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a b s t r a c t

The large-scale deployment of smart home technologies will unlock the flexibility of prosumers, which in
turn will be transformed into electricity market services by aggregators. This paper proposes a new
network-constrained bidding optimization strategy to coordinate the participation of aggregators of
prosumers in the day-ahead energy and secondary reserve markets. This bidding optimization strategy
consists of a decentralized approach based on the alternating direction method of multipliers, where
aggregators negotiate with the distribution system operator to obtain network-constrained energy and
secondary reserve bids. For a case study of 2 aggregators and 1 distribution system operator, the results
show that the network-constrained bidding strategy computes cost-effective and network-feasible en-
ergy and secondary reserve bids, as opposed to a network-free bidding strategy. In addition, the network-
constrained bidding strategy preserves the independent roles of aggregators and the distribution system
operator, and the data privacy of all agents.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Context and motivation

The digitization of the residential sector will introduce internet-
of-thing technologies, which will provide unprecedented infor-
mation and control [1]. This will provide the technical means to
unlock the real potential of flexible appliances, such as electric
vehicles (EV), photovoltaic systems (PV), and air conditioners.
Aggregators will play a central role in transforming the automation
of flexible appliances into electricity services with high economic
value. Aggregators will optimize and control flexible appliances to
provide multiple services in the electricity markets. However, the
challenge is big since it will be necessary to develop computational
tools to define electricity market services that do not violate dis-
tribution network constraints and maintain the independent roles
of aggregators and distribution system operators (DSO).
omputer Science, Australian
1.2. Related work

Aggregators are energy service providers that gather prosumers
with distributed energy resources to transform their generation
and load flexibilities into products to be traded in electricity mar-
kets [2]. An aggregator may participate in single or multiple day-
ahead electricity market sessions, such as energy and/or reserves,
depending on its business model. The aggregator relies on opti-
mization tools to define market products under the form of bids.
The literature on this topic can be divided into two groups.

The first group covers bidding optimization models that do not
constrain the formation of energy and reserve bids by the distri-
bution network. These biddingmodels are purely economic and are
mainly focused on optimizing the aggregator’s portfolio to maxi-
mize its profit in the electricity market. Typically, these bidding
models only optimize one type of flexible resource, such as EV or
thermostatically controlled loads. For instance, Bessa and Matos
[3e6] proposed a set of bidding optimizationmodels to support the
participation of EV aggregators in multiple market sessions, such as

mailto:Jose.Iria@anu.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2020.118266&domain=pdf
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
https://doi.org/10.1016/j.energy.2020.118266
https://doi.org/10.1016/j.energy.2020.118266


Nomenclature

Abbreviations
AC alternating current
ADMM alternating direction method of multipliers
DSO distribution system operator(s)
EV electric vehicle(s)
HV high voltage
LV low voltage
MIBEL iberian market
MV medium voltage
OPF optimal power flow
PV photovoltaic system(s)
TSO transmission system operator(s)

Indices and sets
a2A aggregators
s2fE;U;Dg scenarios (E � energy, U e upward band activation,

D e downward band activation)
ðkÞ ADMM iteration
m;n; i2N buses
Na buses managed by aggregator a
ðm;nÞ2L collection of lines from bus m to bus n
j2J prosumers
Jn3J prosumers per bus n
t;y2T time intervals ðhÞ
TEV3T availability of the electric vehicle ½tAR;…; tDE�
tAR arrival time of the electric vehicle
tDE departure time of the electric vehicle

Parameters
I maximum current (p.u.)
PrIL inflexible load profile (kW)
PrPV PV generation profile (kW)

PEV maximum power of the electric vehicle (kW)
QI reactive power injection (p.u.)
r resistance (p.u.)
RP primal residual
RD dual residual
SB base power (kVA)
SOC maximum state-of-charge (kWh)
SOC minimum state-of-charge (kWh)
SOCDE state-of-charge at departure time (kWh)
SOCAR state-of-charge at arrival time (kWh)
V maximum voltage (p.u.)
V minimum voltage (p.u.)
x reactance (p.u.)

lE energy price (V/kWh)

lB secondary reserve band price (V/kW)

lD downward tertiary reserve price (V/kWh)

lU upward tertiary reserve price (V/kWh)
∅U ratio of utilization to availability for upward band
∅D ratio of utilization to availability for downward band
Dt length of the time interval t in hours ð1 hÞ
r penalty of the augmented Lagrangian (V/kW2)
h charging and discharging efficiency
t regulates the flexibility of the EV to provide band (t ¼

2)

Continuous variables
DA downward band offered by the aggregator (kW)
DEV downward band provided by EV (kW)
DPV downward band provided by PV (kW)
EA energy bids (kWh)
I current (p.u.)
P power variables of the aggregator (kW)bP power variables of the OPF (kW)
PE energy delivery scenario (kW)
PU upward band activation scenario (kW)
PD downward band activation scenario (kW)bPE

duplicate variable of PE (kW)bPU
duplicate variable of PU (kW)bPD
duplicate variable of PD (kW)

Pþ charging power of the electric vehicle (kW)
P� discharging power of the electric vehicle (kW)
PPV PV generation (kW)
PCU Generation curtailment (kW)
PF active power flow (p.u.)
QF reactive power flow (p.u.)
SOC state-of-charge (kWh)
UA upward band offered by the aggregator (kW)
UEV upward band provided by EV (kW)
UPV upward band provided by PV (kW)
V voltage (p.u.)
X internal variables of the aggregator’s problem
Y internal variables of the optimal power flow
p dual variables of the augmented Lagrangian (V/kW)

Functions
f objective function of the aggregator
g optimal power flow constraints
h aggregator constraints
L augmented Lagrangian
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energy [3,4], secondary1 [5] and tertiary2 reserves [6]. The bidding
optimization models are deterministic, i.e. they model the EV in-
formation through point forecasts. To deal with the uncertainty of
the EV mobility patterns, Vagropoulos and Bakirtzis [7] proposed a
scenario-based stochastic optimization model. Later, Baringo and
1 Secondary reserve is known as regulation reserve in U.S. and Australian elec-
tricity markets [38,39].

