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Abstract- Akaike’s Information Criterion (AIC) is a popular
method for estimation the number of sources impinging on an
array of sensors, which is a problem of great interest in several
applications. The performance of AIC degrades under low
Signal-to-Noise Ratio (SNR) conditions due to errors in
estimating the data covariance matrix from finite data. This
paper explores the possibility of employing the wavelet denoising
technique to arrest the degradation in the finite-data
performance of AIC under low SNR. We propose the application
of wavelet denoising to the noisy signal at each sensor to boost
the SNR before performing estimation of the number of the
sources by AIC. A comparative study of the finite data
performance of AIC is presented for the undenoised and
denoised data, and it is shown that denoising leads to the
enhancement of the AIC method.
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I. INTRODUCTION

The problem of detecting the number of sources impinging on
an array of sensors has received wide interest in many
research problems. Termed as a model order selection
problem, Akaike’s Information Criterion (AIC) is the most
widely known information theoretic methods to solve this
problem in a noisy environment, using an array of L sensors
[1]. The method involves eigen decomposition of the spectral
covariance matrix R of the L dimensional data vector. The
matrix R is estimated from a finite number of samples of the
data vector. For a given data size N, reduction of the signal
to- noise ratio (SNR) at the sensor array output causes an
increase in the covariance matrix estimation error and a
corresponding increase in the AIC estimation error. The
estimation errors may be reduced by increasing N, but
requirements of temporal coherence and speed impose an
upper limit on the permissible value of N. Inevitably, the
performance of The AIC estimator suffers a progressive
degradation as the SNR is reduced.
In this paper, we explore the possibility of using a wavelet
denoising technique to improve the performance of AIC in a
low SNR environment. The wavelet denoising algorithm of
Donoho and Johnstone [2] is used to enhance the SNR at the
output of each sensor. It is shown that denoising leads to a

significant improvement in the performance of the AIC
estimator.

II. AIC PRINCIPLE

Consider an array of L sensors that receives signals
transmitted from M narrowband far field sources with
direction parameters M ......,,1 . The complex signals
received at the L sensor elements at time t can then be
expressed as the L-dimensional vector:
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Where, tsm is the scalar complex waveform referred to as

the m-th signal,  ma  is the steering vector corresponding

to direction m , and tn is the L-dimensional complex
vector containing noise.
We assume that the M (M < L) signals
 tsts M.......,,1 , are complex (analytic), stationary,

and ergodic Gaussian random processes, with zero mean and
positive definite covariance matrix. The noise vector n(t) is
assumed to be complex, stationary, and ergodic Gaussian
vector process, independent of the signal , with zero mean and
covariance matrix given by I2 , where 2 is an unknown
scalar constant and I is the identity matrix.
A crucial problem associated with the model described in (1)
is that of determining the number of signals M from a finite
set of observations   Ntxtx ...1 .
A promising approach to this problem is based on the
structure of the covariance matrix of the observation vector
x(t). To introduce this approach, we first rewrite (1) as:

  tntAstx  (2)

Where    MaaA  ,..........,1 and

   tststs M
T ......,,1 .



Because the noise is zero mean and independent of the
signals, it follows that covariance matrix of x(t) is given by:

IR 2 (3)

Where ψ= ASA†. With † denoting the conjugate transpose,
and S denoting the covariance matrix of the signals, i.e,
S = E[s(t)s(t)†].
Assuming that the matrix A is of full column rank, i.e., the
vectors   Mma m ......,,1 are linearly
independent and that the covariance matrix of the signals S is
nonsingular, it follows that the rank of  is M, or

equivalently, the L-M smallest eigenvales of are equal to
zero. Denoting the eigenvalues of R by L  ........21

it follows, therefore, that the smallest L-M eigenvalues of R
are equal to 2 , i.e.,

2
21 ......    LMM (4)

As stated earlier that in practice only sample estimates which
is denoted by a hat “^” are available. An estimation of R is
presented in (5).
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The number of signals M can hence be determined from the
multiplicity of the smallest eigenvalues of R. The problem is
that the covariance matrix R is unknown in practice. When
estimated from a finite sample size, the resulting eigenvalues
are all different with probability one, thus making it difficult
to determine the number of signals merely by “observing” the
eigenvalues. Amore sophisticated approach to the problem
developed by Rartlett and Lawley [3], is based on a sequence
of hypothesis tests. The problems associated with this
approach are the subjective judgment needed in the selection
of the threshold levels for the different tests.
The Akaike’s Information Criterion (AIC) method [4] used
for estimation the number of sources. The method required
computation of the likelihood ratio for the (L-M) lowest

eigenvalues of


R , and this has been shown to be:
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Where iU denote the eigenvalues of


R which is the ratio of
the arithmetic and geometric mean of the eigenvalues [5].
Aaike’s information criterion (AIC) can be written as:

),(2)(ln)(2)( LPvUPLNPAIC P   (7)

Where ),( LPv denotes the number of independent

parameters that are to be estimated for a given P . This is
found to be [6]:

.1)2(),(  PLPLPv (8)

The optimal solution is the value of P that minimizes (7).

