
Applying a Randomized Hough Transform based on Edge Segment
Merging Scheme for Ellipse Detection

Z. heidari1, B. Gholami2, A. Kazerooni2

1-Islamic Azad university, branch of Khormoj
2-Islamic Azad university, branch of kazeroon

Abstract - This paper proposes a new ellipse detection
scheme using a Randomized Hough Transform (RHT)
modified to use line segments. It detects line segments
in an edge image and selects every pair of them to test
whether they are pertained to the same ellipse of not
using the RHT. If they pass the test, they are merged.
Since the proposed algorithm uses line segments, it
reduces the computation time of the RHT significantly,
and detects all ellipses included in an image without
missing. The experimental results have shown that its
performance is more prominent in detection of ellipses
when they are overlapped and partially occluded.

Keywords - Ellipse detection, Segments Merging,
Randomized Hough Transform, Occluded Ellipse.

1 Introduction
Elliptical shapes appear in most images dealt with in
computer vision. Not only in most industrial parts such
as volts, rings and tires etc., included they are but also
in natural object such as a human body. To detect
elliptical shapes included in a 2D image, Hough
transformation as well as its variations has been used
most popularly and they have shown reasonable
performances.
Standard Hough Transform (SHT) [1] used the
concept of Hough Transform that projects the edge
pixels on a X-Y plane onto the parameter (a,b) plane to
find straight line segments. To find an ellipse, it
projects every edge pixel on a X-Y plane onto the 5D
parameter space consisted with 5 parameters of a
conic equation. Since each pixel requires 5 memory
spaces, the total memory size becomes pretty large and
computational complexity also increases significantly.
Probabilistic Hough Transform (PHT) [3] was
provided as a solution for a large computational
complexity problem. Instead of using all edge pixels,
PHT selects a specific set of edge pixels using
probabilistic models to project onto a parameter space.
Since the number of pixels to be used in the

determination of the ellipse parameters is reduced, the
time complexity is reduced, but the memory size is
large since each pixel is still requires 5 memory spaces.
Generalized Hough Transform (GHT) [4] is another
variation for fast detection of object shapes in an
image. If a model shape to detect in an image is
determined, GHT constructs its R-Table first where
individual pixels are represented as a set of distance
and angle with reference to a selected reference point.
Then the R-Table is used as the model to search the
image. It reduced the space and time complexity by
reducing the number of parameters required for each
pixel, and included arbitrary shapes in its application
domain. However, it has a disadvantage that it should
provide separately all models of ellipse shapes to
detect.
As a solution of these space and time problems
involved in ellipse detection, Randomized Hough
Transform (RHT) [5, 6] was proposed. It represents an
ellipse using a second order polynomial equation
which has three parameters so that they can be derived
if the coordinates of three edge pixels are given. That
is, it reduces the computational complexity by
dividing a 5D space, required by the traditional Hough
Transformation, by a 2D space for the epicenter of
ellipse and a 3D space for the rest of the ellipse
parameters. It also selects edge pixels in random, not
by probabilistic model, to reduce the computational
time. However, a random selection of three edge
pixels causes a detection of false ellipses when objects
are overlapped.
This paper proposes a new method of grouping edge
pixels by line segments and merging them if they are
in the same ellipse. Whether two line segments are in
the same ellipse or not is tested by comparing their
parameters of RHT. Because it can estimate the exact
number of ellipses in the image through the number of
the merged segment set, it reduces significantly the
probability of false ellipse detection. Also, this method
can reduce the total execution time because it

estimates the ellipse parameters in the line segment
level not in the individual edge pixel level.
The rest of this paper is organized as follows: Section
2 describes the overview of the system and the
preprocessing of an input image. Section 3 illustrates
the line segment detection scheme and Section 4
explains how to use the line segments to detect ellipses
using RHT. Section 5 shows the experimental results
and Section 6 gives the conclusion.

2 System Overview and Preprocessing
2.1 System overview
The schematic diagram of the proposed algorithm is
summarized in Fig. 1. The algorithm begins with the
edge detection and thinning process in the first stage to
find the boundaries of the objects in the image. The
detected edge pixels are grouped by line segments
using a corner pattern detector and individual line
segments are labeled so that each of them may belong
to only one ellipse later. In the second stage, every pair
of edge segments is tested to see whether they satisfy
the ellipse condition to merge. If so, they are merged.
This test and merge process is repeated until all line
segments are tested.

