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Abstract. This paper considers a residential market with real-time elec-
tricity pricing and flexible electricity consumption profiles for customers.
Such a market raises an optimisation problem for home automation sys-
tems where they need to schedule consumption activities to reduce costs,
whilst maintaining a base level of comfort and convenience. This opti-
misation problem faces uncertainty in real-time prices, weather condi-
tions, and occupant behaviour. The paper presents two online stochastic
combinatorial optimisation algorithms that produce fast, high-quality
solutions to this problem. These algorithms are compared with reactive
control strategies and a clairvoyant controller. Our results demonstrate
the value of stochastic information and online stochastic optimisation in
residential demand response.

1 Introduction

Electricity consumption in residential markets will undergo fundamental changes
in the next decade due to the availability of solar panels and novel pricing mech-
anisms, progress in batteries and electric cars, and the emergence of smart ap-
pliances and home automation. These technologies provide residential customers
with the ability to actively participate in smart grid activities such as demand
response where loads are shifted to times favourable for the network as a whole.

Having an intelligent Home Automation System (HAS) within each home is
a key component in this vision. The HAS receives information about device op-
erating characteristics, usage requests and network signals, and can send control
requests back to smart devices. The HAS provides occupants with feedback on
their consumption habits and, more importantly, can make control decisions for
itself. This control can be used to meet one or more of the following objectives:

1. Improve occupant comfort,
2. Reduce overall electricity consumption,
3. Perform demand response for network.

These objectives are often conflicting, so occupants need to indicate how
they value comfort against cost savings in order to get the right balance for them



overall. The task of the HAS is to decide on a series of control actions to take over
time, which produces an optimal solution to the combined objectives. The HAS
can implement simple policies to attempt to meet these conflicting objectives. Or,
more interestingly, it can use sophisticated stochastic optimisation technology
which exploits forecasts and observed patterns in prices, weather, residential
activities and smart device usage.

This paper aims to determine the benefits of online stochastic optimisation
for a HAS that is exposed to Real-Time Pricing (RTP) as a demand response
mechanism. A number of research projects have started examining this very issue
(see the related work section) but they often give an incomplete picture of the
benefits of optimisation and the value of stochastic information. These projects
often consider simpler uncertainty models, which give a partial understanding
of the true benefits that optimisation can bring to this setting. In contrast, this
paper makes two primary contributions: one conceptual and one algorithmic.

At the conceptual level, the paper presents a compositional architecture for
HAS optimisation, where each device can be modelled independently in terms of
a collection of functions that encapsulate its behaviour. These devices are then
assembled into a model of a home, from which optimisation problems for the
HAS can derive.

At the algorithmic level, the paper presents a comprehensive study of the
value of HAS optimisation in the presence of uncertainty about future prices,
occupant behaviour and environmental conditions. Our formulation uses models
representative of physical devices and stochastic models trained on real weather
and network demand data. These device and stochastic models are used in two
online stochastic optimisation algorithms which are compared to simple control
systems based on reactive policies.

The experimental results not only show the value of stochastic information,
but also that stochastic optimisation provides solutions that are close to the
clairvoyant solutions which have perfect knowledge of the future. The online
stochastic algorithms using MILP technology are fast and produce significantly
better solutions than the reactive controllers. Also of interest is the comparison
between the two online stochastic algorithms, and an experiment that investi-
gates the optimal rolling horizon duration.

The rest of the paper presents the deterministic HAS optimisation problem,
its stochastic version, the stochastic models and finally the experimental results.

2 Deterministic HAS Optimisation

A house contains a collection of controllable devices which influence the amount
of power consumed in the house and the level of comfort that residents expe-
rience. We consider the operation of these devices over discrete time steps4:
∀i ∈ Z : ti ∈ R where ti > ti−1 and ∀i ∈ Z : tstpi = ti − ti−1.

Given a real time price for electricity and other input parameters (e.g., ex-
ternal temperatures and device requests), optimal operation of these devices is

4 Variable time step sizes will be used to focus computational time where most needed.



achieved by minimising the sum of monetary and comfort costs. The optimi-
sation decision variables are the device actions at each time step, which are
constrained by device characteristics and total power limits on the house.

