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With the increasing uptake of distributed energy resources (DER), such as rooftop PV and batteries, a significant
amount of electricity is generated at a smaller scale. Consequently, the large-scale generators, responsible for
frequency response, are having less share in our electricity markets. This makes it challenging to provide the grid
with the required frequency response. To overcome this challenge, we introduce a network-aware co-optimi-
sation approach that enables consumers to co-optimise their DER in energy and frequency markets. Our ap-

proach is based on the alternating direction method of multipliers where consumers and the grid negotiate on a
receding horizon framework to obtain consensus solutions which satisfy the grid constraints under all operating
conditions. Our experiments on 69 and 141 bus networks show a significant improvement over a case where
decisions are not co-optimised. We also show how, compared to the majority of the literature, we can avoid

network violations.

1. Introduction
1.1. Motivation

The increasing penetration of renewable energy in our power sys-
tems is displacing synchronous generators while adding more volatility
to the grid. This creates a greater need for frequency response in a
system with generators typically less able to fulfil such need. For ex-
ample, as the Australian energy market operator (AEMO) reported in
[1], rooftop PV will be sufficient to cover all load in low-demand days
in South Australia as early as in 2025, leaving the region without
conventional generators to provide the required frequency response.
Fortunately, with large uptake and appropriate controls, distributed
energy resources (DER) owned by consumers, such as rooftop PV and
battery storage, have the potential to fill this crucial role.

However, getting the required frequency response from numerous
consumers is challenging as it requires solving a large-scale co-opti-
misation problem to find DER share in energy and frequency markets.
More importantly, such co-optimisation needs to include network
constraints to ensure that the DER decisions are network-aware,
meaning that they do not exceed the distribution network limits.
Consumers’ privacy concerns as well as their uncertain data also con-
tribute to the complexity of such a proposal. To simplify the problem,
the state of the art mainly neglects the network impact of residential
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DER [2,3], however, this may lead to infeasible solutions going beyond
the network capabilities.

To meet the above challenges, we propose a decentralised approach
based on the alternating direction method of multipliers (ADMM). Our
approach extends our previous work [4] to obtain network-aware de-
cisions in both energy and frequency markets by generating locational
marginal prices (LMPs) that reflect the distribution network constraints.
Using LMPs and the wholesale market prices, consumers co-optimise
their participation in each market and communicate with the grid their
demand/supply profiles for each market. We verify that the participa-
tion in different markets does not violate the network constraints using
three separate AC optimal power flows (OPFs) and update the LMPs
accordingly. When the algorithm converges, the DER have their op-
timum schedules and the retailer' has network-aware bids ready to
submit to each market. Note that our decentralised approach also
overcomes the computational complexity stemming from the large-
scale nature of the problem, and mitigates consumers’ privacy concerns.
Moreover, to take uncertainty into account, we apply our approach
within a receding horizon context in which the participants can update
their uncertain parameters and use their latest (most accurate) in-
formation.

In this paper, we develop our approach under the National Energy
Market (NEM) regulations, operated by AEMO in Australia. In line with
NEM and AEMO terminology, hereafter, we use the term “frequency
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control ancillary service” (FCAS) instead of frequency response and
“FCAS market” for the market in which FCAS is traded. Despite this
focus, we expect our approach to be widely applicable to other elec-
tricity markets that trade in or optimise reserve capacity. Moreover,
given the relatively low marginal cost of DER and in line with
[2,3,5-10], we also assume that the retailer is a price-taker participant
of the electricity market. We plan to study the market participation of a
price-maker retailer in our future work.

1.2. Related work

The participation of DER in energy and FCAS markets can be cate-
gorised into two main groups; a) the works studying the market parti-
cipation of a stand-alone DER [5-8]; and b) the works studying the
market participation of several smaller-scale DER by an agent e.g., an
aggregator [2-4,9-14]. Modeling the participation of a single DER in
electricity markets mainly leads to a small-scale optimisation problem
which is not the focus of this paper. On the other hand, the second
group of approaches, to which our work belongs, includes many DER,
and given the potential conflicting interests of DER owners, leads to a
complex large-scale co-optimisation problem.