2 Tertiary reserve is known as non-spinning or replacement reserve in U.S.
electricity markets [39].
Amaro [8] considered confidence bounds to model the uncertainty
of the EV, instead of using scenarios.

The works [9,10] addressed the participation of aggregators of
thermostatically controlled loads in the electricity markets. Chen
et al. [9] proposed a stochastic optimization model to define de-
mand bids for the day-ahead energy market. The authors modeled
weather and load uncertainties through a set of scenarios. Good
et al. [10] also presented a stochastic optimization model to define
demand bids. However, the authors included more uncertainty
parameters in the optimization problem, such as household
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occupancy and hot water consumption. Later, Iria et al. [11e13]
extended the portfolio of the aggregator to multiple types of flex-
ible resources, such as shiftable loads, thermostatically controlled
loads, PV, and EV. The authors proposed a set of two-stage sto-
chastic optimization models to support the participation of an
aggregator of prosumers in the day-ahead energy [13], secondary
[12], and tertiary [11] reserve markets. Ottesen et al. [14,15] studied
the participation of aggregators of industrial customers in the en-
ergy [14] and tertiary [15] reserve markets. The authors proposed a
set of bidding and scheduling models to define energy and tertiary
reserve bids.

In short, works [3e15] proposed optimization models to define
bids for multiple market sessions through the optimization of
multiple types of flexible resources. These works do not consider
distribution network constraints. They assume that the DSO must
be capable of solving the network problems that may arise from the
bidding strategies using technical and market procedures [16]. This
premise may increase the cost of operating the electricity system
since the DSO may need to acquire flexibility services to solve
voltage and congestion problems generated by the bidding
strategies.

The second group of works addresses the network problem by
proposing a set of network-constrained bidding optimization
models. These bidding models define energy and reserve bids
constrained by the technical limits of the distribution networks. For
instance, the works [17e19] proposed stochastic models to
compute energy bids through the optimization of electrical and/or
thermal energy storage units. These bidding models use linear
equations to constrain network power injections. Nonetheless,
these constraints do not ensure the network feasibility of the
aggregators’ bids, because they do not provide any observability
over the line power flows and voltages. On the other hand, works
[20e22] developed network-constrained optimization models to
support EV aggregators in the definition of energy and secondary
reserve bids. These bidding models use linear optimal power flow
(OPF) equations to constrain the bids. Linear OPF models present
disadvantages, such as generating infeasible physical solutions in
scenarios of low voltages [23,24] and reducing the searching space
of the bidding optimization models, due to inner approximations
[25,26]. Another drawback of [17e22] is to assume that the
aggregator has access to the distribution network data. In practice,
only the DSO has access to the network data. Aggregators and DSO
have independent roles and responsibilities and their roles should
remain independent.

1.3. Contributions

This paper proposes a new network-constrained bidding opti-
mization strategy to support the participation of aggregators of
prosumers in multiple electricity markets. The bidding optimiza-
tion strategy maximizes the aggregators’ profits in the day-ahead
energy and secondary reserve markets while maintaining the se-
curity and increasing the utilization of the distribution networks.

The network-constrained bidding optimization strategy consists
of a decentralized approach based on the alternating direction
method of multipliers (ADMM) [27], where aggregators negotiate
with the DSO to obtain solutions that satisfy foreseen network
operating scenarios. The ADMM breaks down the network-
constrained bidding optimization problem into aggregator and
DSO subproblems and solves them iteratively until convergence is
reached. Aggregators define day-ahead energy and reserve bids
through bidding optimization models. The DSO evaluates the
network feasibility of the energy and reserve offers through a series
of AC OPF. When ADMM converges, aggregators submit network-
constrained energy and reserve bids to the day-ahead markets.
The network-constrained bidding optimization strategy pre-
sents innovative features that go beyond the current state-of-the-
art approaches to support the participation of aggregators of pro-
sumers in electricity markets. The research contributions of the
network-constrained bidding strategy are highlighted below:

1. it supports aggregators of prosumers in the definition of
network-constrained energy and reserve bids, contrarily to day-
ahead bidding optimization approaches focused on defining
network-free energy and reserve bids [3e15]. It ensures that the
energy and reserve bids are feasible from the DSO perspective;

2. it breaks down the network-constrained bidding optimization
problem into aggregator and DSO subproblems, ensuring their
independent roles. Each agent solves its optimization problem,
in opposition to approaches where aggregators solve the joint
network and bidding optimization problems [17e22]. These
previous works do not ensure the independent roles of each
agent since the aggregators have access to distribution network
data and conditions;

3. it exploits ADMM to decompose a large-scale optimization
problem into simpler problems, overcoming the computational
complexity of solving large-scale AC OPF. The network-
constrained optimization problem is broken down into a set of
quadratic optimization problems (aggregators’ problems) and
non-convex optimization problems (DSO problems), making
them small enough to be computationally tractable on their
own.
1.4. Paper organization

The remaining paper is organized as follows: section 2 describes
the frameworks of the aggregators and electricity markets; section
3 describes the network-constrained bidding optimization strat-
egy; sections 4 and 5 presents the aggregator and DSO optimization
subproblems; the case study and results are presented in sections 6
and 7; section 8 presents the conclusions.

