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Abstract—Future distribution network markets will need to
be flexible enough to enable the participation of small-scale
customers with distributed energy resources. We propose using
a receding horizon market that can manage the state-dependent
decisions and large uncertainties of these participants. Unfor-
tunately, this added flexibility creates new opportunities for
agents to manipulate the actions of others by misrepresenting
their true preferences for energy. This paper investigates this
form of market manipulation in detail by first formalising the
notions of receding horizon inconsistency and manipulation. We
present a method for experimentally calculating the impact of
a manipulative agent, and run it on two market settings, one
based on a wholesale market and the other on a market provid-
ing distribution network support. We develop simple privacy-
preserving indicators to identify inconsistency and manipulation,
and demonstrate a difference in the behaviour of uncertain and
manipulative agents. When using these indicators in a test for
receding horizon manipulation, we correctly identify more than
95% of the days in which the greedy agents undertake the most
harmful form of manipulation. Market operators can use these
tools to run the system closer to its social optimum by restricting
or penalising manipulative actions.

Index Terms—Demand Response, Receding Horizon, Manip-
ulation, Multi-Agent Systems, Markets, Distributed Energy Re-
sources

I. INTRODUCTION

HOLESALE electricity markets are used throughout

the world for the safe and efficient coordination of
supply and demand. Network operators are starting to consider
how similar markets, operating down at the distribution level,
could help to manage capacity and voltage constraints as
well as better align load with generatiorﬂ Distributed energy
resources (DERs), such as PV, battery storage, electric vehicles
and smart appliances, are providing the necessary flexibility
to make this possible. There is a great opportunity to provide
new solutions to existing network problems, as well as to avoid
future network problems that a large uptake of uncoordinated
DERs can cause.

Crucially, any such distribution market needs to be designed
to make it easy for residential and other small-scale electricity
customers to participate. One aspect is the use of customer
energy management systems (EMSs) to automate market in-
teractions. Another is ensuring that the market can operate
well despite the large uncertainties that small-scale customers
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'In addition to ongoing industry-partnered research projects on this topic,
the Australian Energy Market Commision (AEMC) is currently undergo-
ing a project to explore possible market models http://www.aemc.gov.au/
Markets-Reviews- Advice/Distribution- Market-Model.

are exposed to. This paper investigates a market mechanism
that operates over a receding horizon in order to provide the
flexibility for participants to recover from uncertain events.
It focuses on market manipulation in this market, because
enhanced flexibility not only enables uncertain agents to
participate, it also creates new opportunities for manipulation.

Existing wholesale markets help generators and large loads
manage their uncertainties by offering a range of different
markets operating at different time scales, including long-term
futures, day-ahead, intra-day and frequency control markets.
Day-ahead markets aid price discovery and enable participants
to plan out their actions over a forward horizon — something
that is particularly important when the generating equipment
or loads under their control are state-based in nature (e.g.,
generator ramping rates and battery state of charge). Intra-
day markets enable participants to recover from any uncertain
events that occur in closer to real-time. This allows them to
trade power that they would otherwise not be able to fully
commit to in a day-ahead market.

In the European Power Exchange (EPEX) the day-ahead and
intra-day markets are separate, while in the National Energy
Market (NEM) [1] in Australia they have been integrated.
In the NEM, generators submit day-ahead offers, but they
may rebid throughout the trading day to adjust their offered
capacity. The market is cleared in close to real-time (every 5
minutes) instead of committing generation to a future dispatch.
Compared to wholesale markets, participants in a distribution
market are exposed to even higher degrees of operational
uncertainty due to their small size. For this purpose we
propose a market that operates over a receding horizon, which
is a generalisation of the NEM approach to provide more
flexibility. Receding horizon approaches have been suggested
and experimented with in closely related contexts including
generator dispatch control, real-time price demand response
and distributed network management [3], [30], [31].

Figure [I] shows the structure of the receding horizon ap-
proach, where a horizon consists of a number of time steps
spanning a forward period of time (e.g., 24 hours). Participants
provide their bids for the horizon and the market is cleared,
but agents are only required to commit to the outcome of a
horizon’s first time period. The problem then moves onto the
next horizon and the process repeats. This not only makes it
possible for smaller consumers to participate, it also provides
a better outcome because the dispatch can be reoptimised in
near-to real-time]

2This real-time decision making and model-based approach has made
receding horizon (model predictive control) techniques widely successful in
the field of control [2].
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Figure 1: A receding horizon market considers the exchange of power
over a forward horizon of 7' time steps, which recedes as the first
time step is reached in real-time. The market clears each horizon, but
agents only need to commit to the outcome of the first time step in
each horizon.

Such markets that allow rebidding throughout the day enable
new market manipulation opportunities above and beyond
what is possible in a one-shot day-ahead market. A receding
horizon approach provides agents with a great amount of
flexibility to recover from uncertain events, but with this
comes a range of opportunities for agents to manipulate prices
for their own favour; normally at the expense of the social
optimum. In a typical scenario, a strategic agent exaggerates
how much energy they require in a future time step in order to
temporarily inflate the price. Flexible agents will then commit
to consuming earlier, which will lower the demand and price
for power in the later time step once the strategic agent reverts
to their true requirements. We consider this illegitimate market
behaviour, but the challenge is that such behaviour can in
general be indistinguishable from the legitimate actions of
agents that are uncertain about their energy requirements.

This paper investigates how much of a problem manipula-
tion of a receding horizon electricity market is, and what can
be done about it. It focuses on a class of receding horizon
market mechanisms that pay/charge participants at a marginal
clearing price, which are characterised as producing Karush-
Kuhn-Tucker solutions when clearing the market (sections
and [[I). In general these mechanisms are not incentive
compatible, but there exist mechanisms in this class that
are computationally efficient, budget balanced, and, assuming
convex preferences, produce socially optimal outcomes when
agents act truthfully. These mechanisms can make use of
distributed optimisation techniques, enabling them to scale for
use in distribution markets with many participants [3[]-[7].

Our contributions are threefold, starting with a thorough
formalisation of receding horizon inconsistency and manipu-
lation (section for this class of mechanisms.