2.1 Formal Definition

We start with a new formal definition of a device, which is a collection of func-
tions that govern the device operation. These include functions for permissible
device actions, state updates, electrical power consumption/generation, and any
non-power-related operation costs. The operation costs are always positive and
may include any occupant comfort costs, fuel consumption or wear and tear on
the equipment. By convention power consumed by the device is negative and
power generated (e.g., by a rooftop photovoltaic system) is positive.

Definition 1 (Device). A device is a tuple d = (Ad, Sd, Rd, qd, gd, fd, ld), where:

– Ad ⊆ Rmd × Zm′d is the set of device actions
– Sd ⊆ Rkd × Zk′d is the set of device states
– Rd ⊆ Rwd × Zw′d is the set of device input parameters
– qd : Sd ×Rd −→ P(Ad) is the permissible action function
– gd : Ad × Sd ×Rd −→ Sd is the state update function
– fd : Ad × Sd −→ R is the electrical power function
– ld : Ad × Sd ×Rd × R −→ R is the operational cost function

A house is simply a set of devices, together with bounds on the instantaneous
amount of power the house can transfer to or from the grid:

Definition 2 (House). A house is a tuple h = (Dh, ph, p̄h), where:

– Dh is the set of devices
– p

h
, p̄h ∈ R are the lower and upper power limits

We now turn to the deterministic formulation of the HAS optimisation prob-
lem which will be later used as a building block for our stochastic formulation.
The deterministic formulation assumes that the input parameters are known
over a horizon of n time steps. The objective is to choose device actions to re-
duce the total cost over the horizon, which includes device operational costs and
monetary costs from trading power with the network.5 Inputs include the device
initial states, the RTP, the house background power usage6 and the device input
parameters at each time step. The variables at each time step include the device
actions and states, and the device and house power consumptions and costs.

We use the following notation: (a)+ = |a| if a > 0 and 0 otherwise, and
similarly (a)− = |a| if a < 0 and 0 otherwise, where a ∈ R.

5 The RTP for net consumption or generation can be different.
6 This aggregates uncontrollable electrical consumption, e.g., lighting, entertainment

and cooking.



Definition 3 (Deterministic HAS Optimisation Problem).
For a house h = (Dh, ph, p̄h), the HAS optimisation problem over a horizon of
n ∈ N∗ time steps is the following:

Inputs:
for each device d = (Ad, Sd, Rd, qd, gd, fd, ld) ∈ Dh

– sd,0 ∈ Sd is the device initial state
for each device d ∈ Dh and time step i ∈ {1 . . . n}
– rd,i ∈ Rd are the device input parameters

for each time step i ∈ {1 . . . n}
– pbh,i ∈ R− is the house background power

– vi ∈ R2 is the real-time price (buying, selling)
Decision variables:

for each device d ∈ Dh and time step i ∈ {1 . . . n}
– ad,i ∈ Ad are the device action variables

Other variables:
for each device d ∈ Dh and time step i ∈ {1 . . . n}
– sd,i ∈ Sd are the device state variables
– pd,i ∈ R is the device power
– cd,i ∈ R+ is the device operation cost

for each time step i ∈ {1 . . . n}
– ph,i ∈ [p

h
, p̄h] is the total power

– ch,i ∈ R is the total cost
Constraints:

for each device d ∈ Dh and time step i ∈ {1 . . . n}
– ad,i ∈ qd(sd,i−1, rd,i) is the action permissibility constraint
– sd,i = gd(ad,i, sd,i−1, rd,i) is the state update constraint
– pd,i = fd(ad,i, sd,i) is the device power constraint
– cd,i = ld(ad,i, sd,i, rd,i, t

stp
i ) is the device cost constraint

for each time step i ∈ {1 . . . n}
– ph,i =

∑
d∈Dh

pd,i + pbh,i is the house power constraint
– p

h
≤ ph,i ≤ p̄h is the house power limits constraint

– ch,i =
∑

d∈Dh
cd,i + tstpi vi,1(ph,i)− − tstpi vi,2(ph,i)+ is the house cost

constraint
Objective:

min
∑n

i=1 ch,i

2.2 Modelled Devices

In our experiments we consider a modern house with electrical HVAC, hot water
heating, solar panels, a washing machine, a clothes dryer and a dish washer. We
also include two devices that are expected to become popular within the next
decades: an electric vehicle (EV) and a dedicated battery for storing electri-
cal energy. Descriptions of these devices are given in this section. Some liberty
has been used in these descriptions to aid understanding, however note that
with slight reformulation they all fit into the rigorous device definition of the



previous section. Device electrical powers and operational costs are consistently
represented by the variables pi and ci, and power consumed by a device takes
on a negative number.

The physical behaviour of devices has been approximated by linearising their
physical equations and discretising time. Only significant steps of this process
are mentioned in the device descriptions. For the experiments parameters were
selected to be representative of typical devices. For example, the EV battery
capacity is equivalent to that of a Nissan Leaf, and the house floor area for
heating purposes is typical of an average-sized house. Some parameters were
difficult to source so had to be estimated such as the efficiency of the EV battery.

Battery. A battery has a stored energy state E ∈ [0, Ē] and a charge/discharge
power p ∈ [p, p̄] action variable. The battery has a fixed efficiency η ∈ [0, 1]. The
stored energy state update function is given by:

Ei = Ei−1 + tstpi (η(pi)− − (pi)+) (1)

A battery lifetime cost c is associated with power that is discharged from the
battery through a lifetime price v: ci = v(pi)+.

Electric Vehicle. An electric vehicle (EV) is like the battery above, but with
a few additional constraints. Firstly the input parameter xh ∈ {0, 1} indicates
whether the EV is home, and the battery can only be charged/discharged when
this is the case:

xhi = 0 =⇒ pi = 0 (2)

The input parameter pd ∈ R+ represents the power drawn from the battery
whilst driving. This modifies the state update function as follows:

Ei = Ei−1 + tstpi

(
η(pi)− − (pi)+ − pdi

)
(3)

The final constraint is on the amount of energy stored in the battery. The house
occupants provide an input parameter Em ∈ [0, Ē] that represents the minimum
energy that the EV battery should have in it at each time. This value represents
how much energy the occupant expects to need if they drive away in the car at
a given time. This is not a hard constraint as the draw from driving can bring
the battery charge below this limit, but it ensures that if the battery power does
fall below, then it charges back up as fast as possible.

xhi = 1 =⇒ Ei ≥ min
[
Ei−1 + tstpi

(
−ηp− pdi

)
, Em

i

]
(4)

Hot Water Heating. The hot water system is made up of a storage tank and
an electric heating element. We ignore the details of the interaction between
hot and cold water in the tank and consider the state of the tank as being the
amount of energy E ∈ [0, Ē] it contains above the inlet cold water temperature.
The tank is considered empty of hot water when this value is zero. The action



variable is the power setting of the electric heater p ∈ [p, 0] at each time step.

The input parameter pd ∈ R+ is the amount of power drawn from the tank to
meet occupant demand. The energy state update function is given by:

Ei = Ei−1 + tstpi

(
−pi − pdi − pli + pui

)
(5)

The variable pl ∈ R+ represents thermal losses from the tank to the outdoor
environment. The rate of loss depends on how full the tank is and the difference
in temperature between the water set point T s ∈ R and the outdoor temperature
T o ∈ R through a resistivity R ∈ R+:

pli =
1

R

Ei

Ē
(T s − T o

i ) (6)

The variable pu ∈ R+ is a recourse variable that is used to indicate the amount
of hot water demand which goes unmet, i.e. water drawn from the tank when it
is empty. This is heavily penalised as a cost c through an unmet demand price
v: ci = vpui .

The hot water system has a minimum stored energy level Em ∈ [0, Ē], much
like the electric vehicle. If drawn water brings the energy level of the tank below
this value then the heater must work as hard as possible to bring the energy
back up. Occupants can adjust this input parameter to reduce the likelihood of
running out of hot water.