2. Participation of aggregators in the day-ahead energy and
secondary reserve markets

The participation of aggregators in the day-ahead energy and
secondary reserve markets follows the rules of the Iberian market
(MIBEL) [12]. The MIBEL covers the Portuguese and Spanish control
areas. European electricity markets, such as MIBEL, EPEX, and Nord
Pool present sequential trading structures, where energy is traded
first, and reserves are negotiated afterward. Nonetheless, the pro-
posed approach can be applied to any sequential or joint market
(e.g., U.S. or Australia) since the energy and reserve bids are co-
optimized.

2.1. Interactions between the electricity market and aggregators

Fig. 1 describes the participation of the aggregators in the day-
ahead energy and secondary reserve markets. Before the 12th
hour, aggregators submit their energy bids to the day-ahead energy
market of MIBEL. The energy bids of MIBEL and other European
markets are submitted to the EUPHEMIA platform [28] (European
dispatch tool). The EUPHEMIA clears the prices (V/MWh) and
quantities (MWh), such that the social welfare is maximal and the
power flows between the bidding areas are not exceeded. The
clearing prices are published at hour 13. Afterward, the physical
bilateral contracts are added to the clearing offers of the day-ahead
energy market. Before hour 16, the transmission system operator
(TSO) runs congestion management to produce viable energy



Fig. 1. Sequential timeline of the MIBEL in the day-ahead stage (formulated based on
the Portuguese timeline).
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schedules.
The secondary reserve bids are submitted between 19:00 and

19:45. The secondary reserve is remunerated under two concepts:
band availability and band utilization (in both upward and down-
ward directions). The band availability is traded under the form of
bids (MW), which are selected by an economic merit-order and
remunerated by a marginal price (V/MW). The TSO is responsible
for acquiring band availability in the day-ahead secondary reserve
market. During real-time, the TSO dispatches the band acquired in
the day-ahead market through an automatic generation control
system. The band utilization (MW) is valued at the marginal price
(V/MWh) of the tertiary reserve market of MIBEL.

Under the MIBEL framework, aggregators can choose to partic-
ipate only in the day-ahead energy market (with demand and
supply bids) or in both day-ahead energy and secondary reserve
markets (with coupled bids of secondary reserve with demand or
supply bids). As price-takers, aggregators submit supply and sec-
ondary reserve bids at market floor price and demand bids at
market cap price.

This paper only addresses the participation of aggregators in the
day-ahead energy and secondary reserve markets. The real-time
delivery of energy and secondary reserve bids is outside the
scope of this paper. This topic is covered in Refs. [29].

2.2. Interactions between aggregators and the distribution system
operator

The current framework of the MIBEL does not consider the
participation of the DSO. In this work, we propose that aggregators
negotiate with the DSO to compute network-secure energy and
secondary reserve bids from the distribution network perspective.
The proposed bidding strategy is described in section 3.

2.3. Interactions between aggregators and prosumers

Aggregators sign contracts with prosumers to exploit and trade
the flexibility of their resources in electricity markets. In exchange,
they offer financial rewards, such as cheaper retailing tariffs [3] or
monthly bill discounts [12]. To complement the financial rewards,
aggregators may also provide gamification services to maximize
the interest and participation of prosumers [30]. The remuneration
mechanisms and engagement mechanisms are not addressed in
this paper. They have been studied in previous works, such as [12].

Aggregators interface with prosumers through home energy
management systems [13]. Each prosumer’s home energy
management system has the following functionalities: metering
the consumption and generation of appliances; enabling the ex-
change of information between aggregators and prosumers;
acquiring the state-of-operation of appliances; and controlling the
flexible appliances based on the set-points communicated by
aggregators. A prosumer may interface with the home energy
management system through a mobile or computer application.

This paper considers EV and PV as sources of flexibility. The
remaining consumption is considered inflexible. EV are sources of
demand and generation flexibilities, while PV are only sources of
generation flexibility. Being a source of flexibility means that the
resource is capable of decreasing, increasing, or shifting generation
and/or consumption.
3. Network-constrained bidding optimization strategy

This section describes the optimization problem used to
compute the network-constrained energy and secondary reserve
bids. We begin by formulating the joint bidding and network
problem in subsection 3.1, and then we decompose the problem
into bidding and network subproblems in subsection 3.2.
3.1. Problem formulation

The network-constrained bidding strategy can be represented
by optimization problem (1)-(4), which computes network-
constrained energy and band bids by minimizing the cost of the
aggregators trading in the day-ahead energy and secondary reserve
markets.

The objective function of each aggregator a is represented by fa
in equation (1). Variables Pa are the possible scenarios of power
exchange between aggregators and the distribution network, due
to the participation of the aggregators in the day-ahead energy and
secondary reserve markets. Variables Xa are internal inputs of the
aggregators. Equations (2) and (3) are the constraint functions of
aggregators and DSO (or distribution network), respectively. Vari-

ables Y are internal inputs of the distribution network. Variables bP
are duplicates of the variables P, so that the network and aggre-
gators have their own copies. Constraint (4) enforces the duplicate
variables to have the same values and enables the decomposition of
optimization problem (1)-(4) into aggregator and DSO optimization
problems. Note that we drop all the subscripts of the variables to
increase readability.

Min
X
a2A

faðPa;XaÞ (1)

haðPa;XaÞ � 0; c a2A (2)

gðbP ; YÞ � 0 (3)

P� bP ¼ 0 (4)
3.2. Application of the alternating direction method of multipliers

We use the ADMM algorithm [27] to decompose the optimiza-
tion problem (1)-(4) into aggregators and DSO optimization prob-
lems. The bidding optimization problem of each aggregator a is
given by:
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Pðkþ1Þ :¼ min
P;X

faðPa;XaÞ þ L a

 
Pa; bP ðkÞ

a ;p
ðkÞ
a

!
(5)

haðPa;XaÞ � 0 (6)

whereL a is the penalty term of the augmented Lagrangian applied
to the equality constraint (4). Equation (7) is the mathematical
formulation of the penalty term of the augmented Lagrangian,
where p is the vector of dual variables and r is the penalty
parameter of the augmented Lagrangian.