Our second contribution is the presentation of a method for
calculating an optimal strategy for a manipulative agent in a
complete information setting (section [V]). This agent is used to
empirically investigate how much a single agent can gain by
manipulating the mechanism, and how this harms the social
objective (section [VI). In the market settings we investigate,
we find that when agents form a coalition with a large enough
share of the market energy, they can gain an advantage by
manipulation. However, in practice incomplete information
and a high computational burden will make it challenging for
them to obtain the full benefits demonstrated here.

Our third contribution is the development of privacy-
preserving indicators that can test whether an agent is ma-

nipulative when we limit the uncertainty that agents exhibit
(section [VII). Supporting theoretical and empirical results
show how this approach can identify agents that are driving
change, and distinguish a manipulative agent from an uncertain
agent (section [VII). This provides the full benefits of a
receding horizon mechanism whilst significantly limiting the
opportunities for manipulation.

The final sections of this paper discuss related work in light
of our contributions before concluding.

II. MARKET PROBLEM

The goal of electricity markets is to facilitate the safe
and efficient supply and consumption of electricity. For our
problem this translates to ensuring supply remains in bal-
ance with demand at all moment and that the outcome
maximises the social welfare of participants. If we assume
we have full access to the power usage preferences of all
participants (ignoring the complicating agent interactions with
the market), we can define the desired market outcome as a
constrained optimisation problem, which we refer to as the
power balancing problem.

This section explains the power balancing problem and
some simple market participant models that will be used in our
experiments. The section after this will bring back the agent
interactions by introducing a class of market mechanisms that
attempt to solve this power balancing problem in a competitive
market environment.

A. Power Balancing Problem

Consider a market with A participants and a horizon that
consists of 7" equally sized time steps, e.g., 24 time steps each
an hour in duration to make up a 24 hour horizon. Each agent
i € {1,...,A} has for each horizon h € {1,2,...} a power
proﬁleﬂ Py € RT, a cost function f,; : RT +— R and N;
constraint functions Vj € {1,...,N;} : gn;; : RT — R.
We restrict these functions to be continuously differentiable
or convex, which are conditions of the class of market mech-
anisms we introduce in the next section.

An agent’s cost and constraint functions encode their pref-
erence for consuming/producing electricity over the horizon of
interest. Importantly these can change between horizons, both
in order to account for changes in their forecasts and because
each new horizon drops the oldest time step and picks up a
new one (see Figure [I).

A common interpretation of the overall social welfare is as
the sum of each agent’s utility function (in our problem the
negative sum of all agent cost functions). For a given horizon
h, the power balancing problem is then:

A
rgg;fh,i(m) (1)
S.t. gh,i,j<Ph7i) <0 Vie {1, RN A},j S {17 - ,Ni} )
A
> Pi=0 3)
1=1

3More sophisticated techniques can take this one step further and model
safe network power flows, which we discuss as an extension in section E}
4Using load convention where positive is consumption, negative production.
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where the power profiles of each agent across the horizon
form the decision variables, and equation ensures supply
and demand is balanced in each time step. Our definitions and
theoretical results are formulated for this problem, while a
modified terminating receding horizon (TRH) version is used
in experiments to reduce the problem to a finite number of
horizons, enabling a more straight-forward way of comparing
results between experiments.

The TRH version consists of 7' consecutive horizons h €
{1,...,T}, which truncate at time step 7. We model this
as T perfectly overlapping horizons, each of length 7', and
force some of the variables from the later horizons to take on
values from earlier horizons (as illustrated in Figure [2). This
is achieved by adding the following constraint to (I}H{3):

Ph,i,t:Ph—l,i,t Vie{l,...,A},t<h 4)
Time
(Lf2]3] [ [ | [T]
213 [ [ | [T]
sl [ [ [ [7]

Horizon

Teee N M
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Figure 2: Representation of the TRH horizons. Shaded areas represent

the time steps in which variables are constrained to take on values
from the previous horizon (according to equation (Ef])).

In this formulation the cost and constraint functions of each
agent now contain the exact same time steps. This means
that we would only expect these functions to change between
horizons if the agent is uncertain and gains more information
over time or, as we will discuss later, if they are intentionally
attempting to manipulate the mechanism.

B. Agents

We present four simple agents that are used in our experi-
ments. They provide the basic important behaviour of a large
range of other network agents without making the strategic
agent formulation overly complicated to implement or solve.

1) Generator: The generator has a quadratic cost function
f(P) = S (39, P? + 4, P;), where ¥ € RZ; and 1 €
R, which approximates the increasing marginal cost of power
production typically observed in wholesale electricity markets.
The generator also has power limits such that for each time
step P, € [P, P

2) Fixed Load: This agent has no cost function or decision
variables, it simply has a fixed power profile which it must
consume. This represents a network load that has no flexibility.

3) Battery: We use a very simple battery model that has
no losses or deterioration. It has a zero cost function, a
positive capacity £ € R, a starting charge Ey € [0, F],
and charge and discharge power limits P, € [P, P]. The
battery has a series of constraints that ensures that the state
of charge remains within its limits at each time step: 0 <
Ey+Y. P, <E.

SThese limits can be represented in the general agent formulation as a series

of constraint functions, e.g., g1(P) = P — P1, g2(P) = P; — P, etc.

4) Deferrable Load: Deferrable loads have no cost function
but they have constraints that force them to consume a total
amount of energy E = Zthl P, over the horizon, and time
dependent constraints on when it can consume this energy
P; € [0, P;]. Deferrable loads capture the state-based nature of
smart appliances whose load can be deferred in time including
dish washers and hot water heaters.

III. MARKET MECHANISM

A market mechanism defines the rules for how participants
can bid into a market, how the market is cleared and then who
gets paid what. This section goes into some of the details of
our proposed mechanism which we simple refer to as “the RH
mechanism” or “our mechanism” throughout this paper.

For a particular horizon, agents bid into the market by
supplying the mechanism with convex cost and constraint
functions that represent their preferences for power over the
horizon. The mechanism then clears the market by finding
an optimal solution to the resulting power balancing problem.
The solution consists of a power profile for each agent P, ;
and the marginal price of electricity A\, € R”. Agents are
then dispatched at this resulting power and charged/paid at
the marginal price for the first time step in the horizon. This
process then repeats for the next horizon.