Ei ≥ min
[
Ei−1 + tstpi

(
−p− pdi − pli + pui

)
, Em

]
(7)

Under-Floor Heating/Cooling. The house temperature is controlled by a
heat pump that heats/cools water, which is then pumped through piping em-
bedded in the floor of the house. The temperatures of the floor and the air in the
room T f , T a ∈ R are the device state variables. The action variable is the amount
of thermal energy that is supplied to the floor of the house pt ∈ R. This is limited
by the heat pump electrical power consumption p ∈ [p, 0] through heating and

cooling Coefficients of Performance (COP) ηh ∈ [ηh, η̄h], ηc ∈ [ηc, η̄c]:

pi = − 1

ηhi
(pti)+ −

1

ηci
(pti)− (8)

The COPs depend on the temperatures of the two thermal wells between which
the heat pump is operating. We assume that the internal thermal well is at a
constant temperature and that the external well is at the outdoor temperature
T o ∈ R. We approximate the COPs as linear functions of T o for some constants
ah, ac ∈ R+ and bh, bc ∈ R, with hard upper and lower limits:

ηhi = min
[
max

[
ahT o

i + bh, ηh
]
, η̄h
]
, ηci = min

[
max

[
−acT o

i + bc, ηc
]
, η̄c
]

(9)

Heat can transfer between the floor and the outdoor environment pfo ∈ R,
the floor and the air in the room pfa ∈ R, and the air in the room and



the outdoor environment pao ∈ R. We use simple lumped thermal resistivities
Rfo, Rfa, Rao ∈ R+ to govern these heat flows:

pfoi =
1

Rfo
(T f

i − T
o
i ), pfai =

1

Rfa
(T f

i − T
a
i ), paoi =

1

Rao
(T a

i − T o
i ) (10)

The temperature state update functions are given by:

T f
i = T f

i−1 +
tstpi

mfκf

(
pti − p

fo
i − p

fa
i +AfIi

)
(11)

T a
i = T a

i−1 +
tstpi

maκa

(
pfai − p

ao
i + pgi

)
(12)

where mf ,ma, κf , κa ∈ R+ are the floor and air, mass and specific heat capacity
coefficients respectively. Sunlight enters through the windows at an irradiance
I ∈ R+ and lands on a floor area Af ∈ R+. The input pg ∈ R+ is thermal power
generated by occupant metabolisms and background electric appliances which
contributes to heating the air in the room.

The final relation we have is for the comfort cost c which depends on the
distance of the air temperature from an occupant specified set point temperature
T s ∈ R. The occupants also specify two time-varying comfort prices va, vb, one
of which is only included after a threshold temperature difference ∆T th:

ci =

{
vai |T a

i − T s
i | if |T a

i − T s
i | < ∆T th

(vai + vbi )|T a
i − T s

i | otherwise
(13)

Shiftable Loads. Shiftable loads are devices that need to run once within a
time window. An occupant sets two input parameters: a start time is and a last
allowed start time il, between which the controller must schedule the device to
run. Examples of this kind of device include washing machines, clothes dryers
and dish washers. We model non-preemptive shiftable loads which can have time
varying power consumptions.

The start of run indicators x ∈ {0, 1} act as both the device action and
state variables. A shiftable load has a cumulative energy consumption function
ψ : R+ −→ R+ which takes a run duration and returns the cumulative amount
of energy that the device has consumed up to that duration. Constraints on the
run indicator variables and the device power p ∈ R− are given by:

il∑
k=is

xk = 1, pi = −
i∑

k=is

xk
ψ(ti − tk−1)− ψ(ti−1 − tk−1)

tstpi

(14)

Photovoltaics. The photovoltaic (PV) panels have no action variables, the
amount of electricity they generate is purely determined by the solar irradiance
input parameter. We model a PV system ignoring temperature and shading
effects and by assuming the panels lay on a horizontal surface. The generated
electric power p ∈ R+ is then a simple function of the panel area A ∈ R+,
efficiency η ∈ [0, 1] and global irradiance input parameter I ∈ R+: pi = ηAIi.