More importantly, the synchronised action of many DER in a dis-
tribution network can exceed its limits, e.g., when they are responding
to a price spike or during peak PV production. Thus, the distribution
network constraints should be also taken into account. However, the
nonlinear nonconvex nature of the network constraints, e.g., power
flow equations, makes this problem more difficult to solve, especially
within the time frame of the real-time electricity markets (e.g., every 5
minutes in Australia). Consumers privacy concerns and their uncertain
data also exacerbate the complexity of this problem.

To simplify this problem, previous research works neglect either the
FCAS market participation e.g., [4,15], or the network e.g., [2,9-11,13]
or both e.g., [12,14]. However, as we show in the numerical results
section, such simplifications can lead to non-optimum or even in-
feasible results. To overcome this issue, [16] includes linear load flow
equations and aggregates a large-scale battery and an electric vehicle
(EV) fleet to bid in day-ahead frequency regulation market. The work
[16] can be extended to include AC-OPF instead of their linear load
flow and consumers instead of their battery/EV-fleet; however, running
a central AC-OPF when there are numerous consumers would lead to a
large-scale non-linear optimisation problem which is computationally
expensive for an online real-time setting. Also, [16] requires a central
access to all of the information of all the consumers which is not
practical and compromises consumers privacy.

To meet the above challenges mentioned for a central OPF, the
distributed algorithm ADMM [17] has been used in the literature on
OPF [18,19] and DER coordination [4,15]. Even though [4,15,18,19]
can mitigate the computational complexity and privacy issues of a
central tool, they neglect FCAS market participation and only co-
ordinate DER decisions in the energy market. However, as we show in
our result section, this is making a poor use of DER flexibility which can
be sold in highly-priced FCAS markets.

Therefore, in this paper, we extend our previous work [4] to provide
network-aware bids in both energy and FCAS markets. Similarly to [4],
the network and consumers negotiate to converge on a consensus so-
lution; yet here, we modify the energy management system (EMS) of
the consumers to co-optimise their DER in several markets rather than
optimising them according to time-of-use tariffs (as we did in [4]).
Moreover, unlike [4], here, our network model uses three AC-OPFs to
guarantee that the consumers decisions in energy, raise and lower FCAS
markets do not violate any network constraints. Thus, our contributions
compared to the state of the art are:

e Bidding in both energy and FCAS markets by developing an ADMM-
based approach in distribution networks which reflects the whole-
sale electricity market prices and the network LMPs.
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® Developing a co-optimisation EMS problem for consumers to opti-
mally schedule their DER in both energy and FCAS markets while
not violating any network constraints.

1.3. Paper organisation

Section 2 provides a brief introduction on NEM and AEMO as well as
their different FCAS markets. Section 3 gives a high level presentation
of our proposed approach which is then detailed in Section 4; Section 5
numerically illustrates the effectiveness of the proposed approach; and
finally, Section 6 concludes the paper.

2. NEM contingency FCAS

We develop our network-aware co-optimisation approach to parti-
cipate in the 5-minute real-time NEM. Therefore, in this section, we
briefly introduce NEM and its markets before the design of our model in
Section III. Under NEM frequency standards, AEMO must ensure that
following a credible contingency event, the frequency deviation re-
mains within the contingency band (e.g., 49.5 to 50.5 Hz) and returns
to the normal operating threshold (e.g., 49.85 to 50.15 Hz) within 5
minutes®’. To do so, AEMO uses 6 contingency FCAS markets, cate-
gorised in three main groups according to their response time:

® 6-second raise and lower: these services are the fastest responses to a
major drop/rise in frequency aiming at arresting the frequency after
an event.

® 60-second raise and lower: these services are the slow responses to
stabilise frequency following a major drop/rise in frequency.

e 5-minute raise and lower: these services, also known as delayed
responses, are used to recover frequency to the normal operating
band following a major drop/rise in frequency.