A. KKT Conditions

We use Karush-Kuhn-Tucker (KKT) points to mathemat-
ically capture an optimal solution to the power balancing
problems that are solved for each horizon. Under certain
regularity conditions (constraint qualifications) on the problem
functions, a KKT point becomes necessary for optimality [3]],
[9]. Under other conditions such as convexity, a KKT point is
sufficient for optimality [10].

A KKT point for a convex problem (an optimal solution)
can be efficiently computed, and this computation can be dis-
tributed across many nodes using techniques such as ADMM
[11]. In practice this can speed up the computation and
preserves a greater degree of agent privacy, since distributed
optimisation techniques do not need to have direct access
to an agent’s cost and constraint functions. This scalability
is an important consideration in a power systems context,
where there are potentially many thousands of participants
with different preferences for energy over the horizon.

When the cost and constraint functions are continuously
differentiable, the KKT conditions for an agent ¢ in horizon h
are:

N;
V fni(Pri) + Z PhiiVOhii(Phi) +An =0 (5
=
Ghii(Pri) <0 Vjie{l,...,N;} (6)
Khij9hi;(Pri) =0 Yje{l,...,N;} @)
Phij >0 Vie{l,...,N;} (8)

where 15,;; € R and A, € R” are the KKT multipliers for
the agent’s constraints and the power conservation constraint
(3)) respectively. These conditions are commonly referred to as
stationarity (5), primal feasibility (6, complimentary slackness
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and dual feasibility (8). Particular powers P, ; and prices
An satisfy the KKT conditions for agent i if there exists some
Hh,i,; Where equations hold.

The KKT conditions for the overall problem in horizon A is
the combination of KKT conditions for all agents along with
the power conservation constraint (3).

When dealing with convex functions, which might be non-
differentiable, we allow a subgradient to be used in place of
the gradient. Therefore, if f is a convex function, then we
define Vf(P) € 9f(P), where 9f(P) is the subdifferential
(set of subgradients) of f at P. Using this notation the KKT
stationarity condition (5) remains the same.

B. Payments

In this mechanism agents are paid (charged) for their power
production (consumption) at the marginal prices )\, € R7.
The expected cost cj; for an agent ¢ in horizon h is the
combination of their cost function and expected payments:

chi = fni(Pni) + M P 9

which assumes that agents have quasilinear utilities and are
risk neutral. This is the expected cost when solving for horizon
h, because only the first time step in each horizon is acted
on, while the remaining time steps that overlap with future
horizons are hypothetical. In the TRH version of the problem,
the costs associated with the last horizon represent the actual
costs exhibited by agents because the full market problem has
been cleared and committed to at this point (see Figure [2).

Marginal pricing is used in a number of wholesale electricity
markets including in Australia, New Zealand and various
regions of the US. When they are extended to account for
physical power flows across the network they are referred to
as locational marginal prices.

C. Limits

1) Power Limits: In order to participate in the mechanism,
each agent must first negotiate a contract that restricts how
much power they can consume and supply. This contract
establishes limits such that V¢ € {1,...,T} : P, € [P;, Pi].
They can be set at the physical limits of the equipment
connecting the agent to the rest of the network, or to a
subinterval of these physical limits if the agent does not need
the extra capacity.

2) Price Limits: A second limit is on the allowed prices A,
which is commonly referred to as a market cap in wholesale
electricity markets. This can be set at a point where parti-
cipants become indifferent towards being disconnected from
the network (i.e. the point where load shedding takes place). If
the solver finds a KKT point with costs outside the price caps
or if no KKT point is found at all, then the market operator
can shed loads in an attempt to find a feasible solution.

IV. RECEDING HORIZON MANIPULATION

Market manipulation is the deliberate act of artificially
inflating or deflating market prices. Mechanisms that are
incentive compatible are designed in a way so that agents

cannot gain any advantage by manipulating the market. Mech-
anisms such as VCG jointly achieve incentive compatibility
and social optimality; however, VCG only achieves this under
strict conditions (e.g., no coalitions) and has other drawbacks
including computational complexity and a general lack of
budget balance [12]]. Furthermore, VCG does not flexibly
allow the participation of uncertain agents.

The RH mechanism in contrast provides uncertain agents
with the flexibility to participate, but it is not incentive compat-
ible. Agents can manipulate the mechanism by misrepresenting
their true preferences (their “type”) to the mechanism, which
we refer to as acting wuntruthfully. Fortunately, as explored
in section [VII] in a practical setting there are some simple
ways to deter the more extreme acts of manipulation without
significantly impacting uncertain agents.

This section provides an example and formal definition of
receding horizon manipulation of our mechanism, but first
some notation is introduced. When we focus on an arbitrary
pair of consecutive horizons h and h + 1, we drop the
horizon subscript from functions, powers and prices, and
instead indicate the later horizon with a prime (e.g., f; := fr,;
and f/ := fn41,). To make it easier to directly compare
consecutive horizons, we time shift powers and prices from
the later horizon so that they line up with the values from the
earlier horizon (see Figure [3). These vectors are marked with
an asterisk, and for power (same for prices) it is defined as:

" P h,i,t lf t == h

B, = . (10)
’ Ph+1,i,t if h<t<h+T

[Al213] [ T 1 I7]
P20 0 I =1

Figure 3: For consecutive horizons, the shaded time steps represent
the values used for the time-shifted price and power vectors.

We define vectors for the change in power and price as
AP; := P* — P, and A\ := \* — \. We also define the
change in cost with respect to the earlier horizon as Ac; :=
fi(PF) + XN TP — fi(P) — ATP.

A. Truthfulness and Uncertainty

We use a hat to indicate an agent’s best estimate of their
cost and constraint functions for a particular horizon, e.g., fh,i
and gy ; ;. If an agent is uncertain these might not accurately
represent the preferences that will eventuate for the agent later
on, but it is their best estimate at that moment in time. The
functions that an agent uses to interact with the mechanism
are fy; and gy, ;, which they are free to choose irrespective
of their actual preferences. When these are exactly equal to
their best estimates, the agent is truthful. Formally:

Definition 1 (Truthfulness). For a horizon h, let f}, ; and Ghyi,j
be the functions that agent ¢ uses with the mechanism, and f4, ;
and g, ; ; be the functions the agent believes are most likely
true at that moment in time. Agent ¢ is truthful in a horizon
hif fr; = f;m and for all j : g, ;,; = gn,i,;. Otherwise agent
i 1S untruthful.

