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ABSTRACT
The integration of distributed energy resources (DER) has created
a demand-side flexibility which can be traded in the electricity
market by aggregators. However, generating bids that accurately
represent the flexibility of consumers while maintaining the net-
work limits is a challenging task–especially since the aggregators
typically do not have access to the network data nor the bids of
other aggregators. To overcome these challenges, we propose a
price-generating bidding strategy enabling aggregators that share
the same distribution network to participate in the energy and
FCAS (frequency control ancillary service) markets. Complying
with the Australian National Electricity Market (NEM), we develop
energy-FCAS trapeziums that represent aggregators’ energy and
FCAS bid interdependency across their fleet of flexible consumers.
We also obtain the prices at which the aggregators should submit
their energy and FCAS bids. Moreover, to ensure network feasibil-
ity for any market clearing output, we obtain the network feasible
region using three sets of optimal power flows (OPFs). Aggregators’
trapeziums are then restricted to be within the network feasible
region, making them ready to submit to the NEM. We illustrate the
effectiveness of our proposed approach using 207 consumers being
served by three aggregators in a 69-bus distribution network. The
results show that our approach could increase aggregators’ benefits
by 18%, on average, compared to a price-taking approach.
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1 INTRODUCTION
The soaring uptake of distributed energy resources (DER), such as
rooftop PV and batteries, has shifted a significant proportion of
electricity generation away from the big generating companies and
into the hands of the consumers in the distribution networks. Most
of these flexible resources are equipped with energy management
systems (EMS) with smart controllers and smart meters, allowing
consumers to respond to the real-time prices and participate in the
electricity markets [1]. However, managing this huge number of
DER directly within the wholesale electricity market, if it was at all
possible, would be a very difficult task. Therefore, aggregators have
emerged, as mediators, to group together such DER and participate
in the electricity market on their behalf.

A plethora of research works have focused on the market par-
ticipation of aggregators in energy (and frequency) markets, e.g.,
[2–10]1. These research works mainly assume that the aggregators
are price-taking participants of the electricity market; meaning
that they optimise their consumers’ resources according to a price
forecast and bid the aggregated generation and load capacities re-
spectively at zero and the market cap price. This ensures that for
any market clearing price, their bids, either generation or load, are
accepted by the electricity market. This simplification makes the
operating state of the DER and thus the distribution network crystal
clear, i.e., aggregators can assume they will be dispatched.

However, consumers have a range of flexibility that can be of-
fered to the electricity market for different prices. Price-taking
approaches restrict DER bidding to a single point within the range,
leading to poor management of their flexibility. In addition, in case
the market clearing price (MCP) notably deviates from the forecast,
the schedules obtained by the price-taking approaches are no longer
optimum and may even lead to economic loss for both aggregators
and the DER owners.

Another simplification, adopted in the literature, is to neglect the
distribution network constraints [5–10]. However, the synchronised
action of numerous consumers in response to electricity prices can
exceed the distribution network limits and lead to infeasibility.

To overcome the above-mentioned challenges, we propose a bid-
ding strategy that enables aggregators to bid their whole flexibility
in both energy and FCAS markets. Since the participation in one
market would limit the bids in another, we develop a feasible region
showing aggregators energy and FCAS interdependency for their
available flexibility. Moreover, we calculate the marginal prices at
which the aggregators need to submit their flexibility across their
feasible region.

1We go into greater detail of these approaches in the related work section.
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To ensure the network feasibility for any market output, our ap-
proach uses three sets of OPFs to calculate the biggest region within
which the network constraints are not violated. The aggregators’
feasible regions are then shaped to be within the network feasible
region which then can be submitted to the wholesale electricity
market.

Note that the aggregators and the grid solve their respective
subproblems sequentially. Therefore, neither aggregators nor the
grid need to know each others’ private data / constraints. This
ensures the independent role of aggregators and the distribution
system operator (DSO).

To take the forecasts uncertainty into account and obtain higher
quality results, we implement our proposed approach within a re-
ceding horizon framework whichmoves forward every five minutes
and uses the latest and the most accurate uncertainty information
in every horizon.

Note that we develop our approach under NEM regulations,
operated by the Australian energy market operator (AEMO) in
Australia. Despite this focus, we expect our approach to be widely
applicable to aggregators participating in other electricity markets,
to co-optimise the energy and reserve capacities of their consumers.
Moreover, we assume the aggregators only participate in the en-
ergy and contingency raise FCAS markets. While providing some
insights on how to include the lower FCAS market, we leave the
detailed study of such a case to our future work.

The rest of this paper is organised as follows: Section 2 reviews
the related work and compares our contributions with the state-
of-the-art. Section 3 provides a brief introduction on the NEM and
AEMO. Section 4 provides an upfront overview on the proposed
approach. Section 5 and 6 respectively present the aggregator and
network subproblems. Section 7 numerically illustrates the effec-
tiveness of the proposed approach using 207 consumers. Finally,
Section 8 concludes this paper.

2 RELATEDWORK
DER flexibility has been used for different purposes such as improv-
ing the voltage profile [11], peak shaving / valley filling [2]; and /
or frequency response [3–10]. These research works schedule their
DER using either the retail tariffs or the electricity market prices.
When the DER are scheduled through the electricity market prices,
a bidding strategy is required to obtain the DER schedules and the
bids to the electricity market.

Since the power system frequency is mainly handled through
trading raise and lower reserves in thewholesale electricitymarkets,
our approach belongs to the second group of approaches. Unlike
our proposed price-generating approach, almost all bidding strate-
gies for residential DER follow a price-taking policy, for which we
provide a brief literature review in the following.

In contrast to our approach, [3] and [4] only participate in the
energy market and neglect the frequency markets. However, as
Oudalov and et all showed in [12], the highest performance of DER
is achieved when they provide frequency response.

Those works that consider both the energy and frequency mar-
kets [5–10], typically neglect the distribution network constraints.
Assuming that their bids do not violate the distribution network

constraints, [5–10] co-optimise their DER in the energy and fre-
quency markets and submit the obtained bids to the associated
markets. However, as we also show in our numerical results sec-
tion, such an assumption can lead to infeasibilities. The reason is
that the synchronised action of many DER in a distribution net-
work can exceed its limits, e.g., when all DER are simultaneously
responding to a price spike / drop or during peak PV production.
Our approach overcomes the network infeasibility issue of [5–10]
by appropriately including the distribution network constraints.

In addition to the above mentioned downsides, all [4–10] as-
sume that the residential DER are price-taking participants of the
wholesale electricity market. This means that they schedule their
appliances according to a price forecast and assume that their bids,
either generation or load, are accepted by the electricity market.
This assumption makes the operating state of the network clear.
Thus, the very few works that consider the distribution network
constraints e.g., [13, 14], use this assumption and solved OPFs for
this pre-specified operating point to ensure the network feasibility.

Note that the schedules obtained using price-taking approaches
(with or without network) is optimum as long as the MCP is similar
to the forecasted prices (an assumption that rarely holds in the
real-world markets). In other words, limiting the range of energy-
FCAS flexibility of DER to one point, might lead to poor results.
To address this problem, our approach obtains a whole range of
DER flexibility and bids them with different prices to the electricity
market. This process makes sure that the aggregators take better
actions when the electricity price deviates from the forecast (for
example, moves from charge mode to discharge or visa versa in
response to the electricity price).