Fig. 1 Schematic diagram of the proposed algorithm

2.2 Preprocessing
The preprocessing includes the edge detection and
thinning processes. For detecting edges in the input
image, a modified Canny operator is used which
removes noise using a Gaussian filter and estimates
the local maximum edge point using the magnitude
and orientation of the first differential of each pixel.
Fig. 2 (b) is shows the result of applying the Canny
edge detector for an input image given in Fig. 2 (a).

(a) Origin image (b) Edge image (c) Redundant pixels

Fig. 2 Canny edge detector

For grouping the edge pixels by line segments to use
for RHT, a thinning operation is required. As shown in
Fig. 2(c) which is the zoom-in image of a junction
included in Fig. 2(b), Canny edge detector leaves
redundant pixels around corners which hinders from
correctly segmenting the boundary edge pixels. Those
pixels shown in the corners making L shape as shown
in Fig. 3 are considered as the redundant ones and they
are eliminated. By removing these redundant pixels,
the time required for finding line segments can be
reduced.

Fig. 3 Redundant pixels to be removed

3 Grouping Edge Pixels by Line
Segments
To find ellipses using RHT, three edge pixels should
be selected in the object image. As shown in Fig. 2, if
there are ellipses more than one, the RHT has a high
chance of selecting pixels from different ellipses to
construct an ellipse, resulting in false ellipses with
spending a large amount of processing time. To solve
this problem, edge pixels are grouped by line segments
first in this paper using the process given in Fig. 4 and
the RHT uses these line segments instead of edge
pixels to detect ellipses.

Fig. 4 Process of grouping edge pixels by line segments

To find line segments from the edge image, the
process illustrated in Fig. 4 finds the crossing pixels in
the first step. For this purpose, edge pixels are
classified by four patterns, using the 8-connectivity
window. The first one is the normal type having two

neighboring edge pixels as shown in Fig. 5(a), the
second one is the crossing type having more than three
neighboring edges as shown in Fig. 5(b), and the third
one is the end type having one neighboring edge as
shown in Fig. 5(c).

(a) Normal (b) Crossing (c) End

Fig. 5 Types of edge pixels

The fourth one is a corner type to be defined by a
difference chain code on the way of grouping process,
since it cannot be determined simply by a 3x3 window.
The difference chain code expresses an angle
difference between two vectors, A and B, each of
which can take one of 8 directional vectors shown in
Fig. 6(a). The angle difference between these two
vectors can be represented by one of 7 difference
codes ranging from -3 to 3 including 0 as shown in Fig.
6(b).

(a) Vector definition (b) Code

Fig. 6 Definition of a difference code

Fig. 7 shows an example of describing a sequence of
edge pixels using the difference chain code. A part of
the edge image is described by the difference chain
code.

Fig. 7 Example of representing a curve using a difference

chain code: 1-10001100-110-1

By empirically testing the images, the difference chain
code patterns of corners appearing in a 5x5 window
are summarized in Fig. 8.

(a) 020 (b)02-1,1-20 (c)011,-1-10 (d)101, -10-1 (e)110, -1-10

(f)101,-10-1 (g)120,0-2-1 (h)-121,-1-21 (i)-12-1, 1-21

Fig. 8 Corner patterns in a 5x5 window

Based on the types of edge pixels, the grouping and
labeling process begins with testing the leftmost top
edge pixel in the input image to see which type it is. If
it is a normal type, it is considered as a starting pixel of
a new line segment and the edge pixel located first in
the counterclockwise rotation with reference to X axis
is selected to be tested until an edge pixel of crossing
or end type is found, while merging the edge pixel as
the same line segment if it is a normal type. Once a
crossing or end type is found, the process returns to the
first edge pixel of the line segment and begins the
same procedure with the edge pixel located in the
other direction. One line segment is completed when
the tests along both neighboring edge pixels are
finished. If the first edge pixel is a crossing type, it is
the first pixel of three different line segments and its
neighboring pixels are tested one by one repeatedly.
Fig. 9(b) shows the line segment image obtained by
applying the proposed algorithm to the edge image in
Fig. 9(a) where there is no edge pixel of corner type.