1949-3053 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2017.2758394, IEEE

Transactions on Smart Grid

Without a receding horizon a one-shot day-ahead market is
still susceptible to manipulation, but this form of manipulation
is generally well studied and understood. For this reason, we
focus our receding horizon manipulation definition on the form
of manipulation that is unique to the receding horizon part of
the mechanism. Before delivering this definition we provide
an example to highlight this form of manipulation.

B. RH Manipulation Example

Consider a two time step TRH market problem with a gener-
ator, deferrable load and fixed load. Assuming no uncertainty
and that the generator and deferrable load act truthfully, the
fixed load can gain an advantage in certain situations. Assume
the generator has a quadratic cost term ¥ = 1 for both time
steps, the deferrable load must consume E = 2 units of
power (it does not care when) and the fixed load needs to
consumer more power in the second interval than the first
P = (0.5,1.5). By lying in just the first horizon (e.g., by
saying it needs P = (0.5, 2.5)), the fixed agent can temporarily
inflate the second time step price, causing the mechanism to
fully dispatch the deferrable load in the first time step.

Table [I[] compares the outcome with and without the fixed
load manipulating. The results show how the total system costs
increase and the fixed load agent’s costs decrease when it is
manipulating.

Table I: Manipulation example comparison.

P Gen A Total Cost  Agent Cost
Manipulating ~ (2.5,1.5)  (2.5,1.5) 4.25 35
Truthful ~ (2.0,2.0)  (2.0,2.0) 4.00 4.0

C. RH Consistency and Manipulation

We consider an agent to have performed receding horizon
manipulation when two criteria are met: they are untruthful,
and their change in behaviour between horizons has a tangible
affect on the market. An agent can be untruthful and have no
impact, or they could be truthful and have an impact (e.g., if
they are uncertain); neither case is considered as receding ho-
rizon manipulation. The following notion of receding horizon
consistency captures whether on not an agent has had such
impact on the RH mechanism.

An agent is consistent between consecutive horizons when
the preferences they provide in the earlier horizon could have
produced the result obtained in the later horizon (for those
time steps that overlap). Formally:

Definition 2 (Receding Horizon Consistency). Let the KKT
points for the power balancing problem in two consecutive
horizons be (P;, A) and (P}, \') for agent ¢. If the later horizon
time-shifted point (P, A\*) satisfies the earlier horizon KKT
conditions for agent 7, then agent i is consistent between
the horizons. Otherwise agent ¢ is inconsistent between the
horizons.

It is possible for an agent to change their preferences
between horizons and be consistent, as this definition focuses
on the outcomes by asking whether an agent’s earlier functions

could produce the same outcome in the later horizon. If so then
they have not changed their functions in a way that has altered
the outcome in a consequential way.

An agent manipulates the receding horizon part of the
RH mechanism when it is untruthful in order to create an
inconsistent result. Uncertain agents may be inconsistent, but
if they are acting truthfully then they are not manipulating the
receding horizon mechanism. Formally:

Definition 3 (Receding Horizon Manipulation). If agent ¢ is
inconsistent between consecutive horizons and untruthful in
the earlier horizon, then agent i is manipulating the receding
horizon problem between these horizons.

V. GREEDY AGENT STRATEGY

In general, the RH mechanism results in an incomplete
information game: agents might have some beliefs about the
preferences or “types” of other agents, but they typically do
not know these exactly. A conventional game theory approach
is to look for market equilibria where all agents are acting
strategically with a set of beliefs about other agent types.
This analysis could identify certain information poor settings
where it is impossible for an agent to manipulate the system
in expectation.

While we hope to undertake such a detailed analysis in
future work, for now we focus on a specific concrete case
where we investigate the maximum benefit a single manipu-
lative agent (or coalition of agents) could achieve, and what
harm this causes to the system. We assume this “greedy” agent
has complete information about all other agents, and that the
rest act truthfully. This simplified setting is useful because it
captures the best-case benefit a manipulative agent could hope
to gain from the system. It also provides a test case for our
manipulation identifiers, which tease apart manipulative agents
from uncertain agents.

This section describes the approach we take for calculating
an optimal strategy for a greedy agent. The approach involves
solving a bilevel program, where the greedy agent at the top
level chooses its optimal preferences given that it knows how
the mechanism will respond at the lower level [13]]. In general,
even linear bilevel programming is NP-hard [[13| chap. 6]. This
will dramatically limit the size and type of problems that can
be solved optimally. We will use bounds and solve simple
instances in order to gain insights despite the complexity.

The TRH problem is used in the formulation with the greedy
agent having an index ¢ = 1. The greedy agent chooses its
power for each horizon, and there is no uncertainty: for all
h let fhﬂ- = fz and gn;; = G;;. We assume that there are
market cap prices A, A and that the greedy agent will avoid
a solution which violates these because of the risk of being
disconnected from the network.

We make the optimistic bilevel assumption, which allows
the greedy agent to choose between lower level solutions if
more than one exists for a given upper level decision. This
allows the problem to be immediately flattened to a single
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level program:

Pﬂi’nh fi(Pr1) + APy (11
s.t. g1.;(Pr1) <0 Vjie{l,...,N} (12)
Phit=Pu 1 Vie{l,... A}
he{2,....,THht<h (13)
Aht = Ah—1t Vhe{2,...,THht<h (14
Pyi€ [P, P)"  Vhe{l,....T} (15)
M€ MANT VYhe{l,...,T} (16)
(Ph,la ey Ph,A7 )\h) S KKTh
VYhe{l,...,T} 17)

The objective is to minimise the greedy agent’s final costs,
which are given by the values in the last horizon: h = T.
The greedy agent’s true constraints are enforced on the final
powers with inequality (I2). Equations and tie
together powers and prices between horizons (those that have
been finalised), in accordance with the TRH formulation.
Constraints (I5) and (I6) bound the greedy agent’s power and
the prices according to the limits discussed in section |[II-C

The lower level problem is the solution of the market
mechanism (the power balancing problem) in each horizon,
given the greedy agent’s untruthful preferences. Without loss
of generality to what the greedy agent can achieve, these
preferences are provided to the mechanism as fixed powers
in each horizon. Representing the solution of the lower level
problem by its KKT conditions has allowed the bilevel
program to be flattened into a single level. KK'T}, is defined
to be the set of feasible KKT points for the power balancing
problem in horizon h with the greedy agent’s powers fixed.
The resulting stationarity (5) and complementary slackness
equalities from the KKT conditions, and the bilinear cost term
in the objective (TT) are all possible sources of non-convexity.