On the other hand, when bidding a range of flexibility in the
electricity market, the operating state of DER, and thus of the grid,
depends on the market output. This makes including the network
constraints more complicated than just solving one OPF (as in price-
taking approaches [13, 14]). To meet this challenge, our approach
uses three sets of OPFs to obtain the largest feasible region for
the network. The aggregator bids are then restricted to be within
the network feasible region, creating aggregator network-aware
bids. This ensures that for any market clearing output, the network
constraints are not violated.

To the best of our knowledge there is no price-generating ap-
proach for residential DER in the literature. For grid scale DER
however, [15–17] first determine the effect of DER on the market
prices and then use the obtained modified prices to schedule their
DER. Similarly to the price-taking approaches, [15–17] bid one
point to the electricity market (generation at zero and load at the
market cap price).

Not only are [15–17] not able to bid a range of flexibility, but
also they only consider the effect of their own DER on the elec-
tricity market prices. However, the price might change according
to the behaviour of other participants (e.g., a generation company
might trip leading to a sudden price increase) i.e., there are frequent
real-world scenarios that [15–17] do not take into account. On the
contrary, by submitting different capacities at different prices, our
approach takes advantage of any price change in the electricity
market (either due to its own DER or caused by other participants).

Given the above literature review, this paper contributes to the
state of the art as follows:
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• Proposing a novel price-generating bidding strategy for DER
aggregators which can create a range of energy and FCAS
capacities as well as the marginal prices at which the aggre-
gators can provide these capacities.

• Obtaining the network feasible region using three sets of
OPFs, and restricting the aggregator bids to be within the
network feasible region. This ensures the network feasibil-
ity for any market clearing output across the aggregators’
flexibility.

3 NATIONAL ELECTRICITY MARKET
The NEM is a five-minute real-time market which is operated by
AEMO. Under NEM frequency standards, AEMO must ensure that
following a credible contingency event, the frequency deviation
remains within the contingency band (e.g., 49.5 to 50.5 Hz) and
returns to the normal operating threshold (e.g., 49.85 to 50.15 Hz)
within 5 minutes2. To do so, AEMO uses raise and lower FCAS
markets to trade the required reserves in every 5-minute settlement.

Currently, the NEM includes 8 different FCAS markets: 2 reg-
ulation and 6 contingency FCAS markets. While the regulation
FCAS includes a raise and a lower market, the contingency FCAS
market is categorised into three main groups according to their
response time: raise and lower 6-second, 60-second, and 5-minute
FCAS markets. In the NEM, energy and all FCAS markets are fully
co-optimised on a single real-time platform known as NEMDE
(national electricity market dispatch engine). NEMDE clears the
Australian market every 5 minutes to obtain the energy and FCAS
prices as well as the dispatch of the participants.

Note that there is no day-aheadmarket in the NEM [19], however,
to smoothly run the real-time market, AEMO requires participants
to submit their pre-dispatch bids (capacity and price) the day before.
In the NEM, the prices stay fixed for the next day but the capacity
in each 5 minute period can be adjusted by the participants.

To bid in the NEM, participants need to submit their energy-
FCAS “trapezium” as well as up to 10 price-bands for energy and
each FCAS market. The trapezium of a generating unit for a raise
FCAS market3 is shown in Figure 1. In this example, the raise FCAS
capacity is first limited by the ramp rate (i.e., 𝑅) of the unit (the
flat top section); moving towards the maximum output of the unit
on the energy axis (i.e., 𝑃𝑚𝑎𝑥 ), the capacity of the generating unit
becomes more constraining than the ramp rate (i.e., 𝑃 +𝐹 ≤ 𝑃𝑚𝑎𝑥 ).

The NEM enables participants to break down their available
capacity up to 10 capacity bands per market, and submit them at
10 different prices (known as price bands). To be in the market, a
non-zero capacity should be allocated to at least one of these price
bands. Given the capacities and price bands, NEMDE can dispatch
the participants at any point of their trapezium (highlighted by
yellow in Figure 1) to obtain the least-cost operating point. Co-
optimising over participant feasible regions helps AEMO to find the
lowest overall operating costs. This is why the average FCAS costs
in the NEM are very low compared to the international markets
such as the ones in California, Germany, and the UK [19].

2According to the event and/or location, contingency frequency band and the recovery
time might differ [18].
3Participants need to submit either another trapezium for the lower FCAS market or a
more generic trapezium accounting for both their lower and raise FCAS capacities.

Figure 1: Energy-FCAS trapezium

Having NEM cleared, FCAS providers get paid their accepted bids
regardless of whether or not a contingency actually occurs. In the
case that a contingency does occur, they must respond up to their
market accepted capacity to correct the frequency deviation. In this
paper, we assume the DER is equipped with the necessary metering
and control systems to be able to enact the required responses.

3.1 Market Simplification / Assumption
Here, we do not solve the day-ahead pre-dispatch part of the prob-
lem, but focus on the operational update of the capacity component
of bids. These updates allow aggregators to put their best offer for-
ward as they can account for how their actual dispatch and changes
in uncertain renewable generation has affected their operating state.
Note that the same technique can be used to obtain the pre-dispatch
bids but with the day-ahead forecasts for the PV power, demand
and market prices. However, since the aggregators can change their
bids in real time and our distributed approach makes it possible to
solve the problem within the time frame of the real-time market,
we do not focus on the pre-dispatch problem.

Moreover, we allow aggregator price bands to be updated in real
time in addition to capacity. So, we have opted to investigate a
case that is more real-time than the existing NEM structure. We
will discuss how our approach could fit in the more strict NEM
requirements in Section 5.4.

4 THE OVERALL APPROACH
Markets can operate most efficiently (maximise system-wide social
welfare), when participants provide bids that represent their true
operating capabilities and associated costs. Unfortunately, the bids
that NEM and most other markets accept have limited expressive-
ness, so in general, aggregators will not be able to exactly represent
their characteristics through bids. Nonetheless, we develop an ap-
proach to generating bids that provides a good approximation of
an aggregator’s characteristics. For the overall capacity limitations
of an aggregator this can be made exact, but it will only ever be
approximate for the aggregator cost function estimate due to the
time coupled behaviour of DER.

In addition, the distribution network bounds might limit aggrega-
tors’ action. However, it is difficult (if at all possible) for aggregators
to directly include the distribution network constraints. The reason
is that aggregators mainly do not have access to the grid data /
constraints. Even if they did, still their grid share depends on how
their competitors (other aggregators) are acting. Unsurprisingly,
aggregators do not have access to their competitors’ information.

Given the limitations described above, our goal for each 5-minute
market settlement is to obtain the energy-FCAS feasible region as
well as price bands for each aggregator that are network compatible.
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To do so, we decompose our problem into aggregator and network
subproblems and generate the final bids by communicating between
the two subproblems. In the following, we provide some overall
explanation for aggregator and network subproblems which are
then detailed in the next section.

4.1 Aggregator Problem Overview
In the aggregator subproblem, each aggregator calculates their
energy-FCAS feasible region as well as their price bands. Since ag-
gregators only have fast responding inverter-based DER, according
to AEMO [20], their energy-FCAS feasible region is in the form of
a triangle as shown in Figure 2. Unlike a general trapezium (e.g.,
Figure 1), the ramp rate is no longer limiting for fast-responding
participants. This means that at each point the capacity that can
be allocated to the energy or FCAS markets is interchangeable and
thus the triangle in Figure 2 is an isosceles right triangle. Therefore,
to characterise an aggregator’s feasible region, we only need two
points (A and B) or (A and C) or (B and C).