3 Stochastic HAS Optimisation

So far we have considered the deterministic HAS formulation that requires per-
fect foresight about what will happen over the time horizon. In practice, almost
all the input parameters are uncertain and their uncertainty is only revealed in
real time (e.g., outdoor temperature) or in some cases a few time steps in ad-
vance (e.g., RTP). This motivates the use of online stochastic optimisation [1],
which exploits statistical models of the uncertain parameters in order to make
the best decisions on average.

3.1 The Stochastic Model

In the stochastic HAS problem the RTP vi, background house power pbh,i and
device input parameters rd,i are random variables. We denote their real-world
realisations (i.e. their values when the uncertainty is revealed) with the symbol
∗. For instance, T o∗

i denotes the real outdoor temperature at time step i. For
notational convenience, all inputs are combined into one vector

zi = (vi, p
b
i,h, rd1,i, rd2,i, . . .)

T (15)

where we index elements with a k (e.g., zi,k). Random variables at time step i
may be dependent on each other and on the variables at previous time steps.
Therefore the joint distribution for random variables up to time step i is given
by:

P (zi, zi−1, . . .) (16)

Let t∗ represent the current real world time. Each input zi,k is revealed a fixed
amount of time ∆trevk ∈ R+ in advance (or in real time if ∆trevk = 0). This means,
that for a given t∗ an input zi,k is known to be z∗i,k if ti ≤ t∗ +∆trevk , otherwise
it is a random variable. Given i and t∗ we use Ki,t∗ = {k|ti ≤ t∗ + ∆trevk } to
denote the set of known input vector indices.

3.2 Online Stochastic Optimisation

In online stochastic optimisation decisions are made one step at a time using
stochastic information about future events. After each time step the uncertainty
and the effect of all actions is revealed, updating the state of the system. Deci-
sions for the next period are computed and the process is repeated. It has been
used successfully on a wide variety of problems (e.g., [2, 1]).

Our algorithms use a rolling finite horizon as illustrated in Fig. 1, where
the time steps 1, . . . , n are aligned to each horizon with t0 = t∗. Optimisation
is performed for each horizon using stochastic information for any unrevealed
inputs and then the actions for the first time step are executed in the real world.

It might not be possible to execute actions produced by the optimisation if
the real world input parameters z∗1 differ from what the optimisation anticipated.
For example, if the optimisation decides to run the hot water heater at full power
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Fig. 1: Rolling horizon for 3 consecutive iterations.

and the tank unexpectedly reaches its capacity (due to less demand for hot water
than expected), then the power of the heating action will need to be reduced so
as to remain within the tank’s capacity. Our HAS handles this automatically in
the execution step, by using very simple executives for each device which select
the closest feasible action.

The following sections introduce two approaches to solving the stochastic
optimisation problem within each horizon: the expectation and the 2-stage al-
gorithms.

3.3 Expectation Formulation

The expectation online stochastic algorithm takes the conditional expected value
of any unrevealed inputs in the optimisation horizon, and solves the deterministic
version of the problem given in Definition 3. We use the term expected value
loosely because in truth we calculate the expected value only where it makes
sense, which is typically for continuous inputs. For the rest of the inputs the
most likely value is calculated instead. For example, expected value is used for
outdoor temperatures and most likely value for the washing machine requests.
Both of these calculations are performed using the joint distribution for inputs
in the horizon, conditioned on any known inputs in and prior to the horizon:

P (zn, zn−1, . . . , z1|(z∗n,k,∀k ∈ Kn,t0), . . . , (z∗1,k,∀k ∈ K1,t0), z∗0 , . . .) (17)

3.4 2-Stage Formulation

In this algorithm 2-stage stochastic programming is used within each horizon.
This provides an approximation to a full multi-stage stochastic program which
are, in general, known to be extremely challenging computationally [3]. The first
stage includes time step 1, and the second stage time steps 2, . . . , n. Traditionally,
in 2-stage stochastic programming there is no uncertainty in the first stage [4].
However, in our problem we are required to make decisions before all inputs in
the first stage are revealed. To resolve this, first stage inputs are set to their
real values if revealed, otherwise their conditional expected value is taken (as
described in Section 3.3).