A registered FCAS provider can participate in any or all 6 of these
FCAS markets, for which they get paid their accepted bids regardless of
whether or not a contingency actually occurs. In the case that a con-
tingency does occur, they must respond up to their market accepted
capacity, to correct the frequency deviation. In this paper, we assume
the DER is equipped with the necessary metering and control systems to
be able to enact the required frequency responses.

3. The proposed approach
The proposed approach consists of three main parts:

1) EMS subproblem: which enables consumers to optimally contribute
to energy and all FCAS markets.

2) Network subproblem: which a) ensures the secure operation of the
network in all different cases (i.e., a case in which only energy is
traded, as well as the cases in which the consumers are providing
AEMO with their raise or lower FCAS support); b) obtains the op-
timum bids to submit to each market.

3) ADMM approach: which coordinates consumers action (EMS sub-
problem) with the grid (Network subproblem) and and creates vis-
ibility of both the market and the grid by reflecting the wholesale
market prices and the distribution network constraints.

The first part of our approach relates to the consumers. The retailer
is in charge of the second part (i.e., bidding in the different markets);
while both the consumers and the retailer contribute to the ADMM
coordinator of the third part. In the following, we separately explain
each part of the proposed approach. To increase the readability, we

2 According to the event and/or location, the contingency frequency band and
recovery time might differ [20].
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start with a high level presentation of the ADMM algorithm in sec-
tion 3.1 and then thoroughly model the first and second parts of the
proposed approach in sections 4.1 and 4.2, respectively.

3.1. The general high level problem

We treat each consumer n € C as a generating unit exchanging with
the grid active power® P¢ € R'™ at each time step in horizon T. Con-
sumers can increase / decrease their output (with respect to P;) to
provide raise / lower FCAS P! / P! € R"' leading to their maximum /
minimum power exchange with the grid. We put P¢, P! and P} in a
vector B, € R¥*!T' to increase readability. Consumers also have their
own internal variables Y,, as well as the objective and constraint func-
tions f, and g, which take P, and Y,, as inputs. We drop the subscript to
represent all prosumer exchange powers, P € R>/CXIT| which together
with the network internal variables X are inputs to the network’s own
constraint function h. The multi-period OPF can be written as:

min Y} f, (B, Y;)

nec (1a)
s.t. VneC: g ¥)<0 (1b)
h(P',X)<0 (19
P-P =0 1d

In the above, we have duplicated the active power exchange vari-
ables, so, the consumers and the network have their own copies (P and
P’). The duplicated variables are enforced to have the same values
through (1d) which is the equation we will now relax to decompose the
consumers from the network.

The penalty term of the augmented Lagrangian applied to the
equality connection constraint (1d) is:

* ’ — ’ P N [12
.li(P,P,ﬂ)—/1T(P—P)+EI|(P—P)|I2 @
A = [A. A A" is the vector of dual variables for the relaxed constraints
(1d) and p is the penalty parameter of the augmented Lagrangian.

3.2. The ADMM algorithm

We use the ADMM algorithm [17] to iteratively solve (1a) - (1d) to
its optimum. The ADMM algorithm has three phases per iteration k:

PO: =min Y7 [f, (B, Vo) + LB, BT, 287D)]
PY

necC

st. VheC: g (B, Y) <0 (3a)
P'®: =min £L*(P®, P’, 1&-D)
P X

s.t. h(P', X) <0 (3b)
AR k=D 4 p®).(pl) — prk)y (3¢)

In the first phase (3a), the consumers optimise for P, holding P’, and
A constant at their k — 1-th values. In the second phase (3b), the net-
work optimises for P’, holding P and A constant at their k-th and
k — 1-th values, respectively. Finally, the dual variables A are updated
in (3c), completing the k-th iteration.