Figure 2: Energy-FCAS Triangle of Aggregators

Regarding the prices, we obtain 3 price bands representing the
most important transitions that can happen to the aggregators
(shown by different grey levels in Figure 2). These three dispatch
transitions are: 1) moving from neutral battery status (neither charg-
ing nor discharging) to charge mode, shown by price band 1 in the
figure. 2) Moving from neutral battery status to discharge mode,
shown by price band 2. 3) Moving from a no-PV-curtailed point to
a fully-PV-curtailed point, shown by price band 3. Note that since
aggregators’ problems are linear, these transitions (especially over
a 5 minute settlement) makes sense. Yet, more discretisation (up to
10 bands) could be used to increase accuracy.

Without loss of generality, we fix the raise FCAS price bands
to zero and instead just use the energy market prices to reflect an
aggregator’s preferences. Note that even though the bids for each
market are separate, in practice, the markets are coupled in the
NEMDE optimisation process. Therefore, as we show in section
5.3.2, the dispatch of aggregators will be the same.

To give an intuition on how we obtain the prices, imagine a
half-full battery that is being scheduled for the next 24 hours. If the
price of the first time-step is zero (or negative), the battery should
charge at the first time-step in order to discharge at the later hours.
The maximum charging price is the price at which the aggregator
will stop charging in the first time step. We obtain this price and
bid it as the maximum price that the battery can go to charge mode
and provide the associated capacity band. If we keep increasing
the price of the first time-step, then the battery stays neutral; by
further increasing the price, from a point onward, the battery will

go to discharge mode. This price is the minimum discharge price.
We obtain this price and bid as the minimum price that the battery
can discharge and provide the associated capacity band.

Having obtained aggregators energy-FCAS regions and prices,
aggregators submit their bids to the DSO to have their feasible
regions shaped according to the network operating limits.

4.2 Network Problem Overview
In our network subproblem, at each node, the DSO sorts aggregators
bids according to their energy prices (the FCAS price is zero). Note
that since aggregators triangles have the same angles (aggregators’
feasible regions are isosceles right triangles), the network polygon
is also a triangle. To apply the network effect on the aggregators’
energy-FCAS feasible regions, we solve OPFs for the extreme points
of the overall triangle A, B and C. As a result of this step, we
obtain the network feasible region (network triangle). An example
of the network feasible region when there are 3 aggregators, each
providing 3 price bands, is given in Figure 3.

Figure 3: Network energy-FCAS feasible region

As shown in Figure 3, the bids are sorted increasingly from left
to right (i.e., the first capacity band of aggregator 1 has the lowest
price while the last capacity band of aggregator 3 has the highest
price). If the network constraints were not limiting, the network
feasible region would be the same as the original triangle A, B, C.
However, in case of a network violation, the network limits the most
expensive generation or the least expensive load (most extreme
prices) to ensure network feasibility. This will lead to a feasible
region smaller than the original feasible region (shown by A’, B’
and C’ in Figure 3). In this example, aggregator 2 will not be limited,
so it can submit its whole triangle to the NEM. However, the third
capacity band of aggregator 1 as well as a significant part of the
second capacity band of aggregator three cannot be submitted to the
NEM. The DSO then sends aggregators their shaped energy-FCAS
feasible regions which can be submitted to the NEM.

Every five minutes, the same process is repeated (in a receding
horizon framework) to generate aggregators’ network-aware bids.
Note that since the NEM is cleared one time step at a time, the
aggregators only use the energy-FCAS feasible region and their
prices for the next fiveminutes. Yet, they account for multiple future
time steps when determining their bids, to avoid shortsighted deci-
sions. In the following, we explain the aggregator and the network
subproblems of the proposed approach in detail.
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5 AGGREGATOR SUBPROBLEM
Here, we first model a price-taking aggregator in Section 5.1 and
then we use the price-taking model to obtain aggregators’ feasible
region as well as their prices respectively in Sections 5.2 and 5.3.

5.1 A Price-taking Aggregator
We use 𝑖 ∈ 𝑁 for the network nodes; 𝑡 ∈ 𝑇 for the time horizon;
𝑐 ∈ 𝐶𝑎 for consumers being served through aggregator 𝑎 ∈ 𝐴,
where 𝐶𝑎

𝑖
is the set of such consumers located at node 𝑖 . Total

generation, demand and FCAS raise of aggregator 𝑎 at node 𝑖 are
respectively given by 𝐺𝑎

𝑖,𝑡
, 𝐷𝑎

𝑖,𝑡
, and 𝐹𝑎

𝑖,𝑡
. The generation, demand

and raise FCAS capacity of consumer 𝑐 ∈ 𝐶𝑎 are 𝑔𝑐,𝑡 , 𝑑𝑐,𝑡 and 𝑓𝑐,𝑡 .
We represent the internal variables of consumer 𝑐 at time 𝑡 (such as
their PV and battery variables) with 𝑋 . Finally, ℎ𝑐 (𝑑𝑐 , 𝑔𝑐 , 𝑓𝑐 , 𝑋 ) and
ℎ′𝑐 (𝑑𝑐 , 𝑔𝑐 , 𝑓𝑐 , 𝑋 ) model any equality and inequality constraints of
consumer 𝑐 ∈ 𝐶𝑎 . Given the energy and raise FCAS price forecasts,
𝜋𝑒𝑡 and 𝜋 fcas𝑡 , the aggregator 𝑎 solves the following energy and
FCAS co-optimisation problem:

min
𝐷,𝐺,𝐹

∑
𝑖∈𝑁

∑
𝑡 ∈𝑇

𝛿𝑡 ·
(
𝜋𝑒𝑡 ·

(
𝐷𝑎
𝑖,𝑡 −𝐺𝑎

𝑖,𝑡

)
−𝜋 fcas𝑡 · 𝐹𝑎𝑖,𝑡

)
(1a)

𝐷𝑎
𝑖,𝑡 =

∑
𝑐∈𝐶𝑎

𝑖

𝑑𝑐,𝑡 ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (1b)

𝐺𝑎
𝑖,𝑡 =

∑
𝑐∈𝐶𝑎

𝑖

𝑔𝑐,𝑡 ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (1c)

𝐹𝑎𝑖,𝑡 =
∑
𝑐∈𝐶𝑎

𝑖

𝑓𝑐,𝑡 ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (1d)

ℎ𝑐 (𝑑𝑐 , 𝑔𝑐 , 𝑓𝑐 , 𝑋 ) = 0 ∀𝑐 ∈ 𝐶𝑎 (1e)
ℎ′𝑐 (𝑑𝑐 , 𝑔𝑐 , 𝑓𝑐 , 𝑋 ) ≤ 0 ∀𝑐 ∈ 𝐶𝑎 . (1f)

where 𝛿𝑡 is the time step duration in hours; the objective function
(1a) minimises the cost of co-participation in the energy and raise
FCAS markets. (1b)–(1d) obtain the aggregated demand, generation
and raise FCAS bids of aggregator 𝑎. Constraint (1e) represents
any consumer equality constraints e.g., battery SoC. Finally, (1f)
models consumers inequality constraints e.g., charge / discharge
rate of battery. An example for the extended ℎ𝑐 (𝑑𝑐 , 𝑔𝑐 , 𝑓𝑐 , 𝑋 ) and
ℎ′𝑐 (𝑑𝑐 , 𝑔𝑐 , 𝑓𝑐 , 𝑋 ) can be found in [10].