The second stage uses sampled scenarios to represent the uncertainty in the
input parameters. We define a second stage scenario s as being a sample from
the joint distribution of random variables in the second stage, conditioned on



any revealed inputs in the second stage, and inputs in and prior to the first stage:

s ∼ P (zn, zn−1, . . . , z2|(z∗n,k,∀k ∈ Kn,t0), . . . , (z∗2,k,∀k ∈ K2,t0),

z1, z
∗
0 , . . .) (18)

We use the Sample Average Approximation (SAA) [4] to limit the number of
scenarios S ∈ N that we need to consider in the second stage. Each scenario
in the second stage needs to have its own set of variables in the optimisation
problem. For example we denote the power of device d at time step i in scenario
s by pd,i,s. The 2-stage objective function is given by:

min

c1 +
1

S

∑
s∈{s1,...,sS}

n∑
i=2

ci,s

 (19)

3.5 Stochastic Inputs

Stochastic inputs include the real-time pricing (RTP), outdoor temperature,
solar irradiance, background power, internal heat generation, hot water demand,
EV usage and shiftable load requests. Accurately modelling any of these random
processes is a significant undertaking in itself. The models we developed, while
not the most sophisticated, suit the purposes of our experiments by capturing
the fundamental nature of these stochastic processes. We investigated a number
of different model types before settling on Generalised Additive Models (GAM)
[5] for the continuous variables like temperature, and Markov Models for the
more discrete occupant driven behaviours such as shiftable device requests.

Generalised Additive Models. In order to predict future values, the GAMs
take advantage of weather forecasts that can be readily obtained from national
weather services. These forecast values include daily maximum and minimum
temperatures, as well as morning and afternoon cloud cover and wind speeds.
The models also take in the value from the previous time step and temporal
information. The models were trained on data obtained from the Bureau of
Meteorology7 and Australian Energy Market Operator8 relevant to the states of
NSW and the ACT in Australia.

The best way of implementing RTP in retail markets is still an open ques-
tion and so is worth particular mention. It is unlikely that it will be a simple
replication of the wholesale spot market price due to its high volatility. More
likely it will be set by retailers, but it will have a shape that is representative of
the wholesale market. We designed our RTP to be a quadratic function9 of the
amount of power that fossil fuel sources must supply to meet total network load.
This is the total network demand minus the generation from renewable sources

7 Bureau of Meteorology (BOM), www.bom.gov.au
8 Australian Energy Market Operator (AEMO), www.aemo.com.au
9 The quadratic is representative of an increasing marginal supply price [6].



such as wind and solar. We used a GAM for the total network demand and the
generation from renewables is a function of wind speed and solar irradiance. The
RTP is only revealed to a house 30 minutes in advance.

Markov Models. Semi-Markov models were used to capture the behaviour of
four occupants of a specific house in the ACT. These models provide the con-
sumption patterns and profiles for input parameters such as hot water demand,
shiftable load requests and EV usage. Each model identifies the key activities
of an occupant (e.g., sleeping, taking a shower and leaving for work), and spec-
ifies the probabilities of transiting from one activity to the next within certain
time windows. Each activity is associated with a series of actions (e.g., watching
TV and requesting the dish washer) that trigger changes in input parameters.
Conditional sampling through these models is used to generate scenarios.

Whilst this scheme was convenient for our experiments, other more data-
driven options are possible: we could simply gather and use a database of raw
scenarios, or learn model parameters from disaggregated demand data [7, 8].

4 Experiments

We implemented the expectation and 2-stage online algorithms using Gurobi as
a backend to solve the MILP within each horizon. The devices in Section 2.2
were implemented and included in the experimental house, and conditional sam-
plers were created for the uncertain input parameters in Section 3.5. We created
a simple simulator that uses the same physical equations as the optimisation
to simulate the execution of actions in the real world. We compare the perfor-
mance of the expectation and 2-stage controllers with naive and smart reactive
controllers, and a controller that has perfect information.

The Naive reactive controller represents a household that either has no ability
or no desire to respond to a RTP. It starts shiftable devices as soon as a request
is received, fills up the hot water tank in off-peak hours, charges the EV only
if it is below the requested minimum level, maintains the room at the set point
temperature and never uses the battery bank.