Through (3a)-(3c), consumers schedule their appliances and com-
municate with the network their preferred load/generation for each
market. Network then checks if consumers behaviour satisfies the net-
work constraints and updates A accordingly. When the algorithm con-
verges, A represents the price of having the network constraints sa-
tisfied at each node i.e., represents LMPs. Compared to a central

3 Here, we focus on active power exchange, the reactive power exchange can
be modelled similarly.
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approach which requires to know all of the information of all of the
consumers”, our approach only requires to know the consumers con-
nection point power (bids). Thus, not only does our approach provide a
higher privacy level for consumers, but also (from the data commu-
nication prospective) the necessary data exchange is much simplified.

3.3. Stopping criteria and convergence of the algorithm

In line with [17], we define the stopping criteria using primal and
dual residuals as follows:

RY: =((P = B{™), (P — B, ®), ) (42)

RYO: =(p(B®) = B0, p(B® — D)) (4b)

The primal residuals (4a) represent the constraint violation at the
current solution and the dual residuals (4b) the violation of the KKT
stationarity constraint [17].

To feed the proposed approach with the latest uncertainty in-
formation and obtain more accurate results, we implement (3b)—(3c)
within a receding horizon framework. More explanation on our re-
ceding horizon implementation is given in Section 4.3.

4. Consumer and network subproblems

In this section, we first model the consumers EMS subproblem®;
then develop the network subproblem to make sure that consumers
behaviour does not go beyond the network capabilities; and finally, we
present the whole approach on a receding horizon framework.

4.1. The proposed consumer subproblem model

We break the EMS constraints into two groups: constraints for
linking the absolute raise and lower quantities to biddable values for
the FCAS markets, and those related to the physical and operating
constraints of the DER. Note that as we work with one prosumer at a
time, here, we drop the superscript n.

4.1.1. Market linking constraints

We introduce a pair of variable vectors AP}, AP, € RY} for each
frequency market m € M, to represent the amount of raise and lower
capacity to bid into the market. The corresponding power exchanged
with the network in each case is given by the related variables
P!, PL e R, where:

Pl = P° + AP], (5a)

P, =P¢ — AP}, (5b)

Response is only required from one market at a time, so when
checking network feasibility we only need to consider the most extreme
raise and lower values. This can be written as the max and min over the
markets, which we relax as follows:

P =max(P,) w» P >P, VmeM
max(Fn) > P' 2 Pn 50

Pl=min(P.) » PL<P. VmeM
maxi(Pm) = P < P 5d)
We expect this to be an exact relaxation since larger P” or smaller P! will
lead to more active network constraints (relative to P°) rather than any
benefit to the network subproblem.

The cost associated with the market participation is given by the

*This information includes consumers’ battery SoC, PV power, their un-
controllable load and any other appliances a consumer might have.

5 Note that the consumer subproblem, modelled via (3a), is general and in-
dependent of any load type. Yet to show the performance of our approach, here,
we assume our consumers own a PV, a battery and a background load.
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following component to the objective function:

Z 5t(7ftepte + Z (T, AP + ﬂrln,tAPyln,z)]

teT meM

(5e)

where &, is the time step duration in hours; 7/ is the wholesale energy
market price at t; and 7, , / 7}, are the prices of the raise / lower FCAS
market m at t. These amounts are payable whether or not a contingency
actually occurs. However, a contingency can have a small impact on the
state-of-charge of the battery. To approximate any lost or gained energy
due to FCAS deployment, we model the probability of a contingency
event occurring for each market . and ,u,;,t(’, and assume that the
value of the lost / gained energy is at the energy market price 7:

Z z ﬁte'arln(ﬂy:,,{APrZ,t - ,u,ln,t'APrln,t)

teT meM (5f)
where §,, is the worst case number of seconds we would need to be
deployed for each market m for a single contingency. The significance
of these deployment costs shrink to zero as contingencies become more
rare.

In our example, (5e), (5f) and the Lagrangian penalty term are the
only values in the objective; however, other forms of DER might have
additional costs associated with operation and there maybe other
electricity charges such as network tariffs.