Since the electricity market is cleared one time-step at a time,
having (1a)–(1f) solved, only the values of the first time step are sub-
mitted to the electricity market. Note that the rest of the horizon is
added to ensure that the aggregators’ decisions are not shortsighted.
Therefore, when neglecting the distribution network, the values:∑
𝑖∈𝑁 𝐺𝑎

𝑖,(𝑡=1) ,
∑
𝑖∈𝑁 𝐷𝑎

𝑖,(𝑡=1) and
∑
𝑖∈𝑁 𝐹𝑎

𝑖,(𝑡=1) are what aggrega-
tor 𝑎 submits to the electricity market. The same co-optimisation
problem is repeatedly shifted forward, on a receding horizon frame-
work, to obtain the bids for the next market settlement.

In the following we use (1a)–(1f) to obtain aggregators’ energy-
FCAS feasible region as well as their price bands.

5.2 Generating Aggregator Triangles
The solution we are seeking is an isosceles right triangle which
is obtained by finding any two corners of the triangle in Figure 2.
Here, we use (1a)–(1f) to find corners B and C.

5.2.1 Corner B. As can be seen in Figure 2, corner B has the mini-
mum value on the energy axis (i.e., maximum load), and maximum
value on the raise FCAS axis. Therefore, to get this corner, we run
one optimisation problem that not only minimises the total costs
of the aggregator but also maximises the load and raise FCAS par-
ticipation of the first time step. The objective function of this case
is given in (2) which is also subject to (1b)–(1f):

min
𝐷,𝐺

∑
𝑖∈𝑁

∑
𝑡 ∈{2,...,𝑇 }

𝛿𝑡 ·
(
𝜋𝑒𝑡 · (𝐷𝑎

𝑖,𝑡 −𝐺𝑎
𝑖,𝑡 ) − 𝜋 fcas𝑡 · 𝐹𝑎𝑖,𝑡

)
− 𝛾 ·

∑
𝑖∈𝑁

(𝐷𝑎
𝑖,𝑡=1 + 𝐹𝑎𝑖,𝑡=1) (2)

The first term of the objective function minimises the cost of co-
participating in the energy and FCASmarkets for 𝑡 ∈ {2, . . . ,𝑇 }; the
second term includes the demand and the raise FCAS participation
of the first time step, which is subtracted with a large enough
multiplier 𝛾 ≥ 0, so that it is maximised as a priority before the
other term. The solution of this time step provides corner B for the
first time step aswell as the optimum energy and FCAS participation
for the other time steps i.e., 𝑇 ∈ {2, . . . ,𝑇 }.

5.2.2 Corner C. As can be seen in Figure 2, corner C has the maxi-
mum value on the energy axis (i.e., max generation). Therefore, to
obtain the coordinates of corner C, we run one optimisation prob-
lem that not only minimises the total costs of the aggregator but
also maximises the generation of the first time step. The objective
function of this case is given in (3) which is also subject to (1b)–(1f):

min
𝐷,𝐺

∑
𝑖∈𝑁

∑
𝑡 ∈{2,...,𝑇 }

𝛿𝑡 ·
(
𝜋𝑒𝑡 ·

(
𝐷𝑎
𝑖,𝑡 −𝐺𝑎

𝑖,𝑡

)
− 𝜋

fcas,𝑎
𝑡 · 𝐹𝑎𝑖,𝑡

)
− 𝛾 ·

∑
𝑖∈𝑁

𝐺𝑎
𝑖,𝑡=1 (3)

The solution of this time step provides corner C and thus the
triangle. The next step is for an aggregators to obtain their prices.

5.3 Generating Aggregator Price Bands
Finding representative prices for aggregators is challenging as the
market only clears 5 minutes at a time, but the outcome for an ag-
gregator depends heavily on the prices and dispatch over time. This
is because their stateful DER (e.g., batteries) primarily make money
through energy arbitrage. So, what we need to do is to estimate
how dispatch in the first interval will impact an aggregator’s costs
over time.

To get the cost function, here, we assume different dispatches
across aggregators’ energy-FCAS feasible regions and use forecast
market prices over a forward horizon to capture the estimated for-
ward cost associated with different first-time-step dispatch points.
To get the price bands out of this, we compare the cost of operating
at each point of an aggregator’s triangle with a base case where no
battery response is provided in the energy market. In the following
we first obtain the base case and then step by step make a transi-
tion from this base case to another triangle point and obtain the
associated price (until the whole triangle is covered).

To clearly explain our approach, we take an aggregator, who has
an aggregated 1 MW of fixed load, 3 MW of PV power, and 5 MW /
10 MWh half-full battery, as an example. We explain what would
happen to this aggregator at each step of our proposed approach.
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5.3.1 Base Case. For the base case, we assume aggregators are
dispatched at a point where the batteries are neutral in the energy
market (i.e., neither charging nor discharging) and the whole PV
power is used in the energy market (i.e., no PV power curtailment).
To enforce this, we add the following constraints to (1a)–(1f).

𝑃𝐶ℎ𝑐,𝑡=1 = 0, ∀𝑐 ∈ 𝐶𝑎 (4a)

𝑃𝐷𝑖𝑠
𝑐,𝑡=1 = 0, ∀𝑐 ∈ 𝐶𝑎 (4b)

𝑃𝑃𝑉𝑐,𝑡=1 = 𝑃𝑉
𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑐,𝑡=1 , ∀𝑐 ∈ 𝐶𝑎, (4c)

where 𝑃𝐶ℎ𝑐,𝑡 ≥ 0 and 𝑃𝐷𝑖𝑠
𝑐,𝑡 ≥ 0 are the battery charge and discharge

power of consumer 𝑐 at 𝑡 ; 𝑃𝑃𝑉𝑐,𝑡 ≥ 04 and 𝑃𝑉 𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑐,𝑡 are the sched-

uled PV power and the PV power forecast of consumer 𝑐 at 𝑡 . Since
we generate the triangle and price bands for the first time step
of every horizon, (4a)–(4c) is only added for the first time step;
meaning that the rest of the horizon can be scheduled according
to the forecast. Let 𝐺𝑏𝑎𝑠𝑒 , 𝐷𝑏𝑎𝑠𝑒 and 𝐹𝑏𝑎𝑠𝑒 denote the generation,
demand and raise FCAS dispatch in the first time-step of the base
case, and 𝐶𝑏𝑎𝑠𝑒

𝑒𝑥𝑝 its expected future cost.
For the aggregator of our example, this means bidding 2MW

(3MW PV − 1MW load) in the energy market at the first time step
of the horizon and since the battery is half full, the aggregator can
also provide 5 MW raise FCAS support. In the following, we add the
capacity bands that DER can contribute to the triangle and calculate
their prices with respect to 𝐶𝑏𝑎𝑠𝑒

𝑒𝑥𝑝 .

5.3.2 Battery Charge. Here, we obtain the price for which the
dispatch of aggregator can move from the base case to a triangle
point in which the batteries are charging. This can be obtained by
solving a similar optimisation problem as in (2), (1b)–(1f) s.t. (4c).