(a) Crossing edges (b) Labeled line segments

Fig. 9 Edge grouping based on crossing edges

On the grouping process, if an edge pixel of corner
type is found, then it stops the testing and merging
operation. The edge pixel of corner type becomes the
starting pixel of a new line segment from which the
grouping process begins again. For example, let’s
consider an edge image given in Fig. 10(a) where edge
pixels of corner type are included. In this case, if the
pixels of corner type are not detected correctly, then
the wrong line segments which include sudden
curvature changes are resulted. In Fig. 10(b), line
segments 1 and 2 include one corner pixel
respectively.

(a) Edge image (b) Wrong result (c) Corner finding (d) Correct result

Fig. 12 Grouping process considering corner pixels

If representing the line segment 1 in Fig. 10(b) with
the difference chain code, 1-10001100-110-1 is
resulted where 110, one of corner patterns, is included.
At the edge pixel where this pattern is found, the line
segment is divided and the correct resulting line
segments are obtained as given in Fig. 10(d).

4 Ellipse Decision
4.1 Randomized Hough Transform
Ellipses in a X-Y plane can be completely represented
by the following quadratic equation with five
parameters (a,b,c,d,e) as other 2nd order curves can be.

2 2 1 0ax by cxy dx ey+ + + + + = (1)

Eq. (1) can be restructured into Eq. (2) to explicitly
include the coordinates of the ellipse center (p,q). Eq.
(3) is given as the ellipse condition of Eq. (2). Still five
parameters (A,B,H,p,q) are required to represent an
ellipse.

() ()() ()2 22 1A x p H x p y q B y q− + − − + − = (2)

2 0AB H− > (3)

Since as the number of parameters increases the
computational complexity in Hough Transformation
also does rapidly, Yuen et al [2] proposed a method of
representing an ellipse with 3 parameters to use for
Randomized Hough Transformation. It takes two
points (x1,x2) on an ellipse and finds their midpoint
(m1)and intersection(t1) of their tangents, as shown in
Fig. 11.

Fig. 11 Estimate center of ellipse

The line connecting m1 and t1 passes the center (O) of
the ellipse. Therefore if three points (x1,x2,x3) on an

ellipse are given, its center can be determined as the
intersection of two lines,

1 1t m and
2 2t m as shown in

Fig. 11. Thus, the parameters (p,q) in Eq. (2) can be
removed and Eq. (4) can be used to represent an ellipse
where three parameters (A,H,B) are sufficient.

2 2Ax Hxy By2 1+ + = (4)

These three parameters in Eq. (4) can be obtained in
the parameter space if any three points on an ellipse
are given in X-Y plane, using Eq. (5).

2 2
1 1 1 1
2 2
2 2 2 2
2 2
3 3 3 3

2
2 1
2 1

x x y y A
x x y y H
x x y y B

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

1 (5)

4.2 RHT with line segments
To test if a pair of line segments consists of the same
ellipse of not, the process given in Fig. 12 is used
where RHT takes the main role in ellipse decision.

Fig. 12 Block diagram for ellipse decision

In the first step, the line segments are sorted by length
in a decreasing order and their ellipse parameters of
RHT are calculated using Eq. (5). If a line segment
satisfies the ellipse condition given in Eq. (3), it stays
in the list. Otherwise, it is considered not a part of an
ellipse and omitted from the list. The merging
operation considers the first, longest one in the list as
the reference line segment. One of the rests in the list
is selected and its ellipse matching ratio (EMR)
defined in Eq. (6) is calculated.

c

w

NEMR
N

= (6)

In Eq. (6), Nw is the total number of pixels included in
two line segments and Nc is the number of those pixels
of segments pair that can be included in the reference
ellipse ER which is derived by RHT from the reference
line segment. Thus, Nc can be represented by Eq. (7).

()
1

wN

c
i

N Near
=

=∑ i (7)

()
1 if
0 otherwise

PQ thNear i
⎧ <

= ⎨
⎩

 (8)

In Eq. (8), if Q is the pixel to be tested and P is the
pixel of the reference ellipse at the intersection with
the line from the center of the ellipse and P, PQ is the
distance between the reference ellipse and the pixel
included in the selected line segment, as shown in Fig.
13(a). If the selected line segment has an EER with the
reference ellipse within the threshold to be determined
empirically, then it is merged to the reference line
segment.
Fig. 13 shows the example images acquired as the
results of the line segment merging two line segments.
The first image in Fig. 13(b) includes two line
segments and line segment 1 (longest one) is selected
as the reference one to derive the reference ellipse C
given in the second image. Then line segment 2 is
selected and its EMR is calculated which is smaller
than the threshold 0.95. Thus it cannot be merged with
Line segment 1. Fig. 13(c) shows the cases where the
line segments can be merged.