4.1.2. DER constraints

We need to ensure the DER constraints are satisfied under partici-
pation in each market, including the case where no frequency support is
required. We present the DER constraints for a single time step, using a
placeholder variable P € R'™ to represent the power sent to the net-
work. The DER variables and constraints are then duplicated for each
scenario of interest, along with substituting the appropriate P, P,, or
P!, variable for the placeholder.

Solar PV: Solar PV has a single variable PV € [0, PF], which can be
curtailed down to zero from the forecast available solar PF.

Battery Storage: A battery has variables for charge and discharge
powers PS", PP e [0, R], and for the state of charge E, € [E™", E™™].
These are linked with the state of charge (SoC) at the previous time step
through the equation:

E; = E_y + 8,(P" — PP5/n) (58)

where 7 is the battery efficiency and 5 gives the round-trip efficiency.
Note that since the FCAS bids are capacities, there is no guarantee that
they are deployed. Therefore, the SoC constraint for raise and lower
FCAS scenarios, uses the previous SoC form the energy market, i.e., E;_;
in each time step.

Combined Power: The combined household power is then:

Pte — PtDis _ PtCh + PtPV _ P[U (5h)
where we have included a parameter for the forecast household un-

controllable load P” € R. Note that the uncertainty for both P and P
are taken care of through our receding horizon implementation.

4.1.3. The combined EMS subproblem

In summary, the EMS subproblem for a single customer is to mini-
mise the sum of (5e), (5f) and the associated Lagrangian penalty term
(2). The constraints consist of the market linking constraints (5a-5d),
and 7 copies of the DER variables and constraints (5g-5h), one for each
market: P, P, and P}, where m € {1, 2, 3}.

4.2. The proposed network operation model

Since there is no time coupling constraints in the network

© This value can be updated every five minutes as our receding horizon moves
forward.
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subproblem (unlike in the EMS subproblem due to the battery SoC
constraint), here, we drop the index t to increase readability. The ob-
jective value for the network subproblem consists of just the corre-
sponding Lagrangian penalty term (2).

Our network model includes three OPFs: one for obtaining sche-
dules when consumers participate in energy market P, and one for each
extreme case P" and P. In the following, we model the distribution
network constraints, using distflow equations [21], for the energy
market participation; we generate similar constraints for the maximum
raise and lower cases.

We use i, j, k € N for nodes in a tree network; Ff, Qf and I are the
active power, reactive power and the current flowing into node i from
the parent node k, where the line has resistance r;, reactance x; and
impedance z; D; represents the children nodes of node i; and C; is the set
of consumers at node i. The network constraints can be written as:

Ff—nlf+ D, Pf= Y F VieN
nec; JED; (6a)

Q—xIf=),Q VieN

JED; (6b)
VE= Ve - 20 + Q0 + 22l VieN (6c)
Vi SVE<W, VieN (6d)
F2+Q? =V} VieN (6
0 <If < inex? VieN (6f)

Active and reactive power flow equations are given through (6a)—(6b);
The voltage of each node is calculated through (6¢) and is enforced to
be within its safe limits (v, and v2,) through (6d). The complex
power, flowing in each line, is given in (6e) and finally, (6f) limits the
current of each line to the maximum line capacity i/®2.

Remark: As suggested in [21], the Conic relaxed convexification of
the network subproblem (6a)-(6f) can be obtained by replacing “ = ”
with “ < ” in (6e). However, the OPF results of such a relaxed problem
is exact only if there is no upper bound limit on the voltages. In other
words, when the voltage upper-bound limit is binding, the obtained
results of such a relaxation do not lie within the feasible region. To
avoid such an infeasible solution, here, we use the exact non-convex
model (6a)-(6f) for our network sub-problem. As we show in the nu-
merical results section, such a network model can be efficiently solved
by the IPOPT solver and performs well within the ADMM context.