For the aggregator of our example, this means going to charge
mode and bidding -3MW in the energy market (2MW base case −
5MW charge power) and providing 10 MW raise FCAS support (5
MW reducing charge + 5 MW going to discharge mode) in the first
time step of the horizon. Such an operating point means that in
the normal condition the battery is charging and the aggregator
is injecting -3MW to the grid. However, in case of a contingency
the aggregator can increase its output by 10MW i.e., the aggregator
increase its injected power from -3MW to 7MW. To be able to do so,
the aggregator needs to stop charging and go to discharge mode.

Let 𝐺𝐶ℎ , 𝐷𝐶ℎ and 𝐹𝐶ℎ respectively denote the generation, de-
mand and raise FCAS dispatch in the first time-step of such a case;
and𝐶𝐶ℎ

𝑒𝑥𝑝 the expected cost for the rest of the horizon (𝑡 ∈ {2, . . . ,𝑇 })
associated with such a first-time-step dispatch. The aggregator will
operate at this new operating point only if the new benefit (given
the expected future costs) is more than the base case (because oth-
erwise it is better for the aggregator to dispatch at the base case).
Let 𝜋 𝐼𝑒 and 𝜋 𝐼fcas be the energy and FCAS price variables for the first
time step, we can write:

𝛿𝑡 ·
(
𝜋 𝐼𝑒 (𝐷𝐶ℎ −𝐺𝐶ℎ − 𝐷𝑏𝑎𝑠𝑒 +𝐺𝑏𝑎𝑠𝑒 ) − 𝜋 𝐼fcas (𝐹

𝐶ℎ − 𝐹𝑏𝑎𝑠𝑒 )
)

+𝐶𝐶ℎ
𝑒𝑥𝑝 ≥ 𝐶𝑏𝑎𝑠𝑒

𝑒𝑥𝑝 . (5)

Note that in the marginal case where the above equation is
satisfied as equality, 𝜋𝑒1 and 𝜋

𝐼
fcas denote the prices for which charge

4The variables 𝑃𝐶ℎ
𝑐,𝑡 ≥ 0, 𝑃𝐷𝑖𝑠

𝑐,𝑡 and 𝑃𝑃𝑉
𝑐,𝑡 ≥ 0 are part of 𝑋𝑐,𝑡 in (1e) and (1f).

or neutral status of batteries (in the first time-step) leads to the same
benefit (i.e., the maximum prices for which the battery should still
charge). We use such prices for the added capacity bands (with
respect to the base case). However, in the equality case, equation
(5) represents a line aX + bY = c; meaning that several energy and
FCAS price combinations (X and Y) would lead to cost c. To limit
this infinite number of combinations, we assume the FCAS price to
be zero and find the maximum energy price that it is beneficial for
the aggregator to charge and provide the additional FCAS support.
The aggregator finally bids FCAS at zero price and the additional
MW power at 𝜋 𝐼𝑒 , in our example (-5MW, 5MW) at (𝜋 𝐼𝑒 , 0). Note
that in the price-taking approach, the aggregator would submit the
load (i.e., -5MW) at the market cap price. Therefore, -5MW would
be accepted at any MCP. However, as we observe, for MCPs higher
than 𝜋 𝐼𝑒 , the aggregator should not charge at the first time step (this
is ensured in our approach by bidding this capacity band at 𝜋 𝐼𝑒 ).

Note that bidding FCAS at zero price does not mean that the
aggregator is a price-taking participant in the FCAS market since
the price of each FCAS capacity band has already been captured
into the energy prices. Note that in a co-optimisation problem, the
combination of energy and FCAS prices matters and thus when
NEMDE solves its linear co-optimisation problem, for any energy
and FCAS price combination leading to a higher benefit than the
one aggregators have bid, the aggregators will be in the market.

5.3.3 Battery Discharge. Here we obtain the price for which the
dispatch of aggregator can move from the base case to a point of the
triangle in which the batteries are discharging. This can be obtained
by solving a similar optimisation problem as in (3), (1b)–(1f) subject
to (4c).

For the aggregator of our example, this means going to discharge
mode and offering 7MW in energy market (2MW base case + 5MW
discharge power) and 0 MW raise FCAS.

Let 𝐺𝐷𝑖𝑠 , 𝐷𝐷𝑖𝑠 and 𝐹𝐷𝑖𝑠 respectively denote the generation,
demand and raise FCAS dispatch in the first time-step of such a case;
and𝐶𝐷𝑖𝑠

𝑒𝑥𝑝 the expected cost for the rest of the horizon (𝑡 ∈ {2, . . . ,𝑇 })
associated with such a first-time-step dispatch.

Similarly to the previous case, we can obtain the price of oper-
ating at such a point. Assuming a zero price for the FCAS market
and 𝜋 𝐼 𝐼𝑒 the variable representing the energy price, we can write:

𝛿𝑡 ·
(
𝜋 𝐼 𝐼𝑒 (𝐷𝐷𝑖𝑠 −𝐺𝐷𝑖𝑠 − 𝐷𝑏𝑎𝑠𝑒 +𝐺𝑏𝑎𝑠𝑒 )

)
+𝐶𝐷𝑖𝑠

𝑒𝑥𝑝 ≥ 𝐶𝑏𝑎𝑠𝑒
𝑒𝑥𝑝 . (6)

When the above equation is satisfied as an equality, 𝜋 𝐼 𝐼𝑒 represents
the minimum price for which the aggregator can operate at this
new dispatch point. In our example (5MW, 0MW) at (𝜋 𝐼 𝐼𝑒 , 0).

So far, we have calculated the capacity and price bands that the
battery can add to the energy-FCAS triangle. In the following, we
calculate the capacity bands that solar PV can add to our triangle,
i.e., removing constraint (4c) from our base case.

5.3.4 Solar PV. In our base case, we assumed no PV curtailment,
yet here, we remove that assumption and run one optimisation
problem similar to (2), (1b)–(1f) subject to (4a)–(4b) to obtain the
additional FCAS that the solar PV can contribute to our triangle5.
For the aggregator of our example, this means curtailing PV power
5PV power should be curtailed to be able to be provided in the raise FCAS market.
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and providing -1MW in energy market (2MW base case − 3MW PV
which is curtailed) and 8 MW raise FCAS (5 MW the base case + 3
MW added by PV). A similar process will produce the maximum
price for which the aggregator should curtail all the PV power and
contribute to the FCAS market, we call this price 𝜋 𝐼 𝐼 𝐼𝑒 . Therefore,
the aggregator bids FCAS at zero price and the additional MW
power at 𝜋 𝐼 𝐼 𝐼𝑒 , in our example (-3MW, 3MW) at (𝜋 𝐼 𝐼 𝐼𝑒 , 0).

Having solved the above steps, the capacities and price bands of
the aggregator’s triangle is ready. Since our FCAS prices are zero,
we only need to sort capacities according to the obtained energy
prices. Typically, 𝜋 𝐼 𝐼 𝐼𝑒 < 𝜋 𝐼𝑒< 𝜋 𝐼 𝐼𝑒 , so, the triangle for our example
can be constructed, as shown in Figure 4.

Figure 4: Energy-FCAS triangle

Note that here we obtained the whole operating range of aggre-
gators in both energy and raise FCAS markets. As we mentioned in
Section 3, the FCAS markets are activated sequentially. Thus, the
obtained energy-FCAS feasible region can be submitted to any or
all 6-second, 60-second and 5-minute FCAS markets, depending on
the aggregators’ business model.