The KKT conditions are composed of those associated with
each truthful agent in the problem. In the next section we show
how we formulate these conditions for a truthful generator. A
similar approach was used for the battery and deferrable loads
(the fixed load is trivial), with further details and derivations
provided in the PhD thesis [14, chap. 5].

A. Generator KKT Conditions

The KKT conditions (which contain bilinear terms) are
transformed into a series of mixed-integer linear constraints,
so that more established methods for global optimisation can
be applied. Binary variables zj ;, and zé’i’t are introduced
for the power upper and lower bounds, and the KKT multi-
pliers for these bounds can be combined into a new variable
Vit = M 54 — Mhy Big-M style constant bounds v; ; and
v, are used for these new multipliers, The reformulation is
YVt > h:

Wi Prie + Vit + Vhit + Mg =0 (18)
Vhit < 2h iiVits  Prit >z, (P —P)+ P (19)
Uh,it = 22,7;7151,/1',1‘,7 Py < Zi,t(B —-P)+ P, (20)

6

These constraints represent the stationarity, dual feasibility,
primal feasibility and complementary slackness conditions
of the original formulation. The market price caps and the
stationarity condition provide bounds for the multiplier v}, ; ¢:

Vie=-A—U,; 1P — 1 (21
Uig =A==V P — (22)

)

VI. GREEDY AGENT EXPERIMENTS

We develop two market settings inspired by real power
networks, to investigate how much a greedy agent has to gain
by manipulating, and how much this hurts the overall social
outcome. Section uses these market settings to test an
approach to identifying receding horizon manipultion.

A. Wholesale Market Setting

The first market setting is inspired by existing wholesale
electricity markets. Spot wholesale price and demand data was
obtained for the New South Wales region of the Australian
NEM for the trading day starting on the 23rd of February
2017, which experiences a peak load of 11 GW. Instead
of individually modelling each generator in the system, we
use a single generator tuned to produce the same overall
trend in prices: an increasing marginal cost of production.
We performed linear regression on this data and obtained
coefficients of ¥ = 0.0114 $/MWMWh and ¢ = —15.06
$/MWh for our aggregate generator (constant over time).

We use two fixed load agents to represent the demand,
one greedy and one truthful. We parameterise the split of the
total demand between these two agents. Finally, we add some
flexible DERs into the network in the form of batteries. By
performing some simple experiments, we found that we could
get equivalent results by representing many small batteries
with a single large battery, so we went with a single battery
who’s capacity and power rating are parameterised.

B. Distribution Market Setting

The second market setting is for a market on a distribution
network designed to coordinate residential batteries to man-
age network congestion. In this problem, a conductor in a
feeder reaches its capacity during peak events. The total peak
downstream load is around 1300 kW and the conductor limit
is 950 kW. There are two ways of managing this constraint,
either dispatch a downstream diesel generator or discharge
downstream residential battery systems to reduce the load
during peak events. This is a real network problem that is
being investigated in an ongoing trial with a partner DNSP.

There are 750 houses downstream of the network constraint,
which we split up into three groups. The first is a group of
houses that work together as a collective to manipulate the
market which we model as a greedy fixed load. The second
is a group of houses that act truthfully modelled as a fixed
load. The third is a group of houses with batteries that also
act truthfully, approximated as a single large battery.

The diesel generator has a price of 1 $/kWh (¢p = —1).
A second generator model is used to represent the power that
enters the constrained region of the feeder from the constrained
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conductor. It has zero cost and a capacity limit equal to the
conductor capacity.

C. Problem Instances

A number of problem instances were produced from these
market settings by choosing particular parameter values and
randomising the loads of the greedy and truthful fixed loads.
TRH problem instances were produced with horizons of length
T = 24 (24 hours). Calculating optimal agent strategies in
this way becomes intractable with large numbers of agents
and horizons with many time steps. In order to achieve a
tractable problem, we restrict ourselves to a small number
of agents which aggregate together the behaviour of many
other smaller agents. This provides a good approximation for
the agents we consider, which is sufficient for our intentions
of gauging the potential scale of the effects from receding
horizon manipulation and demonstrating the ability of our
identification techniques.

Only a single agent is acting strategically in each case. All
other agents act truthfully and there is no uncertainty in the
problem for the first set of experiments.

When the greedy agent is a fixed load the problem can be
reduced to a MILP. These problems were solved using Gurobi
7. After presolve, the greedy agent problem instances for the
wholesale market setting have around 1000 continuous and
1000 binary variables. A solving cutoff time of 10 minutes
was used for each instance. The resulting optimality gap was
recorded for the candidate solution at the end of this time.

D. Greedy Agent Impact

We explore the maximum impact a strategic greedy agent
(modelling a cooperative of smaller greedy agents) can have in
the wholesale and distribution market settings. By modifying
the parameters in the problem we can explore how these
impacts change with the relative proportion of greedy agents
and flexible DERs. We generate 20 randomised days for
each parameter setting and compare the mean change in
the total system costs and the greedy agent’s costs relative
to the socially optimal outcome (all agents truthful so no
manipulation) across the days.

Figure [4| shows how these cost changes vary for a combina-
tion of two different parameters. The first is the relative battery
capacity/power output. This is measured as the total maximum
battery power output P as a percentage of the total network
demand. The battery capacity £ (in kWh) is kept twice as large
as the maximum battery discharge power (in kW), ensuring a
full battery can discharge at its maximum rate for 2 hours.
This percentage represents the level of battery uptake in the
network, and the level of flexible DERs in the network.