III.WAVELET DENOISING

The wavelet transform is a time-scale representation
technique, which describes a signal by using the correlation
with translation and dilation of a function called mother
wavelet. The translation operation allows signal features to be
isolated in time, while the dilation operation allows features
existing at different scales to be identified. In this way, the
wavelet transform represents a signal as a sum of wavelets
with different locations and scales [7,8,9]. The definition of a
discrete wavelet transform is given by:
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Where kjC , are wavelet coefficients and

  ktgtg jj
kj   22 2/

, is the scaling function. We

consider the following model of a discrete noisy signal.

Qttetstx ,...,1),()()(   (10)

Where x(t) represents the noisy signal, s(t) is the deterministic
useful signal s(t), the white Gaussian signal, e(t) modeled as
N(0,1), will be distributed across scales with a white spectrum
and its energy will be preserved, here we assume that



kjkj CC ,,  . We use soft thresholding method to eliminate
noise from the wavelet coefficients by replacing the
coefficients that are in the range of  , with zero [2].

Therefore the wavelets coefficient Cj,k , between  and
is set to zero, while the others are shrunk in absolute value.
Figure (1) shows the Donoho’s “soft thresholding” or
“shrink” function.

Figure 1: Soft- threshold function

The threshold  proposed by Donoho is
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The algorithm used for denoising of the signal by wavelet
thresholding is outlined below:
1. Perform a suitable wavelet transform of the noisy data x(t)
[10].
2. Calculate the threshold d depending upon the noise
variance.
3. Apply thresholding to the resulting wavelet coefficients
4. Perform inverse wavelet transform to obtain the denoised
signal.
Figure (2) shows input and output of the algorithm above.

(a)

(b)
Figure 2: (a) Noisy input signal and (b) Denoised output signal.

IV.THE PROPOSED MODEL

Figure (3) shows the block diagram of the proposed model for
AIC method. The main procedure of the system is described
as follows. First, the received signals by antennas. Next,
computation of the covariance matrix. Then, wavelet
denoising by one type of wavelet family for the covariance
matrix. Finally, AIC method is calculated to estimate the
number of signals.

Covariance Matrix Compution

Wavelet Denoising

AIC Method

Output of the Number Signals

Figure 3: Block Diagram of the Proposed Model for AIC Method

V. SIMULATION RESULTS

The response of the AIC method is investigated according to
the proposed model by using type of wavelet. A ULA of 10
sensors is considered with a half-wave length inter-element
spacing, used to separate two uncorrelated emitters based on a
batch of N=128 data samples with SNR=10 dB. The first



source is at 80o while the second source is at 82o . The type of
wavelet used in proposed model includes “db”.
The first case is without applied proposed model for AIC
method. It is noticed the eigenvalues of the sample –
covariance matrix are 6.6883, 0.0348, 0.0085, 0.0097, 0.0122,
0.0160, 0.0139 and 0.0148, and the response of AIC method
shown in table (1), the minimum value of AIC is obtained
incorrectly for M = 2.

Table 1: The Response of the AIC Method without Proposed Model.
P AIC P AIC
0 2731.6 4 99.57
1 2522.7 5 2111.23
2 556.8 6 120.4
3 87.03 7 126

The second case is with applied proposed model for AIC
method by using db4 wavelet. It is noticed these eigenvalues
of the sample – covariance matrix are 6.7416, 0.0211, 0.0013,
0.0016, 0.0026, 0.0019, 0.0022 and 0.0023, and response of
AIC method shown in table (2), the minimum value of AIC is
obtained correctly for M = 2.

Table 2: The Response of the AIC Method with Proposed Model.
P AIC P AIC
0 2841.1 4 273.6
1 86.1 5 561.1
2 22.2 6 1113.7
3 91.3 7 2728.4

If the response of AIC method without the proposed model is
compared with the response of the proposed model by using
db4 wavelet, it is seen that the first does not yield the correct
number of the sources but the proposed model gives the
correct number of the sources as seen in Table (1) and Table
(2).

VI.CONCLUSION

We have introduced a new technique to determine the number
of sources in a noisy environment by applying (AIC) to the
output of wavelet denoising, based on the ideal that wavelet
denoising improves the SNR of a noisy signal. We proceeded
to perform wavelet denoising of the signal from each sensor
of the array independently. Wavelet denoising helps to reduce
the error of the covariance matrix estimation. The wavelet of
db4 yield higher response for AIC method.
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