(a) Distance (b) Do not merging

(c) Merging

Fig. 13 Merging decision

5 Experiments
The performance of the proposed algorithm has been
tested with the ellipse image sets given in Fig. 14
where ellipses with various parameters are overlapped
arbitrarily. It is also compared with those of SHT [1]
and RHT [6], in terms of accuracy of detecting ellipses
and counting their number in the image. The execution
time is also calculated to compare the computational
time.

Fig. 14 Test images used in the experiments

Fig. 15(a) shows the rates of correct detection of
ellipses, plotted with changing the number of ellipses
in the image. The figure shows that the performance of
the proposed algorithm gets better outstandingly
compared to the two conventional ones, as the number
of ellipses in image increases.

(a) Rate of correct detection

(b) Number of estimated ellipse

(c) Accuracy of ellipse detection

Fig. 15 Performance comparison (S: SHT, R: RHT, P:
Proposed)

Fig. 15(b) displays the number of ellipses that is
estimated in each image. From this figure, the
accuracy (S) of the ellipse detection can be calculated
as given in Eq. (10) and is illustrated in Fig. 15(c).

= d

e

NS
N

 (9)

In Eq. (9), Nd and Ne denote the number of correctly
detected ellipses and the number of total ellipses in an
input image, respectively.
To show visually the performances given in Fig. 16,
the ellipses actually detected by the RHT algorithm
and the proposed algorithm as depicted in Fig. 16. It
shows that RHT algorithm detects ellipses with the
pixels located in different ellipses, resulting in
detecting more ellipses than actual ones.

(a) RHT algorithm (b) Proposed algorithm

Fig. 16 Actually detected ellipses

In the experiments, the computation times of three
algorithms are also measured. Since the order of the
spent time for SHT is out of the range, those of other
two methods are depicted in Fig, 17.

Fig. 17 Processing time

 Fig. 17 shows that the proposed algorithm is faster
than the RHT of using edge pixels, as expected, since
the number of elements to be tested is reduced
significantly by grouping the edge pixels by line
segments. The execution time is measured while
executing the algorithm implemented with Visual C++
in Pentium PC.

The experiments have shown outstanding results in
terms of both detection accuracy and execution time.
But it is also conformed in the experiments as the
problems that should be solved that its performance
depends on the accuracy of edge detection and it needs
to reserve all the corner patterns.

6 Conclusion
This paper has proposed a new ellipse detection
algorithm using the RHT based on line segments. The
algorithm intended to solve the problems of RHT
which has a tendency of detecting false ellipses with
edge pixels pertained to different ellipses and whose
computational complexity depends on the number of
edge pixels. These problems have been solved in this
paper by reducing the number of inputs to RHT by
grouping the edge pixels by line segments. The
experimental results have shown that the proposed
algorithm is superior to two conventional algorithms,
SHT and RHT, by at least two times on average in
terms of accuracy and processing time, even when
ellipses are overlapped in an input image.

References:
[1] P.V.C. Hough, "Method and Means for

Recognizing Complex Patterns," U.S. Patent
3069654, Dec. 18 1962.

[2] H. K. Yuen, J. Illingworth, and Kittler,
“Detecting partially occluded ellipses using the
Hough Transform,” Image and Vision
Computing, vol. 7, no. 1, pp. 31-37, Feb. 1989.

[3] N. Kiryati, Y Eldar, and A. M. Bruckstein, “A
probabilistic Hough Transform,” Pattern
Recognition, vol. 24, no. 4, pp. 303-316, 1991.

[4] Sheng-Ching Jeng, Wen-Hsuang Tsai, "Scale
and orientation-invariant generalized Hough
Transform-A new approach," Pattern
Recognition, vol. 24, no. 11, pp. 1034-1051,
1991.

[5] Lei Xu, Erkki Oja, and Pekka kultanena, “A new
curve detection method: Randomized Hough
Transform (RHT),” Pattern Recognition Letters,
vol. 11, no. 5, pp. 331-338, May. 1990.

[6] RA. McLaughlin, “Randomized Hough
Transform: better ellipse detection,” Digital
Signal Processing Applications, vol. 1, pp.
409-414, Nov. 1996.