As the number of flexible batteries increases (the three
different colours), we see that the greedy agent has more
opportunity to reduce their costs through manipulation (the
dashed lines), and these actions also do more harm to the
overall costs (the solid lines). Similarly there seems to be an
overall trend that the greater percentage of the overall load that
the greedy agent controls, the greater the manipulation payoffs,
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Figure 4: Change in total cost (solid lines) and greedy agent cost

(dashed lines) relative to social solution in the wholesale market

setting. These are compared for different percentages of network

battery uptake (total battery output as a percentage of total demand),

and for different sized greedy agents (as a share of total load).

but only if there is enough flexible DERs in the network for
it to influence.

A number of instances had a non-negligible optimality gap
at the end of the 10 minute cutoff. The mean optimality gaps
are displayed as error bars on the agent cost change curves
as an indication of how much the candidate solutions might
underestimate the true benefits that a greedy agent can gain.
The worst gaps were experienced when the greedy agent has
10% of the total load and there is a 30% uptake in batteries. In
this case, the error bar indicates that the average cost reduction
for the greedy agent is somewhere in the range 1-2%. This was
deemed sufficient for the purposes of this investigation, but if
required a longer solve time could be employed to further
reduce the gap. When the greedy agent has a larger share
of the total load, and in the next set of experiments on the
distribution market setting, the gaps are insignificant.

Figure 5| shows the same results but for the distribution mar-
ket setting. We see that the greedy agent has the potential to
achieve relative cost reductions that are much more significant
in this setting, but it is also more sensitive to the particular
setup of the problem. Here having a large share of the overall
load is often a disadvantage, and too few or too many batteries
in the network reduces the potential for manipulation. It is
only in the intermediate case (enough flexible batteries for the
greedy agent to influence, but not enough to completely solve
the congestion problem) that there is opportunity for receding
horizon manipulation.

Figure [6] shows an example solution for the greedy strategic
agent in the wholesale market setting. In order to distinguish
the solutions from the different horizons, we gradually increase
the opacity of the lines representing power as the horizons
progress. The greedy agent has a considerable impact on the
battery and generator behaviour over time.

These results provide a bound on what would actually be
achievable in a more realistic setting where there is incomplete
information and where the problem scale creates computa-
tional challenges.
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Figure 5: Change in total cost (solid lines) and greedy agent cost
(dashed lines) relative to social solution in the distribution market
setting. These are compared for different percentages of network
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Figure 6: Solutions for horizons in an greedy agent instance in the
wholesale market setting (greedy agent with 30% of total load, and
battery maximum power at 30% of total load).

VII. RH MANIPULATION IDENTIFICATION

So far we have seen the potential impact that receding
horizon manipulation can have in our markets settings. We
now consider the position of a market operator who would like
to reduce this. The approach we take is to develop indicators
that can be used to test whether an agent is likely to be
performing RH manipulating in a practical setting. Penalties
can then be applied to the agents identified in this way, to
deter future manipulation. We only assume we know the power
profiles of each agent and prices in each horizon that the
mechanism calculates. We do not have access to an agent’s
beliefs about their true preferences or even the preferences
they use to interact with the mechanism (as discussed certain
distributed market clearing techniques do not have/need direct
access to these preferences).

In general it is not possible to distinguish a manipulat-
ive agent from one whom is just inconsistent due to their
uncertainty, because we do not have access to an agent’s
inner workings to determine if they are being truthful or

not. However, we find that if we restrict the ways in which
an agent can be uncertain (the forms of uncertainty that
the mechanism allows), then we can likewise restrict the
undetectable strategies available to a manipulative agent. We
develop simple to calculate indicators that can be applied to
an agent’s power profiles for each horizon to test whether
or not an agent is operating outside this acceptable range of
behaviour.

One method for developing such tests, which we demon-
strate in section [VIII-D] is to run simulations of agents with
acceptable forms of uncertainty in the market, and to use
these results to establish appropriate parameters for the tests.
Any behaviour outside these acceptable ranges would be an
indication of manipulative behaviour. No test will perform
perfectly in every case, and they will likely have to be
developed over time to match the type of participants and the
form of their uncertainty.

In a practical setting these tests will have some false
positives and false negatives, because some agents will have
uncertainties that lie outside the acceptable range, and other
agents will still manage to perform some limited form of
manipulation within the acceptable range. The market operator
will need to tune these tests to strike the right balance of not
penalising too many truthful agents, but also deterring the most
significant forms of manipulation.

The first indicator we develop measures the degree of
inconsistency between horizons. This can also be used to
focus our attention on those horizons and those agents that
are driving change in the market.

A. Revealed Preference Indicator

We derive a condition called revealed preference (RP)
consistency that all receding horizon consistent agents will
satisfy. When this condition is not satisfied, we know for
certain that the agent is receding horizon inconsistent. This
theory leads to the RP indicator which is a measure of how
inconsistent an agent is.

RP consistency is similar to the RP activity rule proposed
by Ausubel et al. [15]. Activity rules are used in iterative
mechanisms, e.g., clock auctions and simultaneous ascending
auctions, to limit the bidding strategies of agents [[16, chap.
11]. Chapman and Verbic [17] used a RP activity rule within a
single horizon to prevent agents from manipulating their bids
in an electricity demand allocating clock auction.

The indicator we derive is similar to the RP activity rule,
but it instead works with our notion of receding horizon
consistency, and instead of enforcing a particular behaviour,
we use it after the fact to get an indication of how inconsistent
an agent is being.

Theorem 1 (Revealed Preference Consistency). If an agent i
is convex and consistent between horizons, then AXNTAP; < 0.