L ðP; bP ;pÞ ¼ pTðP � bPÞ þ r

2
jjP � bP jj22 (7)

The DSO optimization problem (AC OPF) is given by:

bP ðkþ1Þ
:¼ minbP ;Y L

�
Pðkþ1Þ; bP ;pðkÞ

�
(8)

gðbP ;YÞ � 0 (9)

The ADMM algorithm solves iteratively optimization problems
(5)e(6) and (7)e(8) until convergence is reached. The steps of the
ADMM algorithm for each iteration k are illustrated in Fig. 2 and
described below:

1. aggregators solve their bidding optimization problems (5)e(6)

by holding bP ðkÞ
and pðkÞ constant at their kth values. The aggre-

gators obtain the values of P;
2. the DSO solves an AC OPF (8)e(9) by holding Pðkþ1Þ and pðkÞ

constant at their kþ 1th and kth values. The DSO obtains the

values of bP;
Fig. 2. Schematic overview of the network-constrained bidding optimization strategy.
3. the dual variables p are updated through equation (10). This
sequential process is repeated until convergence is reached
(otherwise go to step 1).

pðkþ1Þ ¼pðkÞ þ r
�
Pðkþ1Þ � bP ðkþ1Þ�

(10)

The stopping criteria of the ADMM are defined by the primal
(11) and dual (12) residuals in line with [31]. The primal residual
represents the violation of constraint (4) and the dual residual
represents the violation of the KarusheKuhneTucker stationarity
constraint. We consider that the problem converges, when the
scaled 2-norm of both the primal and dual residuals are smaller
than 10�3 (<10 W for the primal constraint).

RP
ðkþ1Þ ¼

��
Pðkþ1Þ
1 � bP ðkþ1Þ

1

�
;
�
Pðkþ1Þ
2 � bP ðkþ1Þ

2

�
;…
�T

(11)

RD
ðkþ1Þ ¼

�
r
�bP ðkþ1Þ

1 � bP ðkÞ
1

�
; r
�bP ðkþ1Þ

2 � bP ðkÞ
2

�
;…
�T

(12)

ADMM has been proven to converge for convex problems [27].
However, recent works [32e34] show that in practice ADMM also
converges for non-convex problems, as we demonstrate in this
work.

4. Aggregator optimization problem

Each aggregator defines energy and band bids to submit to the
day-ahead energy and secondary reserve markets by running the
quadratic optimization model (13)e(36). The optimization model
computes day-ahead bids fEA; UA;DAg and bid delivery scenarios
fPE; PU ; PDg, as illustrated in Fig. 3. The bid delivery scenarios
define the possible real-time power exchanges between aggre-
gators and the distribution network. The DSO uses the bid delivery
scenarios to evaluate the feasibility of the aggregator’s offers. We
consider the following three scenarios for network feasibility
evaluation:

1. the aggregator only delivers the energy traded in the day-ahead
market ðPE ¼ EA =DtÞ;

2. the aggregator delivers the energy and maximum upward band
traded in the energy and secondary reserve markets ðPU ¼
EA =Dt � UAÞ;

3. the aggregator delivers the energy and maximum downward
band traded in the energy and secondary reserve markets ðPD ¼
EA =Dt þ DAÞ.
4.1. Objective function

The quadratic optimization model (13)e(36) is formulated as a
Fig. 3. Output example of the bidding optimization problem of the aggregators.
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minimization problem. The aim is to minimize the net cost of the
aggregator trading energy and secondary reserve. The objective
function (13) is divided into two main terms:

1. the first term ft is the net cost of the aggregator trading energy
and secondary reserve. Equation (14) divides the first term into

energy lEt E
A
t and secondary reserve �lBt ðUA

t þDA
t Þþ

ðlDt ∅D
t D

A
t �lUt ∅U

t U
A
t ÞDt components. The energy term represents

the net cost of buying ðEAt >0Þ and selling ðEAt <0Þ energy at

price lEt in the day-ahead energy market. The secondary reserve
term is divided into two components. The first component is the

revenue of selling band UA
t þ DA

t at price lBt in the day-ahead
secondary reserve market. The second component is the ex-
pected net cost of mobilizing downward DA

t and upward UA
t

bands during real-time at tertiary reserve prices lDt and lUt . The
parameters ∅D

t and ∅U
t are the forecast ratios of utilization to

band availability;
2. the second term L s

n;t is the penalty term of the augmented
Lagrangian. It is used to penalize distribution network viola-
tions. Therefore, it is only positive in bid delivery scenarios s2
fE;U;Dg that produce network violations.

Min
X
t2T

24ft þ X
s2fE;U;Dg

 X
n2Na

L s
n;t

!35 (13)

ft ¼ lEt E
A
t � lBt

�
UA
t þ DA

t

�
þ
�
lDt ∅

D
t D

A
t � lUt ∅

U
t U

A
t

�
Dt (14)

L s
n;t ¼ps

n;t
ðkÞ�Psn;t � bPs

n;t

ðkÞ�
þ r

2

�
Psn;t � bPs

n;t

ðkÞ�2
(15)

The energy and band bids are defined for the optimization ho-
rizon t2T and each time interval has the duration 1 h Dt ðhÞ. The
prosumers of aggregator a are in the nodes n2Na of the MV dis-
tribution network.
4.2. Day-ahead bidding constraints

Constraint (16) defines the energy bids of the aggregator. The
energy bids result from the sum of the energy consumed by EV Pþj;t
and inflexible appliances PrILj;t , and the energy generated by EV P�j;t
and PV PPVj;t .