4.3. Receding horizon

To use the latest information and forecast (the most accurate PV
power, residential demand and the wholesale energy and FCAS price
forecasts), we apply our proposed network-aware co-optimisation ap-
proach within a receding horizon context. In this method, we run the
proposed approach inline with the electricity market time-frame (i.e.,
every 5 minutes as in AEMO). This also allows us to update the SoC
value in every re-optimisation (as the SoC might changed when con-
sumers respond to the frequency deviations). Note that even though
consumers act in the first five minutes of every re-optimisation, we
solve a multi-period problem in every horizon. This ensures that the
decisions in the first five minutes are not shortsighted.

5. Numerical results

For our experimental results we compare the costs and feasibility
that our proposed approach achieves relative to 3 alternative ap-
proaches on a 69-bus distribution network with 207 consumers. We
then apply our approach on a 141-bus distribution network with 1400
consumers to get a sense of how our distributed approach scales.

In both test networks we utilise 5 kW rooftop PV, and 5 kW / 10
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kWh batteries with round-trip efficiencies of > = 90%, at a subset of the
consumers. We use anonymised solar and demand data for 27 con-
sumers in Tasmania, Australia, provided by Reposit Power [22], and
randomly assign this data to the consumers in our networks. These
consumers are then scaled in order to demonstrate performance during
periods of network congestion. We take the 5 minute wholesale energy
and FCAS prices from AEMO [23]. To clearly report our results, we use
a 30 minute time granularity in sections 5.1 and 5.2, while in sec-
tion 5.4 we use 5-minute time granularity to investigate the perfor-
mance of our variable time-discretisation receding horizon approach.
In all experiments, the ADMM penalty parameter p is chosen to be 1
and we consider the problem to have converged when the infinity
norms of the primal and dual residuals are both smaller than 10-°. The
probability of a contingency event is considered to be 8% in every in-
terval.” We use the Gurobi and IPOPT solvers in JUMP, Julia [24] to
respectively solve the consumer and network subproblems on a laptop
computer with a 2.50 GHz Intel™® Core™? i7 and 8 GB of memory.

5.1. 69-bus distribution network

We modify the 69-bus distribution network [25] with 3 consumers
at each node. To obtain a more realistic case, 48 consumers are
equipped with a rooftop PV and a battery (PV-BAT consumers); 48
consumers are equipped with just a rooftop PV but not a battery (PV
consumers); and the remaining 111 consumers do not own any DER
(NoDER consumers).

5.1.1. Different approaches
We compare the performance of the following four approaches:

1) Energy: in which consumers just participate in the energy market.

2) Seq: in which consumers sequentially participate in energy and
FCAS markets, meaning that they first optimise their decisions in
energy market, and then bid the rest of their capacity in the FCAS
markets.

3) Co-opt: in which consumers co-optimise their decisions in energy
and FCAS markets ignoring the network.

4) Proposed: in which the consumers use our network-aware co-opti-
misation approach to participate in both energy and FCAS markets.

Table 1 gives the average total cost of NoDER, PV, and PV-BAT
consumers as well as the overall total cost, obtained using the above
approaches for a day. Consumers owning DER (PV and PV-BAT) obtain
larger benefits when participating in FCAS markets. The improvement
in Co-opt and Proposed over Seq demonstrates the value in co-opti-
mising energy and FCAS participation. Co-opt is able to achieve the best
objective; however, as discussed in Section 5.1.3, it violates the network
constraints.

5.1.2. Energy and FCAS breakdown

Fig. 1 breaks the costs down into their market components for the
Seq, Co-opt and Proposed approaches. Since the Seq approach has no
visibility on the highly-priced FCAS markets, it focuses on lowering
costs in the energy market, which leads to a worse overall outcome.