Proof. Assume ¢ has convex cost and constraint functions
and is consistent between consecutive horizons. Definition
P] implies that both the earlier horizon solution and later
horizon time-shifted solution satisfy the earlier horizon KKT
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conditions. Subtracting the stationarity condition (3) of one
case from the other and multiplying by A P; produces:

0=[Vfi(P;) = Vfi(P)] AP,
N;
* * T
+ > [1i;V9i5(PF) — i Vi i (Pi)] AP,
j=1

+ANTAP, (23)

The inequality f(y) — f(z) > Vf(z)T(y — x) holds for any
convex function f. Applying this rule and using the non-
negativity of the p multipliers:

0> fi(P) — fi(P) + fi(Pi) — ful P)
N;
+ Z (145 915 (P) — 5 59,5 (i)
=1

+ 3915 (Pi) = i igi (P;)]
+ ANTAP; (24)

Using the complementary slackness equations this simpli-
fies to:

N;
0>- Z 145 915 (Py) + pa,59i.5(P})]
j=1

+ANTAP, (25)

The multiplier non-negativity and primal feasibility inequalit-
ies (6) require that the sum term is non-negative implying:

0> ANTAP, (26)
O

We refer to the value of the right hand side of inequality (26)
as the RP indicator for an agent. Any convex agent that is con-
sistent between consecutive horizons must satisfy inequality
(26); however, inconsistent agents can also potentially satisfy
it. Given the powers F; and P}, and prices A and A* for two
consecutive horizons, the RP indicator is used to identify an
agent i as inconsistent if AXTAP; > 0.

B. Anticipated Cost Indicator

A second indicator called the anticipated cost (AC) indicator
measures how how agents anticipate their future monetary
costs. This indicator uses the insight, as discussed in the
introduction, that agents can often manipulate the receding
horizon mechanism by pretending to have high electricity
requirements in a future time step: they appear to anticipate
higher costs in earlier horizons for particular time steps.

For a given agent ¢, horizon h and time step ¢ > h, the
AC indicator ay, ;; is defined as the difference between the
anticipated and final monetary costs:

Qhit = )\h,tph,i,t - At,tpt,i,t (27)

When this value is positive the agent has overestimated
what their costs will be, and when it is negative they have
underestimated them. These values can be grouped in different
ways to further tease out patterns. If the market is a simple
linear system we would expect the AC indicator would tend
to average to zero over time for an uncertain truthful agent
with Gaussian uncertainty.

VIII. INDICATOR EXPERIMENTS

In this section we test the RP and AC indicators on the
greedy agent experiments from section [VI and new problem
instances where the agent is truthful and uncertain instead of
being greedy.

A. Uncertain Agent Problem Instances

Truthful uncertain agents replace the greedy agents in the
problem instances. They end up with the same fixed load
requirements as the greedy agents, but they do not know
this value up front and they have a different estimate for
each horizon. We mimic this uncertainty by randomising the
estimated load for each time step ¢ > h in horizon h as so:
P, ~ PJN(1,0.5%)|, where P, is the actual load that the
agent will consume at time ¢. A final scaling is applied to
these powers to make sure that the total power requirements
for the whole horizon remains constant. This represents an
agent that knows how much it needs to consume, but that is
uncertain about when it will consume it. For example, this
could represent a house that has a good estimate of its total
daily requirements, but who is unsure about when this energy
use will take place because of uncertainty about occupant
behaviour and solar production. A normal distribution is a
reasonable first approximation of the combination of many
small uncertain factors that go into making up the total house
consumption at each point in time.

Figure [7] shows the solution for an uncertain agent in one of
the wholesale market instances. The lines get gradually more
opaque with an increase in horizon number. This figure shows
that the battery changes its power considerably in response to
the variability of the uncertain fixed load.

—— Fixed Load
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104{ —— Uncertain Fixed Load
Generator

Power (GW)
o

_10.
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Hour in day
Figure 7: Horizon solutions for an uncertain agent instance in the

wholesale market setting (uncertain agent with 30% of total load,
and battery maximum power at 30% of total load).

B. Inconsistency Results

The first experiments apply the RP indicator to the greedy
and uncertain agent results. Figures [§ and [0] show how the RP
indicator means for 20 instances compare for the greedy (solid
lines) and uncertain (dashed lines) agents, over the different
market parameter settings. For the wholesale market there is
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a clear separation between the greedy and uncertain agent
behaviour. Later on we will leverage this in our tests.

5 20000001 —— 10% batteries
§ —— 20% batteries
5 —— 30% batteries
£ 1500000
)
9]
C
g
2 1000000
g
o
°
2 500000 -
© -
9]
>
&
0 1 v T T T
10 20 30 40

Greedy/uncertain agent share of total load (%)

Figure 8: Revealed preference indicator for greedy (solid lines) and
truthful uncertain (dashed lines) agent in wholesale market setting.
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Figure 9: Revealed preference indicator for greedy (solid lines) and
truthful uncertain (dashed lines) agent in distribution market setting.

The distribution market setting has more mixed results. If
we look back at the cost reductions in Figure 5] we see
that the 2% and 5% battery instances are the ones where
the greedy agent has most impact. In the 2% battery, 30%
greedy share instance the RP indicator is actually less than
the uncertain agent’s value. The RP indicator might fail to
identify manipulation in this situation, but fortunately we find
the AC indicator to perform better.

C. Anticipated Cost Results

Anticipated costs are only calculated for an agent in horizon
h if it has been identified that it was inconsistent between
horizons h and h+ 1. The results for the greedy and uncertain
agents in the wholesale and distribution settings are shown
in Figures [I0] and [TT] respectively. The uncertain agent AC
indicator mean remains closer to zero, which is a sign that
on on average they underestimate costs just as often as they
overestimate them.

The AC indicator gives a better separation between the
greedy and uncertain agent behaviour than the RP indicator

10

in these experiments. The 2% and 5% battery results form the
distribution setting are now clearly apart.
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Figure 10: Anticipated cost indicator for greedy (solid lines) and
truthful uncertain (dashed lines) agent in wholesale market setting.
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Figure 11: Anticipated cost indicator for greedy (solid lines) and
truthful uncertain (dashed lines) agent in distribution market setting.

D. Identifying Agents

The results from the previous section show differences in
the behaviour of the greedy and uncertain agents that can be
exploited to identify manipulation. As discussed in section
[VIT, this can be done by developing tests that work with
various indicators. These tests can work directly with indicator
values or be applied to statistical information (e.g., means and
variances) collected over time.