EAt ¼
X
j2J

�
Pþj;t � P�j;t þ PrILj;t � PPVj;t

�
Dt; c t2T (16)

Constraints (17) and (18) define the band bids for upward and
downward directions. The upward band UA

t defines the flexibility of
the EV and PV to decrease load or increase generation during real-
time. The downward band DA

t defines the flexibility of the EV and
PV to increase load and decrease generation during real-time.

UA
t ¼

X
j2J

�
UEV
j;t þUPV

j;t

�
; c t2T (17)

DA
t ¼

X
j2J

�
DEV
j;t þDPV

j;t

�
; c t2T (18)
4.3. Secondary reserve constraint

Constraint (19) splits the secondary reserve band according to
the bidding rules of MIBEL (2/3 for upward and 1/3 for downward)
[5,12].

UA
t ¼2,DA

t ; c t2T (19)
4.4. Bid delivery constraints

Constraints (20)e(22) define the three bid delivery scenarios
fPEn;t ; PUn;t ;PDn;tg. The bid delivery scenarios are disaggregated by the
distribution network nodes n2Na.

PEn;t ¼
X
j2Jn

�
Pþj;t � P�j;t þ PrILj;t � PPVj;t

�
; c n2Na; t2T (20)

PUn;t ¼ PEn;t �
X
j2Jn

�
UEV
j;t þUPV

j;t

�
; c n2Na; t2T (21)

PDn;t ¼ PEn;t þ
X
j2Jn

�
DEV
j;t þDPV

j;t

�
; c n2Na; t2T (22)
4.5. Electric vehicle constraints

The charging and discharging of the EV are defined by equations
(23e27). Constraints (23) and (24) bound the charging power Pþj;t
and discharging P�j;t power of the EV. Constraints (25) and (26) set

the state-of-charge SOCj;tþ1 within its technical limits
h
SOCj ; SOCj

i
Constraint (27) ensures that the SOC at departure time tDEj is

satisfied. The aim is to guarantee that the preferences of the pro-
sumers j2J are always satisfied. The preferences include avail-
ability TEVj and state-of-charge at departure time SOCDE

j .

0� Pþj;t � PEVj ; c j2 J; t2TEVj (23)

0� P�j;t � PEVj ; c j2 J; t2TEVj (24)

SOCj;tþ1 ¼ SOCj;t þ
 
Pþj;thj �

P�j;t
hj

!
Dt; c j2J; t2TEVj (25)

SOCj � SOCj;tþ1 � SOCj; c j2 J; t2TEVj (26)

SOCj;tDEj � SOCDE
j ; c j2J (27)

The upward and downward bands provided by the EV are
defined by equations (28e32). Constraints (28) and (29) limit the
downwardDEV

j;t and upwardUEV
j;t bands to the available charging and

discharging powers, respectively. Constraints (30) and (31) guar-
antee that the EV only supply upward and downward bands if the
SOC is within the interval �SOC j;SOCj½. Constraint (32) forces the EV
to have availability to charge in the time intervals subsequent to the
provision of upward and downward bands. So, it increases the
robustness of the bidding problem and reduces the risk of reserve
shortage in real-time.
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0�DEV
j;t � PEVj � Pþj;t ; c j2 J; t2TEVj (28)

0�UEV
j;t � PEVj � P�j;t ; c j2 J; t2TEVj (29)

UEV
j;t ;D

EV
j;t � SOCj � SOCj;tþ1

hjDt
; c j2 J; t2TEVj (30)

UEV
j;t ; D

EV
j;t �

�
SOCj;tþ1 � SOC j

�
hj

Dt
; c j2J; t2TEVj (31)

X
y2TEV

j;t

�
DEV
j;y þ UEV

j;y

�
�
X

y2TEV
j;t

 
P
EV
j � Pþj;y � P�j;y

t

!
; c j2J; t2TEV

j

(32)

4.6. Photovoltaic system constraints

The generation of the PV is defined by equations (33) and (34).
Constraint (33) sets the PV generation PPVj;t . Constraint (34) bounds

the curtailment power PCUj;t of the PV. The maximum power output

of the PV is defined by the forecasted power profile PrPVj;t .

PPVj;t ¼ PrPVj;t � PCUj;t ; c j2J; t2T (33)

0� PCUj;t � PrPVj;t ; c j2J; t2T (34)

The upward UPV
j;t and downward DPV

j;t bands are defined by

equations (35) and (36).

0�UPV
j;t � PCUj;t ; c j2J; t2T (35)

0�DPV
j;t � PrPVj;t � PCUj;t ; c j2J; t2T (36)

5. DSO optimization problem

The DSO evaluates the network feasibility of the bid delivery
scenarios s2fE;U;Dg computed by the aggregators by running the
AC OPF (37)e(43). The aim is to ensure that the delivery of the
aggregators’ offers does not violate the distribution network
constraints.

5.1. Objective function

The AC OPF is formulated as a minimization problem. The aim is
tominimize the penalty term of the augmented Lagrangian for a set
of bid delivery scenarios s2fE;U;Dg and bidding horizon t2 T .

Note that bPs
n;t is the duplicated variable of Psn;t . In this case, bPs

n;t is a
free variable and Psn;t is a parameter.