5.1.3. Network effect of DER

To study the importance of accounting for network constraints, we
check the network feasibility for the results obtained by the Co-opt
approach (the case which neglects the network). To do so, we fix the
connection point bid of consumers to the obtained results from the Co-

7 Note that given the rare probability of event, 8% is a conservative estimate
which provides a lower bound on consumers benefit. Thus in reality, the con-
sumers are expected to obtain even more benefit than the ones reported in this
section.
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Table 1
Overall cost and average consumer cost (AUD) for each approach.
Approach Overall NoDER PV PV-BAT
Energy 1168.90 16.91 -2.20 -12.54
Seq -531.82 16.91 -2.20 -47.97
Co-opt -3140.60 16.91 -5.80 -98.66
Proposed -2982.84 16.91 -5.58 -95.85
2000
~
S
-500
<
N
-
%2]
o}
© 3000
-5500

ESeq ECo-opt & Proposed

Fig. 1. Detailed cost/benefit in energy and FCAS markets.

opt approach, and solve three separate power flows (for energy, raise
and lower) to see whether these bids satisfy the network constraints. We
plot the voltage of node 27 in the energy case (normal operating con-
dition) and when the raise FCAS is deployed (i.e. assuming a worst-case
contingency occurs in each time step), for Co-opt and the Proposed
approaches, in figures 2 and 3, respectively. As shown in these two
figures, while the proposed network-aware co-optimisation approach
managed to keep the voltage within the safe limits in all operating
conditions, the Co-opt approach failed to do so in several time steps.
This highlights the importance of providing network-aware bids.

To further show how the proposed network-aware co-optimisation
approach works, we plot the energy bids of two similar batteries; one
located at node 7 and the other at node 27 in Fig. 4. Without the pro-
posed approach both batteries would bid similarly as they have similar
price inputs. However, when consumers’ decisions would violate the
network constraints, the proposed approach changes the LMPs to pro-
vide incentives for participants to change their schedules, leading to a
difference in behaviour.

5.2. 141-bus distribution network

To illustrate the scalability of the proposed approach, we modify a
141 bus distribution network [26] by allocating 10 consumers to each
node except the root node.

Due to the decomposition we have chosen, within a single iteration
all our EMS subproblems can be solved separately (either in parallel or
sequentially), and similarly our network subproblem can be separated
into an OPF for each time step® and each power flow case under con-
sideration: energy, FCAS raise, FCAS lower. With a half-hourly time
discretisation this results in 144 OPFs. In a practical setting we expect
all our EMS problems to be solved in parallel on dedicated EMS hard-
ware or in the cloud, while the OPFs could similarly be solved in par-
allel.

We report for a single horizon both the total computational time of
our sequential implementation, and the expected fully parallel time
(considering the slowest separated subproblems in each iteration). In a
real setting, while the parallel computation, reported for the consumer
subproblem, is representative, for the network subproblem, we expect a
compromise between sequential and parallel solve times (depending on

8 Since there is no time coupling constraints in the network subproblem.
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Table 2
Problem size and computational time.

System Subprob. #Var. #Cons. #lter. Time (Parallel)
69-bus EMS 427k 325k 38 193s (1.1s)
Network 69k 39k 205s (1.5s)
141-bus EMS 2,889k 2,200k 268 7895s (7.1s)
Network 284k 81k 3419s (29.65)
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Fig. 5. The primal and dual residual convergence
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Fig. 6. Time-discretisation of our receding horizon approach.

the available cores). Therefore, the overall solve time stands some-
where between these two, and an additional overhead due to any
communications latency. Table 2 reports the model size and solve time
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Table 3

Problem size and computational time of the central approach.
System #Var. #Cons. Time (s)
69-bus 477k 364k 434.4
141-bus 3,012k 2,326k 12,544.1

for the subproblems in a single horizon, and their contribution to the
overall solve time in both sequential and parallel cases.

As can be seen in Table 2, the total convergence time for a single
horizon of our approach, in parallel computation, is 2.6s and 36.7s for
our 69 and 141 bus distribution networks respectively. These times are
reasonable, given the problem sizes as well as our strict convergence
tolerance (i.e. 10~°) which represents at most 1 W error. Yet, in practice,
we could run our approach with weaker tolerances in order to greatly
reduce the number of iterations and thus overall time. In addition to
this, when employed in a receding horizon context, warm-starting so-
lutions can lead to further significant iteration reductions.

