number of requests serviced to the total number of requests in-
creases with the increase in the number of requests. The graph
depicting throughput of a realistic system should be a straight
line i.e.y = x with gradient of 1 indicated as Expected Output
in the Fig. 7. As seen in the graph, the difference between
simulated value of throughput for hypercube architecture and
expected value for throughput is almost the same.

The bandwidth utilization for HARM is indicated in Fig.

 0

 100

 200

 300

 400

 500

 10 20 30 40 50

A
v
e

ra
g

e
 B

a
n

d
w

id
th

 U
ti
liz

a
ti
o

n

Time (min)

HARM

Fig. 8. Bandwidth Utilization

8. Up to 25 requests, bandwidth utilization keeps increasing
and later it gets saturated. As our interest is in the area of
high load HARM utilizes 95% of bandwidth under high load
as shown in the graph.

The number of video requests/sec vs average delay (sec) is

TABLE VIII

SAMPLE VIDEOS FOR SIMULATION EXPERIMENT.

Req.id. Node where Video is Present Requested Video Title Length(min) Frame Rate/ms BW(Mbps) Video Size(MB)

R1 1 Benhur 120 30 20 800

R2 6 Demo 50 30 9 300

R3 7 Blade2 100 30 17 650

R4 1 Jurassic Park 150 30 24 900

R5 2 Rambo 90 30 16 600

TABLE IX

TABLE DEPICTING ALLOTMENT OF BANDWIDTH AND CALCULATION OF DELAY.

Request-id Video Search Process Total Bandwidth Utilized (Mbps) Delay (ms)

R1 Video found at node-1 20 0

(node-1)

R2 Video not found at node-1 9+9=18 1

Search packet to nodes 0,5,6 (node1+node6)

Video found at node-6

R3 Video not found at node-1 17+17+17=51 3

Search packet to nodes 0,5,6 - Not found (node1+node6+node7)

Search packets to nodes 2,3,7

Video found at node-7

R4 Video found at node-1 24 0

(node-1)

R5 Video not found in node-1 16+16+16=48 3

Search packet to nodes 0,5,6 - Not found (node1+node0+node2)

Search packets to nodes 2,3,7

Video found at node-2

shown if Fig 9. It is clearly seen from the graph that HARM
shows average delay of 5 seconds compared to the hierarchical
model which has a average delay of 10 seconds. The average
delay is reasonably low because HARM adopts the hypercube
architecture which has �logN� neighbors where N is the total
number of nodes compared to hierarchical model which has
N − 1 neighbors. The search space is also reduced because
the open hashing technique is adopted.

Fig. 10, depicts the rejection ratio for both HARM and the
hierarchical scheme. As seen in the graph there is a wide gap
in terms of rejection ratio in both the schemes. The rejection

ratio is 2% which is negligible. In HARM most of the requests
are serviced as in each of the server when the buffer is full,
video replacement algorithm is used in order to replace least
popular video with the requested video.

VIII. CONCLUDING REMARKS

The proposed Hypercube architecture has been simulated
and tested with analytical methods. The results of the sim-
ulation indicate that a service provider using the hypercube
architecture will be able to utilize the bandwidth up to 95%
under heavy load. The characteristics of the scheme are as
follows:

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40 45 50

A
v
e

ra
g

e
 D

e
la

y
 (

S
e

c
)

Number of Video Requests/Sec

Hierarchial
HARM

Fig. 9. Delay

 50

 100

 150

 200

 250

 100 200 300 400 500 600

A
v
e

ra
g

e
 r

e
je

c
ti
o

n
 r

a
te

 (
re

q
/m

in
)

Time (min)

Hierarchical
HARM

Fig. 10. Rejection Ratio

• to design a fully decentralized resource management
system that guarantees scalability, robustness as well
negligible delay of 5 seconds to the clients.

• maximize the total number of concurrent streams with
high throughput.

• to provide improved system resource utilization - storage
and bandwidth.

• eliminate the necessity of client side storage.
Our future work is to evaluate how the proposed archi-
tecture can be used in real time applications considering
heterogeneous nature of the network.

REFERENCES

[1] A. Dan, D. Sitaram, P. Shahabuddin, Dynamic Batching Policies for an
On-demand Video Server, ACM Multimedia Systems, vol 4, pp. 112-
121, 1996.

[2] Tarek F Abdelzaher, Kang G Shin, Nina Bhatti, ”User-Level QoS-
Adaptive Resource Management in Server End-System”, IEEE Trans-
action on Computers, 2003, pp. 678-685.

[3] Thomas Plagemann, Vera Goebel, Pal Halvorsen,”Operating System
Support for Multimedia Systems”, Computer Communications Journal-
IDMS, 1998, pp. 1-26.

[4] Te Chou Su, Shih Yu Huang, Cheg Lung Chan, Jia Shung Wang
,”Optimal Chaining Scheme for Video-on-Demand Applications on
Collaborative Networks”, IEEE Transaction on Multimedia, vol. 7, no.
5, 2005, pp. 972-980.

[5] Hari Kalva, Borko Furht, ”Techniques for Improving the Capacity of
Video-on-Demand Systems”, Intl. Conference on System Sciences, 1996,
pp. 308-314.

[6] Enrique Hernandez Orallo, Joan Vila Carbo, ”A Fast Method to Optimize
Network resources for Video-on-Demand Transmission”, Euromicro,
2000, pp. 123-131.

[7] Cyrus Shahabi, Farnoush Banaei Kashani, ”Decentralized Resource
Management for a Distributed Continuous Media Server”, IEEE Trans-
action on Parallel and Distributed Systems, vol. 13, no. 6, 2002, pp.
1-18.

[8] Hongtao Yu, Chor Pinf Low, Yacine Atif,”Design Issues on Video-
on-Demand Resource Management”, In the Proc. fo the 8th IEEE
International conference on Networks, 2000, pp. 199-203.

[9] Rajesh Raman, Miron Livny, Marvin Solomon, ”Matchmaking: Distrib-
uted Resource Management for High Throughput Computing”, Proc.
of the Seventh IEEE International. Symposium on High Performance
Distributed Computing, 1998, Chicago, pp 140-146.

[10] Adrain J Cahill, Cormac J Sreenam, ”An Efficient Resource Manage-
ment System for a Streaming Media Distribution Network”, Interactive
Technology and Smart Education, 2006, pp. 31-44.

[11] Leena Golubchik, John C S Lui, ”Bounding of Performance Measures
for Threshold-Based Queuing Systems : Theory and Application to
Dynamic Resource Management in Video-on-Demand Servers”, IEEE
Transaction on Computers, vol. 51, no. 4, 2002, pp. 353-372.

[12] Mary Y. Y Leung, John C. S Liu, Leana Golubchik,”Use of Analytical
Performance Models for System Sizing and Resource Allocation in Inter-
active Video-on-Demand Systems Employing Data Sharing Techniques”,
IEEE Transaction on Knowledge and Data Engineering, vol. 14, no. 3,
2002, pp. 615-635.

[13] Yunkai Zhou, Harish Sethu,”On Achieving Fairness in the Joint
Allocation of Processing and Bandwidth Resources: Principles and
Algorithms”, IEEE/ACM Transaction on Networking, vol. 13, no. 5,
2005, pp. 1054-1067.