Min
X

s2fE;U;Dg

X
t2T

X
n2N

�
ps
n;t

ðkÞ�Psn;tðkþ1Þ � bPs
n;t

�
þ r

2

�
Psn;t

ðkþ1Þ � bPs
n;t

�2�
(37)
5.2. Distribution network constraints

We model the distribution network constraints (38)e(43) using
the branch flow formulation of the AC OPF in the non-convex form
[23]. Constraints (38)e(41) are the power flow equations. For each
line ðm;nÞ2L, let PFs;t;m;n and QF

s;t;m;n denote the active and reactive
power flows. Let rm;n and xm;n be the resistance and reactance. For

each node n2N, let bPs
n;t and QI

s;t;n denote the active and reactive

power injections. The active power injection bPs
n;t is negative for

generation and positive for consumption. Let Sb be the base power.

PFs;t;m;n ¼
bPs
n;t

SB
þ
X
i:n/i

PFs;t;n;i þ rm;nI2s;t;m;n;

c s2fE;U;Dg; t2T ; ðm;nÞ2L (38)

QF
s;t;m;n ¼ QI

s;t;n þ
X
i:n/i

QF
s;t;n;i þ xm;nI2s;t;m;n;

c s2fE;U;Dg; t2T; ðm;nÞ2L
(39)

V2
s;t;n¼V2

s;t;m�2
�
rm;nPFs;t;m;nþxm;nQF

s;t;m;n

�
þ
�
r2m;nþx2m;n

�
I2s;t;m;n;

c s2fE;U;Dg; t2T; ðm;nÞ2L

(40)

I2s;t;m;nV
2
s;t;m ¼ PFs;t;m;n

2 þ QF
s;t;m;n

2
;

c s2fE;U;Dg; t2T; ðm;nÞ2L (41)

Constraint (42) sets the limits of the voltage magnitude Vs;t;n

between Vn and Vn. Constraint (43) maintains the current magni-
tude Is;t;m;n within a prescribed region.

Vn �Vs;t;n �Vn; c s2 fE;U;Dg; t2 T ; n2N (42)

0 � Is;t;m;n � Is;t;m;n; c s2fE;U;Dg; t2T ; ðm;nÞ2L (43)

5.3. AC OPF implementation

The AC OPF problem (37)-(43) was decomposed by time-step
t2T and bid delivery scenario s2fE;U;Dg since there is no time
coupling constraints and dependency constraints between bid de-
livery scenarios. In addition, the variables V2

s;t;m and I2s;t;m;n were
replaced by linear equivalent variables [23,35]. These two modifi-
cations reduced the computational time of solving the problem
(37)-(43) without compromising the quality of the solutions.

6. Case study

The case study covers the participation of two aggregators in the
energy and secondary reservemarkets of MIBEL onNovember 30th,
2015. The aggregators represent and optimize the flexibility of
24450 prosumers. The network location of the prosumers and
flexible resources under the management of each aggregator is
described in Fig. 4.

6.1. DSO data

The DSO data includes information on the 11-kV distribution
network. The voltage bounds are 0.9 and 1.1 p.u., and slack bus
voltage is 1.0 p.u. The resistance and reactance of the branches can



Fig. 4. 118-bus distribution network with two aggregators.
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be found in Ref. [36].

6.2. Aggregator data

The data of aggregators includes information about the pro-
sumers and electricity markets. The prosumer data comprises pa-
rameters of inflexible load, EV, and PV generation. The parameters
are divided into fixed and dynamic, as shown in Table 1. The fixed
parameters are provided by the manufacturing companies. The
dynamic parameters are computed by the aggregators and assume
the form of point forecasts. The prosumer data can be found in
Ref. [13].

The electricity market data includes point forecasts of energy

price lE , secondary reserve price lB; tertiary reserve prices for

upward lU and downward lD directions, and ratios of utilization to
availability for upward∅U and downward∅D bands. Fig. 5 presents
the electricity market data forecasted for November 30th, 2015. The
Table 1
Prosumer data.

Parameters Electric vehicles PV generation Inflexible load

Dynamic tDE ; tAR; TEV ; SOCDE ; SOCAR PrPV PrIL

Fixed h; PEV ; SOC ; SOC e e
point forecasts were computed using the forecasting algorithms
described in Ref. [12].
7. Results

The proposed network-constrained bidding strategy is
compared to a network-free bidding strategy. Table 2 describes the
main characteristics of the two day-ahead bidding strategies. The
network-constrained bidding strategy computes network-
constrained energy and secondary reserve bids. The network-free
bidding strategy computes energy and secondary reserve bids
without considering distribution network constraints, like the
network-free approaches [3e15]. Both bidding strategies ensure
the independent roles of aggregators and DSO. Under the network-
constrained bidding strategy, the exchange of information between
aggregators and DSO is minimal to ensure data privacy. The
aggregators do not have access to the network data and the DSO
does not have access to the data of the prosumers.

The results presented in the next subsections evaluate the
participation of two aggregators in the energy and secondary
reserve markets of MIBEL on November 30th, 2015. Nonetheless,
the results can be replicated for any other day, beyond November
30th, 2015.



Fig. 5. Forecasted electricity market data for November 30th, 2015 [12].

Table 2
Main characteristics of the two day-ahead bidding strategies.

Bidding strategy Participant agents Optimization model

Network-constrained Aggregators and DSO Optimization model described in sections 3, 4, and 5
Network-free Aggregators Optimization model (13)e(14) and (16)e(36)

Fig. 6. Energy and band bids computed by the network-free bidding strategy.
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7.1. Comparison of the bid placement results

Fig. 6 and Fig. 7 illustrate the energy and band bids submitted by
aggregators 1 and 2 to the day-ahead energy and secondary reserve
markets. The energy and band bids were computed by the network-
free bidding strategy (Fig. 6) and network-constrained bidding
strategy (Fig. 7). We can observe four combinations of bids: only
supply bids at hours 11 and 12; only demand bid at hour 6; supply
bid coupled with band bid at hour 10; and demand bids coupled
with band bids at hours 2 and 3. Demand and band bids assume



Fig. 7. Energy and band bids computed by the network-constrained bidding strategy.