The Smart reactive controller uses simple device action policies to decide
how to respond to changes in RTP. It delays running a shiftable device until
it reaches either a cheap price or the last available start time; uses thresholds
about a moving average of the RTP to decide when to charge or discharge energy
from the batteries, EV and hot water system; and maintains the room at the set
point temperature like the naive controller.

The Perfect controller has perfect foresight about what will happen in the
future. It optimises the deterministic problem in Definition 3 over the whole
experiment duration with full knowledge of z∗i . This controller (which is infeasible
in practice) is used to give a lower bound on the objective that can be achieved
by the other controllers.
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Fig. 2: Costs for each experimental run and device costs averaged over runs.

4.1 Controller Comparison

A total of 9 sets of input parameters typical for the month of February were
generated. These were used in 9 separate experimental runs, each with a duration
of 7 days. The online algorithms had 16 hour optimisation horizons, with 15
minutes for the first two time steps and 30 minute time steps for the remainder
of the horizon.10 The reactive and perfect controllers had 15 minute time steps.
The 2-stage algorithm sampled 60 scenarios for each second stage. The amount
of time spent optimising in Gurobi per day was on average 1 second for the
expectation algorithm and 4 minutes for the 2-stage algorithm (using a single
core of an Intel i7-2600 3.4GHz CPU). Whilst the 2-stage is much slower, its
computational time can still be considered small when spread out over a day.

The controller costs are plotted in Fig. 2a for each experimental run. These
results are adjusted to account for any energy that remains in the battery, EV,
or hot water system at the end of an experimental run. This is done by valuing
the left-over energy at the average RTP for the last 24 hours. Without this
adjustment it would not be a fair comparison since any controller that anticipates
the need to store energy for a future purpose would perform poorly if it does
so just before the experiment ends. This is an artefact of the finite length of
our experimental runs; with very long durations this problem goes away as the
left-over energy costs become insignificant.

We see that the expectation and 2-stage algorithms get quite close to the
performance of the controller with perfect foresight and they achieve significant
cost reductions over the two reactive controllers (∼ 35% less than smart reac-
tive controller). The expectation controller outperforms the 2-stage controller on
average and in all runs except 9. This appears to suggest that the expectation
controller is superior as it requires less computation and achieves lower costs.
There are however a few subtleties to this that are worth discussing.

10 By using larger time steps for more uncertain values further into the future we reduce
the computational burden with only a minor reduction to solution quality.
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Fig. 3: House power profiles for one day and experimenting with horizon lengths.

Fig. 2b shows the average split in costs between devices, ignoring the PV.
The costs for the expectation and 2-stage controllers are essentially identical
except when it comes to the hot water heater. The hot water heater is different
from the other devices because it has a recourse variable for unmet hot water
demand which has a very high cost associated with it. This recourse variable
takes on a non-zero value in run 5 for the expectation and 2-stage controllers,
and run 9 for the expectation controller, in all cases because the controllers fail
to anticipate large spikes in hot water demand until it is too late. The reactive
controllers have to be quite conservative with the amount of hot water they keep
stored, so they never encounter a demand that they cannot meet (at the expense
of higher prices paid for heating the water and greater thermal losses over time).

We in general expect the 2-stage algorithm to be more conservative than the
expectation algorithm and to avoid having any unmet demand because through
sampling it can identify upcoming peaks. This is the case in all runs except 5.
With further investigation we found that in run 5 the 2-stage algorithm failed
to generate the scenario with high demand when it was needed. The reason for
this occurring was not due to too few second stage scenarios, but because of the
way that second stage scenarios are conditionally sampled from the first stage
which can take on expected values. In this instance, at a critical point in time,
the first stage expected values precluded the high demand scenario from being
able to occur in the second stage even though it was still physically possible.

What these results show is that the expectation algorithm typically does a
very good job, but there are certain types of devices and random processes for
which it performs poorly. We initially thought that the online 2-stage algorithm
presented in this paper would be able to overcome these limitations, but there
appears to be some problems associated with taking the expected value of first
stage variables.