5.4 Fitting to the NEM Requirements
Here, aggregators only participate in the raise FCAS market. How-
ever, a similar process can be used to construct the energy-FCAS
triangle as well as the price bands for the lower FCAS market. How-
ever, we leave the detailed study of such a case and its combination
with the raise FCAS triangle to future work.

We also assume that prices can be updated for every 5-minute
settlement. However, as described in Section 3 according to the
current NEM regulations, participants are required to submit a
constant 10-band price for the whole day prior to the market day.
To fit into the current structure of the NEM, aggregators could use
historical prices to calculate their 10 price bands in advance, and
then in real-time use the closest match to the prices they determine.
We also leave the detailed study of such a case to future work.

6 NETWORK SUBPROBLEM
In this section, we introduce our network subproblem and shape
the aggregator bids according to the network constraints. The ag-
gregators will then submit their network-aware bids to the NEM.

Given the aggregator triangles and price bands at each node,
our goal here is to make the biggest triangle for the network. The
proposed network subproblem consists of the following steps:

1) At each node, the bids of the aggregators are sorted according
to their energy prices (their FCAS price is zero). This creates a range
of bids on the energy axis, starting from a minimum value (point A
in Figure 3) and ending on a maximum value (point C in Figure 3).
Note that Since 1) aggregators feasible region is a triangle (due to
their fast responding inverter-based DER [21]), and 2) the triangle
showing the inter-dependency between the maximum raise FCAS
and energy market participation forms an isosceles right triangle6,
the polygon obtained from merging aggregators’ feasible regions
is also a isosceles right triangle.

2) The network aims to have the highest total bids in the en-
ergy and FCAS markets, i.e., maximising the energy and FCAS
participation. Since we have sorted out the energy and FCAS bids
according to the energy prices, such a maximisation is equivalent to
maximising the energy and FCAS participation while minimising
the total expected cost. Note that, here, the cost minimised by the
network problem is not real (since it is obtained through the price
bids submitted by the aggregators and not the MCP). However, it
helps the network to limit the most expensive generation or the
least expensive (the least important) loads, in case there is a net-
work violation. This step needs to be solved for all the extreme
points of the overall triangle A, B and C. The reason why we only
solve the problem for the extreme points is that the network aims
to increase the aggregators participation at each node i.e., be as
close as possible to the extremes of the triangles.

We model the network constraints, using the Distflow equations
[22]. Since the network should be feasible for any operating case, we
duplicate the Distflow equations, each accounting for one network
operating condition i.e., I) Normal in which only energy is traded
and II) Contingency in which FCAS also gets called.

To model the distribution network we use 𝑖, 𝑗, 𝑘 ∈ 𝑁 for nodes
in a tree network; 𝑃𝑒

𝑖
, 𝑄𝑒

𝑖
and 𝐼𝑒

𝑖
are the active power, reactive

power and the current flowing into node 𝑖 from the parent node
𝑘 , where the line has resistance 𝑟𝑖 , reactance 𝑥𝑖 and impedance
𝑧𝑖 . 𝐶𝑖 represents the children nodes of node 𝑖; 𝐺 ′𝑒

𝑖
, 𝐷 ′𝑒

𝑖
and 𝐹 ′

𝑖
are respectively the maximum generation, demand and FCAS bids
accepted by the network at each node. 𝑔𝑒

𝑏,𝑖
, 𝑑𝑒

𝑏,𝑖
and 𝑓𝑏,𝑖 are the

segment 𝑏 of the sorted bids at each node 𝑖 (obtained in step 1). We
replace the superscript 𝑒 (standing for energy) with FCAS to create
the variables when aggregators are providing raise FCAS support.

max
𝑖=1

𝑃𝑒𝑖 + 𝑃FCAS𝑖 (7a)

𝑃𝑒𝑖 − 𝑟𝑖 𝐼
𝑒
𝑖 +𝐺 ′𝑒

𝑖 − 𝐷 ′𝑒
𝑖 =

∑
𝑗 ∈𝐶𝑖

𝑃𝑒𝑗 ∀𝑖 ∈ 𝑁 (7b)

𝑃FCAS𝑖 − 𝑟𝑖 𝐼
FCAS
𝑖 +𝐺 ′𝑒

𝑖 − 𝐷 ′𝑒
𝑖 + 𝐹 ′𝑖 =

∑
𝑗 ∈𝐶𝑖

𝑃FCAS𝑗 ∀𝑖 ∈ 𝑁 (7c)

𝑄𝑒
𝑖 − 𝑥𝑖 𝐼

𝑒
𝑖 =

∑
𝑗 ∈𝐶𝑖

𝑄𝑒
𝑗 ∀𝑖 ∈ 𝑁 (7d)

𝑄FCAS
𝑖 − 𝑥𝑖 𝐼

FCAS
𝑖 =

∑
𝑗 ∈𝐶𝑖

𝑄FCAS
𝑗 ∀𝑖 ∈ 𝑁 (7e)

6Let 𝑋1 ∈ R denote aggregator’s total energy bid and 𝑋2 ∈ R≥0 aggregator’s total
FCAS bids. According to Figure 2, 𝑋1 + 𝑋2 ≤ 𝐶 Aggregators biggest energy-FCAS
feasible region is obtained when the inequality is satisfied as an equality, i.e.,𝑋1 +𝑋2 =
𝐶 . This means that 𝑋1 and 𝑋2 are interchangeable which is only the case when the
line makes an isosceles right triangle (45°, 45°, 90°).
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𝑉 𝑒
𝑖 = 𝑉 𝑒

𝑘
− 2

(
𝑟𝑖𝑃

𝑒
𝑖 + 𝑥𝑖𝑄

𝑒
𝑖

)
+ 𝑧2𝑖 𝐼

𝑒
𝑖 ∀𝑖 ∈ 𝑁 (7f)

𝑉 FCAS
𝑖 = 𝑉 FCAS

𝑘
− 2

(
𝑟𝑖𝑃

FCAS
𝑖 + 𝑥𝑖𝑄

FCAS
𝑖

)
+ 𝑧2𝑖 𝐼

FCAS
𝑖 ∀𝑖 ∈ 𝑁 (7g)

𝑣2𝑚𝑖𝑛 ≤ 𝑉 𝑒
𝑖 ≤ 𝑣2𝑚𝑎𝑥 ∀𝑖 ∈ 𝑁 (7h)

𝑣2𝑚𝑖𝑛 ≤ 𝑉 FCAS
𝑖 ≤ 𝑣2𝑚𝑎𝑥 ∀𝑖 ∈ 𝑁 (7i)

𝑃𝑒𝑖
2 +𝑄𝑒

𝑖
2
= 𝑉 𝑒

𝑖 𝐼
𝑒
𝑖 ∀𝑖 ∈ 𝑁 (7j)

𝑃FCAS𝑖

2 +𝑄FCAS
𝑖

2
= 𝑉 FCAS

𝑖 𝐼FCAS𝑖 ∀𝑖 ∈ 𝑁 (7k)

0 ≤ 𝐼𝑒𝑖 ≤ 𝑖𝑚𝑎𝑥
𝑖

2 ∀𝑖 ∈ 𝑁 (7l)

0 ≤ 𝐼FCAS𝑖 ≤ 𝑖𝑚𝑎𝑥
𝑖

2 ∀𝑖 ∈ 𝑁 (7m)

0 ≤ 𝐺 ′𝑒
𝑖 ≤

∑
𝑏∈𝐵𝑇

𝑔𝑒
𝑏,𝑖

∀𝑖 ∈ 𝑁 (7n)