Fig. 8. Bid differences between network-constrained and network-free strategies.
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positive values. Supply bids assume negative values.
The network-free and network-constrained bidding strategies

present a similar placement behavior. Both strategies place most of

the demand bids in the periods of low energy prices lE and the
supply bids in the periods of forecasted PV generation. The demand
bids placed in the early hours of the day (0e5 h) result from the
optimization of EV charging, as shown in Fig. 13. The hours 1 and 4
are examples of this bidding behavior with energy prices of 46.3
and 48.6V/MWh. In addition, both bidding strategies place most of

the band bids in the periods of high band prices lB and high product
between upward tertiary reserve prices and ratios of utilization to

availability for upward bands lU∅U . The hours 2 and 3 are exam-
ples of this bidding behavior with identical band prices of 17.6
V/MW, and products of 28.9 and 29.8 V/MWh. The electricity
market data can be observed in Fig. 5.

The quantities of energy and band bids computed by the
network-free and network-constrained bidding strategies can be
different in case of the offers violating the distribution network
constraints. Fig. 8 illustrates the bid differences between the two
strategies for aggregator 1. Positive differences mean that the
aggregator placed more bids with the network-constrained bidding
strategy than with the network-free bidding strategy. Negative
differences mean the opposite. The results suggest that the
network-free bidding strategy produced network infeasible energy
and band bids since the bid differences between the two bidding
strategies is observed. A more detailed analysis of the network
feasibility of the energy and band bids computed by aggregator 1 is
made in section 7.2. Regarding aggregator 2, no-bid differences are
observed. This means that the bidding strategy of the aggregator 2
does not generate distribution network problems.
7.2. Impact of the bidding strategies in the distribution network

Under the network-constrained bidding strategy, the DSO
evaluates the network feasibility of the bid delivery scenarios
fPE; PU ; PDg through the AC OPF (37)e(43). The network-free bid-
ding strategy does not evaluate the network feasibility of the bid
delivery scenarios. This lack of network observability of the
network-free strategy may produce voltage violations and line
congestions in real-time.

Fig. 9 shows that the 3 bid delivery scenarios computed by the
network-free strategy generate undervoltage problems at hours 1,
2, 4, 19, and 20. The undervoltage problems are observed at buses
[69, 76]. The lowest voltage value is observed at hour 1 and bus 76
(0.87 p.u.) under the downward band activation scenario. These
undevoltage problems are generated by the bidding strategy of



Fig. 9. Distribution network voltages generated by the network-free bidding strategy for the three bid delivery scenarios.
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aggregator 1 since the prosumers of buses [69, 76] are managed by
it. Therefore, the energy and band bids computed by the aggregator
1 are network-infeasible under the network-free bidding strategy.

The network-constrained bidding strategy comprises negotia-
tions between aggregators and DSO to obtain energy and secondary
reserve band bids that satisfy the distribution network constraints.
Fig. 10 shows that the network-constrained bidding strategy com-
putes network-feasible energy and secondary reserve band bids
since no voltage violations are observed for any of the bid delivery
scenarios. We can also observe in Fig. 8 that the aggregator 1
modified the quantities of energy and band bids at hours 1, 2, 4, 19,
and 20 to avoid the undervoltage problems. For instance, the
aggregator 1 reduced the quantities of energy and band bids at hour
1 by 7%, in order to avoid the undervoltage value of 0.87 p.u.
observed under the network-free bidding strategy.

As mentioned before, the network-free bidding strategy does
not have any observability over the distribution network. This may
generate line congestion during real-time, as illustrated in Fig. 11.
The 3 bid delivery scenarios generated congestion in the line
68e69 at hours 1, 2, and 4. The maximum congestion is observed at
hour 1 (3073 kVA) for the scenario of downward band activation.
The line 68e69 is in the network area managed by aggregator 1.

Fig. 12 illustrates the power flows in line 68e69 produced by the
network-constrained bidding strategy. The 3 bid delivery scenarios
do not violate the limit of the line at any hour of the day. We can
observe that the limit of the line is not a binding constraint. The
power flows are being limited by the voltage bounds of buses [69,
76].
7.3. Disaggregation of the bidding results per resource

This section discusses the disaggregation of the energy and band
bids of the aggregator 2 per type of resource. The energy and band
bids were computed by the network-free bidding strategy.

Fig. 13 illustrates the disaggregation of the energy bids per type
of resource. The EV demand is placed in the periods of low energy
prices (see Fig. 5). The PV generation and inflexible load are placed
in the periods of expected realizations. The inflexible load is the
main source of consumptionwith 111.2 MWh (79%) followed by the
EV with 29.2 MWh (21%). PV are the main source of generation
with �35.5 MWh (99%) followed by EV with �0.3 MWh (1%).

The EV are the main sources of upward and downward bands, as
illustrated in Fig. 14. They provide 93% (22.3 MW) of the total
downward band and 100% (47.9 MW) of the total upward band.
Most of the upward and downward bands offered by the EV are
placed in the period between the hours 18 and 5. These hours
correspond to the period when the EV are available to charge or
discharge. The PV only provide downward band (7%, 1.7 MW) in the
periods of expected generation.

The disaggregation of the bidding results shows us that the EV
are generating the line congestion and undervoltage problems
observed in the distribution network.



Fig. 10. Distribution network voltages generated by the network-constrained bidding strategy for the three bid delivery scenarios.

Fig. 11. Power flows in line 68e69 produced by network-free bidding strategy.

Fig. 12. Power flows in line 68e69 produced by network-constrained bidding strategy.
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Fig. 13. Disaggregation of the energy bids of the aggregator 2 per type of resource. The load is positive, and the generation is negative.