5.3. Convergence of the proposed approach

The proofs for ADMM convergence typically require the problem to
be convex [17]. In practice however, it converges and performs well
with the non-convex network model [18]. Here, we use the exact non-
convex network model (6a)-(6f) to avoid any inexactness that a convex
relaxation (such as Conic relaxation [21]) might bring to our problem
(especially in the hours with peak PV generation and reverse power
flow). Despite using a non-convex network subproblem, in all of our
simulations, our ADMM approach converged with reasonable number
of iterations. The convergence of the primal and dual residuals for the
69-bus test system is plotted in Fig. 5.

5.4. The receding horizon implementation

As mentioned earlier, to mitigate the effect of uncertainty, the
network and consumers negotiate every five minutes in a receding
horizon framework. While the first time step (the first 5 minutes) is
acted on, the other time steps are just to make sure that the decisions
are not shortsighted. However, considering multiple time steps in-
creases the size of the problem and the computational burden.
Therefore, here we use the idea of a variable time-discretisation [4] and
apply it to our multi-period problem. Rather than using constant 5
minute time steps, we use 5 minutes for the first time step and 30
minutes for the remaining steps, as shown in Fig. 6. This leads to a
problem with 49 time steps per horizon, almost the same number as
used in the previous section (i.e. 48), so we expect the computational
results there to be representative.

In our experiments, the variable time-discretisation technique re-
duced the convergence time by 300% with less than 2% increase in the
total cost. Note that since the optimisation problem reruns every five
minutes, it takes the latest battery SoC into account. Therefore, the
feasibility of our decisions are guaranteed. In other words, such a
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variable time-discretisation approach does not lead to infeasible solu-
tions, it just reduces the problem size at the expense of a higher cost.
Fig. 7 reports the bids made in energy and raise FCAS markets obtained
by the variable time-discretisation and five-minute yet constant time-
discretisation approaches (shown by Variable and Constant, respec-
tively) for our 69-bus network (lower FCAS bids were zero).

5.5. Central approach

In this section, we assume that the network has access to the re-
quired information of consumers to run a central OPF and schedule all
the DER. This case study provides an insight on the problem size and
the required time to solve such a complex co-optimisation problem
without the proposed approach. Here, the network operator uses three
AC-OPFs both to schedule consumers in different markets and to
guarantee the network feasibility for any market participation (i.e,
energy, raise and lower FCAS markets). Similar to our approach, we
implement this case within a receding horizon framework to include the
latest forecast information and increase the solution quality. Note that
due to the time coupling constraints of DER (such as battery SOC), each
horizon needs to solve a multi-period AC-OPF. We use our variable
time-discretisation technique, to reduce the size of this multi-period
problem. Table 3 reports the problem size and the time taken to solve
the problem centrally.

As reported in Table 3, the central approach respectively took 434.4
s (7.3 min) and 12,544.1 s (3", 30™™) to solve our 68-bus and 141-bus
test systems. The reported run-time highlights the limitations of ap-
plying a central approach to a bidding strategy with a 5- minute time-
discretisation. However, as seen in table 2, the parallel implementation
of the proposed approach can solve such problem within few seconds.

6. Conclusion

We developed an ADMM-based approach in the distribution net-
work to enable residential consumers to participate in both energy and
FCAS markets. In our approach, the network and consumers negotiate
frequently using the ADMM algorithm and converge on a consensus
solution which does not violate consumers or the network constraints.

We first illustrated the effectiveness of our approach using 207
consumers, served through AEMO, within a 69-bus network. Our results
show significant improvements over the case when the decisions in
energy and FCAS markets are not co-optimised. Also, through a voltage
analysis, we compared the voltages on the network when the co-opti-
misation neglects the network constraints with the proposed approach.
The results revealed that neglecting the network can lead to infeasible
solutions violating the voltage safe limits at different times of the day.
Using 1400 consumers on a 141-bus network, we showed that the
proposed approach is scalable as it distributes the computational
burden on different components of the whole problem which can solved
in parallel. To further improve the computational of the proposed ap-
proach, we enhanced our model to have variable time-discretisation
across the horizon.
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