0 ≤ 𝐷 ′𝑒
𝑖 ≤

∑
𝑏∈𝐵𝑇

𝑑𝑒
𝑏,𝑖

∀𝑖 ∈ 𝑁 (7o)

0 ≤ 𝐹 ′𝑖 ≤
∑
𝑏∈𝐵𝑇

𝑓𝑏,𝑖 ∀𝑖 ∈ 𝑁 . (7p)

The objective function is to increase the participation of the distri-
bution network in energy and FCAS markets by maximising the
connection point power of the distribution network to the transmis-
sion network (i.e., 𝑖 = 1). Active and reactive power flow equations
are given through (7b)–(7e); The voltage of each node is calculated
through (7f)– (7g) and is enforced to be within its safe limits (𝑣2

𝑚𝑖𝑛

and 𝑣2𝑚𝑎𝑥 ) through (7h)–(7i). The complex power, flowing in each
line, is given in (7j)–(7k); and (7l)–(7m) limit the current of each
line to the maximum line capacity 𝑖𝑚𝑎𝑥

𝑖
2. Finally, the bids accepted

by the network (at each node) is limited to the summation of all
bids at the node through (7n)–(7p). If there is no network violation,
(7n)–(7p) would be satisfied as equalities (i.e., the network accepts
all the bids of the aggregators). Yet, if the network constraints are
violated, (7n)–(7p) are satisfied as inequalities, i.e., the network
cannot accept all the bids of the aggregators.

Note that the network subproblem (7a)–(7p) needs to be solved
for all the extreme points A, B and C of Figure 2. For vertices 𝐴
and 𝐶 of Figure 3, the right hand side of constraints (7n)–(7p) is
using the values associated with the vertices, while for the optimi-
sation of vertex 𝐵, 𝐷 ′𝑒

𝑖
in (7o) is fixed on the obtained value in the

maximisation of vertex 𝐴 (i.e., 𝐴′) in Figure 3.
Having solved (7a)–(7p), the network feasible region is obtained.

The DSO then sends back the aggregators their network-aware
feasible region which can be submitted to the NEM by the aggrea-
gators. Note that the final network operating state needs to be ob-
tained through a comprehensive cooptimisation problem solved by
NEMDE. The minimum information to run such a co-optimisation
problem is the bids of all participants as well as the overall FCAS
requirements–the information that is available for AEMO. How-
ever, since the bids to the market are within the network trapezium,
any final operating state that AEMO chooses satisfies the network
constraints.

Having the electricity market cleared, the operating state and
thus the batteries SoC are known. Using the new SoCs, the same
process is repeated to obtain the network-aware bids for the next
time step.

7 NUMERICAL RESULTS
7.1 Setup and Data
To illustrate the effectiveness of our proposed approach, We use a
69-bus distribution network [23] modified with 207 consumers (3
consumers at each node). To obtain a more realistic case, one third
of the consumers are equipped with a rooftop PV and a battery
(PV-BAT consumers); another third of the consumers are equipped
with just a rooftop PV but not a battery (PV consumers); and the
remaining third of the consumers do not own any DER (NoDER
consumers). We used 5 kW / 10 kWh batteries with the round trip
efficiency 𝜂2 = 85% and 5 kW rooftop PV to make our PV-Bat
and PV consumers. We used anonymised solar and background
load for 27 consumers in Tasmania, Australia, provided by Reposit
Power [24], and randomly assigned this data to the consumers in
our networks. We take the dispatch energy and FCAS MCPs as well
as their pre-dispatch forecasts from AEMO7.

The 207 consumers in our network are served by 3 aggregators.
The aggregators have customers at different nodes of the system
and even multiple aggregators have consumers at the same node.
Aggregator 1 aggregates 30 PV-Bat and 40 PV consumers; aggrega-
tor 2 aggregates 21 PV-Bat, 25 PV and 32 NoDER consumers; and
aggregator 3 aggregates 18 PV-Bat, 4 PV and 37 NoDER consumers.

We use the Gurobi and IPOPT solvers in JUMP, Julia [25] to
respectively solve the aggregator and network subproblems on a
laptop computer with a 2.50 GHz Intel(R) Core(TM) i7 and 8 GB of
memory.

7.2 Comparative Approaches
To illustrate the effectiveness of our proposed price generating
approach, we compare the results of four different approaches as
follows:

• Price-Taking: in which the aggregators use a price forecast to
schedule their consumers according to their expected benefit.
The aggregators then submit their generation bids with zero
price and their load bids with the market cap price to the
wholesale electricity market. We use the market clearing
price (MCP) to calculate the real benefit of the aggregators.

• Perfect: this approach does not use any forecasts. Instead, it
assumes that the energy and FCAS prices are known for the
whole horizon (288 future time steps) and thus, it can obtain
the highest benefit possible.

• Semi-Perfect: this approach is a compromise between the
Price-Taking and Perfect approaches in which only the first
time step of every horizon is using the perfect information
while the rest of the horizon is still using the forecasts.

• Price-Generating: in which the aggregators use the proposed
approach to build their energy-FCAS triangles as well as the
prices for each bid bands. The aggregators submit their bids
to thewholesale electricitymarket which are then dispatched
according to the MCP.

Note that although both the Perfect and Semi-Perfect approaches
are unrealistic and unachievable, Semi-perfect is closer to our setting.
Similarly to Semi-perfect, our approach uses forecast information for
all future time steps (except the first time step). Yet, instead of using

7Both predispatch prices and MCPs are available at: https://www.aemo.com.au/
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the perfect information for the first time step, we provide capacity
and price bands to bid in the market. Even though unrealistic, we
report the results of the Perfect and Semi-Perfect approaches, as
these baselines enable us to assess and bound the potential for
improvement to our approach.

7.3 Market Clearing
Since the Price-Taking, Perfect and Semi-Perfect approaches bid
one (energy, FCAS) point to the electricity market, we calculate
their obtained real benefit by multiplying their capacity bids with
the MCPs8. For the proposed Price-Generating approach we first
need to determine whether or not the market chooses to dispatch
the aggregators, and by how much. Instead of replicating the full
market dispatch, we use historical MCPs to dispatch aggregators
and calculate their obtained benefits. Since NEMDE solves a linear
problem, the aggregators are dispatched at band 𝑏 as long as:

𝜋𝑏𝑒 · 𝑃𝑏𝑒 + 𝜋𝑏𝐹𝐶𝐴𝑆 · 𝑃𝑏𝐹𝐶𝐴𝑆 ≤ 𝜋𝑐𝑙𝑒𝑎𝑟𝑒𝑑𝑒 · 𝑃𝑏𝑒 + 𝜋𝑐𝑙𝑒𝑎𝑟𝑒𝑑𝐹𝐶𝐴𝑆 · 𝑃𝑏𝐹𝐶𝐴𝑆
where 𝑃𝑏𝑒 and 𝑃𝑏

𝐹𝐶𝐴𝑆
are the energy and FCAS bids associated

with the capacity band 𝑏 which are submitted at the prices 𝜋𝑏𝑒 and
𝜋𝑏
𝐹𝐶𝐴𝑆

; the energy and the FCAS markets are cleared at 𝜋𝑐𝑙𝑒𝑎𝑟𝑒𝑑𝑒

and 𝜋𝑐𝑙𝑒𝑎𝑟𝑒𝑑
𝐹𝐶𝐴𝑆

, respectively. In other words, the aggregators are dis-
patched at a point where the benefit they obtain through their
bids, is less than or equal to the benefit they obtain by the market
prices. Note that evaluating the effect of aggregator bids (either
price-taking or price-generating) on the electricity market is out of
scope of this paper and we leave its detailed study to future work.
However, in general, such an effect ultimately leads to errors in the
forecasts and we expect forecast errors to have less impact on the
aggregators’ benefit in our price-generating approach, compared to
a price-taking approach. The reason is that price-taking approaches
submit their bids at either zero or market cap prices, therefore, no
matter how much the real price deviates from the forecasts, their
bids is accepted by the market. However, our price-generating ap-
proach bids different capacities for different prices, So, in case the
real price deviates from the forecast, our approach can act differ-
ently to ensure that the highest benefit is achieved. Moreover, our
receding horizon framework implementation enables us to update
the prices every five minutes and use the latest (most accurate)
forecast which also increases the accuracy in our work.