It would be trivial to apply such a tests to the 20 day
(instance) means we see for the indicators in Figures @-@ To
make it more interesting, assume we have to decide whether
the agent is manipulating in each of these 20 days individually.
We develop a test and then run it over the 20 days to see
how often we identified the greedy agent as manipulative. We
design the test so that we get no false positives of the uncertain
agents because we are treating their behaviour as being within
the acceptable range for an uncertain agent in the market.

The test consists of two very simple linear classifiers that
use the agent share of the total load (S as a percentage)
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as a variable. The lines in these classifiers were fit to the
extreme points of the indicator values produced by the truthful
uncertain agent simulations. Agent behaviour that produces a
value above one of these lines is classified as manipulative.
We focus on the instances where the greedy agent has the
biggest impact: 30% and 5% batteries in the wholesale and
distribution settings respectively. In the wholesale setting an
agent is identified as manipulative when it has a RP indicator
over 75195, or an AC indicator over 4255. For the distribution
setting these values are 20.05 and 1.385 respectively.

For the wholesale and distribution settings, the greedy agent
was identified as manipulating in 20/20 days and 19/20 days
respectively. More sophisticated tests could be developed to
improve on these already very promising results. A great
advantage of having this non-intrusive way of testing for ma-
nipulation is that it can always be modified or new indicators
can be added without having to change the operation of the
underlying market mechanism.

E. Scaling to a Real Setting

The indicators we have developed can be used by a receding
horizon market operator to reduce the strategies available to
manipulative agents. They scale linearly with the number of
agents, and only rely on publicly available information. As we
have done, the market operator can run simulations with agents
that have uncertainty they deem to be reasonable, in order to
find an acceptable range of values for the indicators. These
simulations could be scaled to much larger systems than we
have demonstrated here. We were limited by the computational
complexity of calculating optimal greedy agent strategies,
which we used to demonstrate the indicators working, but this
is not necessarily something that the market operator needs.

IX. RELATED WORK

Our method for calculating greedy agent strategies is related
to other work that has looked at equilibria in electricity mar-
kets. Hu and Ralph [18]] study equilibria in electricity markets
with locational marginal prices where each agent solves a
bilevel problem to obtain their strategy, and find sufficient
conditions for the existence of pure Nash equilibria. Weber
and Overbye [19]] similarly develop a method for finding Nash
equilibria for producers and consumers that have linear price
functions, and Li and Shahidehpour [20] consider the case
where agents have incomplete information about other agents.

Closer to our approach, instead of searching for Nash equi-
libria Kozanidis et al. [21] develop optimal bidding strategies
for a strategic producer in a single time period market with no
network constraints. Compared to these works the problem we
investigate is more complicated in certain areas but simpler
in others. Instead of a single time horizon, we consider
strategies over multiple overlapping horizons given by the
receding horizon structure. We also focus more on a prosumer
oriented setting where each agent can have a diverse set of
preferences and constraints instead of a market dominated
by large generator units. As a simplification, we have so far
chosen to ignore network constraints.
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Mechanism design and game theory have been used in
demand response [[22]|-[24]], as well as other network problems
including electricity markets and storage adoption [25]], [26].
VCG mechanisms have been utilised to achieve incentive
compatibility [27]], [28]; however, VCG quickly becomes
intractable for realistically sized problems, and requires agents
to fully disclose their preferences. Tanaka et al. [28] acknow-
ledges these problems and proposes that future work looks at
the development of approximate methods. We instead adopt
a mechanism which is not incentive compatible (but can be
efficiently computed and is budget balanced), and tackle the
problem of reducing the practical impact of manipulation.

Mhanna et al. [29] use a scoring rule to charge consumer
agents based on both their actual consumption and their
deviation from day-ahead allocations. By requiring agents to
provide information on their uncertainty, they can reduce the
incentive for agents to lie about their requirements over the day
ahead. They find it to be “asymptotically” incentive compatible
as system size or reported precision increases; however, it does
not enable agents to share information they gain throughout
the day and re-optimise their allocation in an online manner.

Chapman and Verbic [17] is the only other work we are
aware of that has considered the impact of agents manipulating
a receding horizon mechanism. Using a clock auction to
allocate loads, they discount prices between horizons to give
some flexibility for uncertain agents. This discount factor
provides a trade-off between allowing agents to recover from
uncertain events and preventing manipulation.

Our approach avoids this trade-off in cases where an indic-
ator test can be developed characterise acceptable uncertain
behaviour. We found that this is possible with the revealed
preference and anticipated cost error indicators, at least when
agents have simple forms of uncertainty. These indicators can
also be applied to more general settings, such as those where
agents are both producers and consumers. To the best of our
knowledge, our work is the first to formalise and investigate
the significance of manipulation in receding horizon power
balancing, and to provide a practical solution for identifying
the occurrence of such manipulation.

X. CONCLUSION AND FUTURE WORK

We formally introduced the notion of receding horizon
manipulation in a receding horizon market setting, and by
developing a strategic agent we empirically identified how
much advantage an agent can gain in two representative market
settings. We developed indicators for identifying inconsistency
and manipulation, which can be used to monitor the inter-
actions of agents in a non-invasive manner. We successfully
used these indicators to distinguish agents strategically manip-
ulating the receding horizon mechanism from those that are
truthful but uncertain.

Future work will expand these results to a locational
marginal price market, i.e. one that takes into consideration
network power flows and constraints. For the indicators this
should be a relatively straight-forward process of adding
additional variables to represent reactive power, while the rest
of the theory should remain the same.
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Experiments with more diverse agents and diverse forms of
uncertainty will be valuable, and with them the development
of additional indicators if those presented here are found to
be insufficient. The bounds on how much agents have to
gain from manipulation could be further narrowed down by
considering incomplete information scenarios.

Our experimental work is limited to only considering mul-
tiple strategic agents in the cases where they work together
as a cohesive coalition. In future work we hope to investigate
situations where multiple strategic agents are competing with
each other, by searching for (Bayesian Nash) equilibria. In
typical settings we would expect this extra competition to
reduce the individual rewards that strategic agents can hope
to achieve, but it could have a more significant impact on the
social welfare than what we observed in our experiments.

Finally, it would be worth investigating if our indicators
could still be useful in receding horizon market settings that
do not assume convex preferences or utilise marginal pricing.
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