Fig. 3a gives an example of the power exchanged between the house and the
grid for one day, along with the RTP. As expected, most consumption occurs
when the price is low and when the price is high power is sold back to the grid
from the battery, EV and PV. The expectation and 2-stage controllers follow
the general trend of the perfect controller with some small divergences.

Fig. 3b shows the results of an experiment where we investigated how per-
formance changes with the horizon duration. This plot shows the performance
of the perfect controller running as an online algorithm where it is restricted to
only having perfect foresight a certain distance into the future. The experiment
is performed on run 1 for a number of different horizon durations and the results
are compared to the original perfect controller that can see the full 7 days. The
results show that there is little to be gained by looking any further into the
future than 20 hours.

5 Related Work

Much of the existing literature on residential demand response focuses on deter-
ministic formulations over fixed horizons where the scheduler has perfect fore-
sight [6, 9]. Those that have considered uncertainty in the problem typically focus
on just one aspect (e.g., real-time pricing) [10], or use very simple models for
random variables [11].

Model-predictive control has been used to account for the uncertainty of
estimated device model parameters and measurement noise [12], but not the
uncertainty of the type we model. In general, model-predictive control is best
suited to unconstrained, purely continuous settings with limited uncertainty.

Dynamic programming [11, 13] and Q-learning [14] have been used in con-
junction with Markov Decision Process (MDP) formulations of the residential
load scheduling problem, to generate policies that allocate power to each device.
MDP approaches suffer from severe scalability issues, especially since the state
space needs to be discretised. Moreover, MDPs seem somewhat excessive for our
problem, given that uncertainty does not depend on the decisions taken. Our
stochastic programming approach which uses scenario sampling is more scalable
and more natural in the presence of exogenous uncertainty.

One paper [11] found that acting on the basis of the optimal dynamic pro-
gramming solution did not provide any benefit over acting on expectations. For
the most part we found this to be true, but as discussed in the experimental
section we identified circumstances where the greedy nature of an expectation
algorithm can lead to poor results. Our use of more complex uncertainty models
and different devices is likely the reason why we had this extra observation.

The paper closest to ours compares two-stage stochastic programming and
robust optimisation techniques for scheduling residential loads [15]. Uncertainty
is restricted to the RTP which is known for the first stage but becomes uncertain
thereafter. The objective includes minimising expected price and the probability
mass of “risky” scenarios whose price exceeds a certain threshold. Comfort is
handled by imposing hard constraints under which appliances must run, rather



than by inclusion into the objective. In this setting, two-stage stochastic pro-
gramming was observed to provide benefits over robust scheduling.

The scope of our analysis goes significantly beyond these results, by explor-
ing uncertainty from a large range of sources and by identifying the value of
stochastic information. We enable richer sources of uncertainty to be considered
in our framework, by allowing inputs to be revealed at arbitrary points in time.

Commercially available residential DR solutions11 typically focus on direct
load control or simple reactive policies. Such systems could experience more
optimal DR performance and greater residential customer satisfaction by using
our algorithms.

6 Conclusion and Future Work

This paper contributes to the growing body of work on residential control of loads
and storage under real-time pricing, by developing a framework that accounts
for uncertainty. To our knowledge, it is the first work that provides a scalable
and accurate solution in the presence of uncertainty about future prices, occu-
pant behaviour and environmental conditions. Using models representative of
physical devices and random processes, we have shown the monetary and com-
fort cost savings that can be achieved by using online stochastic algorithms over
reactive control, and the comparison of performance between a 2-stage approach
and acting on expectations. Studies such as the one in this paper are import
for rallying industry and customers towards more effective energy management
schemes.

Further research is needed to investigate how closely reality can be modelled
with random processes, and if in turn they are suitable for online learning. We
also need to further investigate how time step sizes and the number of second
stage scenarios influence performance, and to conduct more experiments for dif-
ferent months of the year. The experimental set up we have developed can be
used to experiment with and compare different pricing schemes. For example,
time of use pricing and RTP where the price for generation is different from that
for consumption. We also plan on investigating how multiple houses react to a
RTP and what sort of emergent behaviour develops when they are all learning
their statistical models online.
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