In the following, we report the aggregators’ benefit, when us-
ing the above approaches, first when the distribution network is
neglected and then when the distribution network is included.

7.4 Network Neglected
In this case, we directly submit the bids obtained by each approach
to the wholesale electricity market without applying the distribu-
tion network limits. The obtained benefit for each aggregator as
well as the overall benefits of all aggregators are reported in Table 1.

As it is seen in Table 1, the proposed approach managed to
obtain 32% higher benefits in total compared to the conventional
price-taking approach. However, since the network constraints are
neglected, the results obtained by all cases are infeasible and violate
the distribution network constraints.
8As they bid energy at zero and load at market cap price, their whole (energy, FCAS)
capacity is accepted.

Table 1: Overall benefit of aggregators neglecting network

Approach
Benefits (Thousand AUD)

Status
Agg 1 Agg 2 Agg 3 Total

Price-Taking 191.9 47.4 3.4 242.6 infeasible
Price-generating 225.2 71.1 23.8 320.2 infeasible
Semi-Perfect 229.6 74.6 26.9 331.1 infeasible
Perfect 275.4 106.7 54.3 436.5 infeasible

7.5 Network Included
Similarly to the previous section, we run the approaches in this sec-
tion within a receding horizon framework but here we include the
network subproblem. Thus, the aggregators first calculate their bids
and send them to the DSO. The network operator then uses OPFs
(one OPF for Price-Taking, Semi-Perfect and the Perfect approaches;
and three OPFs for the proposed price-generating approach as ex-
plained in section 5) to find the network-aware bids. Then the
aggregators submit their shaped bids to the electricity market. As
in the previous section we calculate the total benefits of aggregators
according to the MCP.

The total benefit of the aggregators as well as the overall benefits
of all aggregators are given in Table 2.

Table 2: Overall benefit of aggregators including network

Approach
Benefits (Thousand AUD)

Status
Agg 1 Agg 2 Agg 3 Total

Price-Taking 187.6 19.2 3.3 210.1 feasible
Price-Generating 213.5 31.9 23.8 269.2 feasible
Semi-Perfect 224.4 44.1 26.9 295.3 feasible
Perfect 267.5 58.2 54.3 380.0 feasible

Comparing the results of Table 2 with the ones reported in Table
1, we conclude that less benefit is obtained (on average 13%) when
network constraints are included. The reason is that in our experi-
ments, the network constraints were active, so, the feasible region
of aggregators was more limited, leading to feasible results at the
expense of less benefit for the aggregators.

The final accepted bids of a PV-Batt consumer when using
the Perfect, Semi-Perfect, Price-Taking, and Price-Generating ap-
proaches are shown in Figure 5.

 

Figure 5: Bids of a PV-Batt consumer

The voltage of bus 27 for the proposed price-generating approach,
once for the energy case and once when raise FCAS is called, are
shown in Figure 6 and 7, respectively (the voltage is assumed to
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be safe when it is between 0.95 p.u. and 1.05 p.u.). To obtain these
voltages, we bid the triangles with and without network effect to
the wholesale electricity market; having the market cleared, we run
two PFs (one when only energy is traded and another assuming
the FCAS capacity is called upon) to obtain the real voltages of the
network.

 

Figure 6: Voltage of bus 27 in energy case

 

Figure 7: Voltage of bus 27 when raise FCAS is called

As it is seen in Figures 6 and 7, in both cases the proposed
approach managed to keep the voltage of the distribution network
within the safe limits

7.6 A longer Term Experiment
Table 3 reports the benefits of a PV-Batt consumer when using our
proposed price-generating (PG) approach vs the price-taking (PT)
approach over months September, October and November 2019 in
New south wales (NSW), Australia. For both approaches, we have
used AEMO’s predispatch price forecast and then used MCP to
calculate the real benefits of consumers: As reported in Table 3, the

Table 3: Overall benefit of a PV and a PV-Batt consumer

Approach
Benefit (AUD)

Rel. to PT
Energy FCAS Total

Price-Taking 651 1965 2616 –
Price-Generating 1194 1892 3086 +18%

PV-Batt consumer obtained 18% higher benefit (over three months)
when using the proposed price-generating approach.

7.7 Computational Performance of the
Proposed Approach

In our implementation, we solved both aggregators and the network
subproblem sequentially and one after another on a single machine.
However, the aggregators are working separately and neither the

aggregators nor any two consumers of an aggregator have coupling
constraints. Thus, the aggregator problem is decomposable at the
level of every consumer. Moreover two out of three sets of OPFs
of the network subproblem are independent and can be solved
separately and in parallel (i.e. the OPFs of points A and C in Figure
4), which can reduce the computational burden.

We report the total computational time of our sequential imple-
mentation, and the expected fully parallel time (considering the
slowest separated time to solve each subproblem) for both price-
taking (PT) and price-generating (PG) approaches. In a real setting,
we expect a compromise outcome with overall solve time some-
where between these two, and an additional overhead due to any
communications latency. Table 4 reports the model size and solve
time for the subproblems in a single horizon, and their contribution
to the overall solve time in both sequential and parallel cases.

Table 4: Problem size and computational time.

Approach Subprob. #Var. #Cons. Time (Parallel)

PT
Aggregators 775k 656k 15.3s (0.09s)
Network 964 755 0.7s (0.7s)

PG
Aggregators 1,428k 1,967k 40s (0.2s)
Network 2.5k 3.0k 1.53s (0.9s)

8 CONCLUSION
We developed a price-generating bidding strategy in the distribu-
tion networks to enable the residential consumers to participate
in both energy and raise FCAS markets. In our approach, the ag-
gregators bid the flexibility of their consumers in the form of an
energy-FCAS triangle. We also obtained the prices at which the
aggregators need to submit their flexibility to the electricity market.
Moreover, to ensure the distribution network feasibility, we shaped
the aggregators bids to be within the network feasible region using
three sets of OPFs.

We illustrated the effectiveness of our approach using 207 con-
sumers, being served through three aggregators, within a 69-bus
distribution network. Our results show significant improvements
over the case in which aggregators use a price-taking bidding strat-
egy. Moreover, through a voltage analysis, we compared the volt-
ages on the network when the obtained bids neglect the network
constraints with the proposed network-aware approach. The re-
sults revealed that neglecting the distribution network constraints
can lead to infeasible solutions, violating the voltage safe limits at
different times of the day.
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