Fig. 14. Disaggregation of the band bids of the aggregator 2 per flexible resource.

Table 3
Cumulative energy and power bidding results.

Bidding strategy Network-free Network-
constrained

Aggregator 1 2 1 2

Demand bids (MWh) 99.7 104.7 99.7 104.7
Band bids (MW) 67.9 71.8 67.9 71.8

Table 4
Cumulative financial bidding results.

Bidding strategy Network-free Network-
constrained

Aggregator 1 2 1 2

Energy cost (V) 5763.8 6056.1 5768.0 6056.1
Secondary reserve revenue (V) �2263.1 �2391.8 �2260.2 �2391.8
Total net-cost (V) 3500.7 3664.3 3507.8 3664.3
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7.4. Comparison of the cumulative bidding results

Table 3 compares the cumulative energy and power results of
the two bidding strategies. Both bidding strategies submit the same
quantities of demand and band bids to the day-ahead energy and
secondary reservemarkets. However, the placement of the demand
and band bids varies along of the day for the aggregator 1, as
illustrated in Fig. 8. The demand and band bids computed by the
network-free bidding strategy violate the voltage and line con-
straints at hours 1, 2, 4, 19, and 20, as shown in Figs. 9 and 11. The
demand and band bids placed by the aggregator 2 are equal for
both bidding strategies since they do not violate any distribution
network constraint.

Table 4 compares the economic performance of the two bidding
strategies. The total net cost is computed by equation (14). The
other revenue and cost terms are components of the equation (14).
Positive values are costs and negative values are revenues.

Both bidding strategies present the same net-cost of 3664.3 V

for aggregator 2 since the bidding strategy of aggregator 2 does not
violate any network constraint. Regarding aggregator 1, the
network-free bidding strategy presents the lowest net-cost of
3500.7 V, outperforming network-constrained bidding strategy
with a net-cost of 3507.7 V. However, the energy and band bids
computed by network-free bidding strategy are infeasible from the
distribution network perspective, as shown in section 7.2. So, the
distribution network constraints increased the cost of aggregator 1
by 7.1 V (0.2%). The cost of purchasing demand in the market
increased by 4.2 V and the revenue of selling secondary reserve
decreased by �2.9 V.
7.5. Computational performance

The optimization problems were implemented in Python and
solved on a machine with an Intel®Core™ i7-9700 CPU clocked at



Table 5
Average sizes and execution times of the subproblems of the network-constrained bidding strategy for 1 ADMM iteration. The ADMM needed 29 iterations to converge.

Agent Aggregator 1 Aggregator 2 DSO (AC OPFa)

Type of optimization problem Quadratic programming Quadratic programming Nonlinear programming
Equations (13)e(36) (13)e(36) (37)e(43)
Number of variables 346,792 366,260 581
Number of constraints 568,088 599,944 586
Computational time 11.4 s 11.0 s 0.2 s

a AC OPF decomposed by time-step and bid delivery scenario.

Table 6
Sizes and execution times of the optimization problems of the network-free bidding strategy.

Agent Aggregator 1 Aggregator 2

Type of optimization problem Linear programming Linear programming
Equations (13)e(14) and (16)e(36) (13)e(14) and (16)e(36)
Number of variables 346,792 366,260
Number of constraints 568,088 599,944
Computational time 55.3 s 38.4 s
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3.0 GHz with 32 GB RAM. The aggregator and DSO problems were
solved by the CPLEX 12.9 and Ipopt 3.12.8 optimizers, respectively.

Tables 5 and 6 present the execution times and sizes of the two
bidding optimization approaches. Table 5 shows that the ADMM
algorithm needs at least 11.6 s (max (11.4, 11.0) þ 0.2) to run an
iteration if the aggregators and DSO problems are solved in parallel
(without considering communications). The ADMM algorithm took
29 iterations to converge. This means that the network-constrained
bidding problem can be solved in 5.6 min. The network-free
strategy is faster. It only needed 55.3 s and 38.4 s to solve the
optimization problems of the aggregators 1 and 2, as described in
Table 6. Nonetheless, both bidding strategies present suitable
execution times for MIBEL.
8. Conclusion

This paper proposes a new network-constrained bidding opti-
mization strategy to support the participation of aggregators in the
day-ahead energy and secondary reserve markets. The bidding
strategy uses ADMM to break down the network-constrained bid-
ding problem into aggregator and DSO subproblems and solve
them iteratively. Aggregators compute energy and secondary
reserve bids through bidding optimization models. The DSO eval-
uates the network feasibility of the bids through AC OPF. After
ADMM convergence, aggregators obtain network-constrained en-
ergy and secondary reserve bids to submit to the day-ahead
markets.

The numerical results compare the network-constrained bid-
ding strategy to a network-free bidding strategy. Five main con-
clusions can be drawn. First, both bidding strategies place most of
the flexible demand bids in the hours of low energy prices. Second,
both bidding strategies place most of the band bids in the hours of
high band prices and high product between upward tertiary
reserve prices and ratios of utilization to availability for upward
band. Third, the energy and band bids computed by the network-
free bidding strategy can be network-infeasible in cases of high
integration of distributed energy resources. Fourth, the network-
constrained bidding strategy computes cost-effective and
network-feasible energy and band bids. Fifth, the network-
constrained and network-free bidding strategies present the same
aggregators’ costs in cases of no network violations. However, the
network-constrained bidding strategy presents slightly higher
costs in cases of foreseen network violations under the network-
free bidding strategy.
Future work consists of developing and studying the impact of
modeling the bidding problem of the aggregators, as a stochastic
problem. Stochastic optimization may reduce slightly the settle-
ment cost of the aggregators [37], but may also significantly in-
crease the computational time.
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