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Abstract—Massive integration of residential photovoltaic (PV)
generation has caused overvoltage issues in distribution systems.
In this paper, we propose a two-stage central-local solution
using the unused capacity of the residential inverters. Unlike
similar approaches, we propose to benefit from a wider range
of information available at the local level, i.e., both voltage
magnitude and real power injection. To achieve this, in the
first stage, a central controller periodically takes measurement
throughout the network to determine a scalar function mapping
two local variables, namely real power injection/demand and
voltage magnitude, to the reactive power of each inverter. The
second stage is a local feedback controller that determines the
inverter reactive power injection/absorption, using the provided
functions and local measurements. The effectiveness of the
proposed design is assessed on a real 30-bus LV feeder. The
results are compared with the Volt/Var control suggested by
IEEE standard 1547 and an optimal solution with complete
information. Our simulations show that our design obtains near-
optimal results, and keeps the voltages within the predefined limit
in more scenarios than the IEEE standard 1547 while decreasing
the required reactive power by 60%, and the real power loss by
3.3%.

Index Terms—Renewable integration, distribution system,
Volt/Var, optimal power flow, real-time control

I. INTRODUCTION

In the last decade, the growing adoption of photovoltaic

(PV) panels has led to new challenges in operating distribu-

tion systems [1]. Maximum PV generation typically happens

simultaneously with low residential load consumption. This

in turn may cause reverse power flow in the grids with high

PV penetration, which can potentially cause overvoltage, es-

pecially in weak grids. Traditional distribution voltage control

methods, i.e. using capacitor banks, on-load tap changers

and step voltage regulators, were designed to control voltage

fluctuations due to slow changes in demand. These methods

are not adequate to respond to fast and random variations of

PV system outputs, and are potentially expensive to install

throughout the distribution system [2]. Utilization of reactive

power support capability of smart inverters is an effective

alternative, as they can provide fast and dynamic response

which can reduce investment costs [3].

Different control strategies exists to get the preferred be-

haviour out of installed inverters in the distribution systems.

A closed-loop control strategy can be an effective way of

regulating the point of common coupling (PCC) voltage of

a PV system that employs the full potential of smart inverters.

In closed-loop Volt/Var controllers, real-time measurements

are compared with a reference value. Based on their mis-

match, the controllers will adjust the reactive output powers

to follow the reference value [4]. Various techniques exists in

the literature for the implementation of closed-loop Volt/Var

control strategies, which can be broadly classified based on

the communication requirements as centralized, decentralized

and local.

In centralized approaches, a central entity periodically col-

lects measurements throughout the network, and will typically

determine the reference values by solving some sort of optimal

power flow (OPF) problem at regular time intervals [5].

Although these methods can successfully coordinate all the

voltage regulation devices and achieve an optimal solution,

it can be impractical to solve an OPF for fast-changing

PV generators in large distribution systems. Decentralized

methods can decompose an overall optimization problem into

small sub-problems and solve them in parallel [6]. This can

speed up solve times, but will still struggle to cope with

fast-changing PV generators. Local controllers can provide

fast responses to network operation changes. However, due

to limited information available in these approaches, they lack

a system-wide coordination and optimization. This can lead

to unnecessary reactive power injection/absorption in some

scenarios, which in turn increases line losses in the entire

system or the opposite in some scenarios, i.e., under-utilization

of available resources, which may lead to failure to keep the

voltages within the network limits.

Combined local and central approaches benefit from both

system-wide coordination of central approaches and fast re-

sponse of local approaches. In [7], the authors use a centralized

optimization to tune the local controller parameters based on

the forecasted data over a day. In [8], a two-level control

architecture is proposed, wherein the lower level, a piece-

wise linear Volt/Var function is implemented, which reacts

promptly to voltage variations. In the higher level, a central

controller periodically solves an OPF, and sends adjustments

to the lower level, to modify controller parameters. In [9] and

[10], affine functions at the central level are obtained, relating
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the reactive power of each inverter to local changes in real

power injection. Then, in real-time at the local level using the

assigned functions and local measurement, the inverter reactive

powers are calculated. In all the aforementioned literature, at

the local level, the reactive power of inverters are obtained

either based on deviations in voltage magnitude or real power

injections, but not both together. As mentioned above, the main

shortcoming of the local controller approaches is that they have

access to limited information. Neglecting one of the sources of

information (voltage magnitude or real power injection) misses

an opportunity to better optimise the system. Therefore, in this

paper, we propose an approach to benefit from both sources

of information available at the local level.

We propose a two-stage Volt/Var scheme. In the first stage, a

central controller periodically makes measurement throughout

the network. Considering an uncertainty interval in the uncer-

tain parameters (PV generation and residential demand), two

scenarios are developed, one for the best case and one for the

worst case. Then, three optimal power flows are solved, one

for each scenario (measurement, the worst case, and the best

case), to obtain the optimal reactive power injection/absorption

of each inverter. Next, through a set of steps, detailed in

section III, a piece-wise linear Volt/Var function is obtained

for each inverter in each scenario. Then, by applying linear

interpolation between Volt/Var functions of each inverter, a

scalar function of two variables, namely real power and voltage

magnitude, is constructed and assigned to each inverter. In this

way, both the locally available information will be used in the

second stage. The second stage is a local feedback control

that based on the calculated function in the first stage, and

local real power injection and voltage magnitude measurement

determine the reactive power contribution. To investigate the

effectiveness of the proposed approach, we simulate it on a

30-bus distribution system and find it achieves near-optimal

performance.

The rest of this paper is organized as follows. In section II,

the problem formulation is presented. In section III, we

introduce our proposed method. Simulation results are reported

in section IV. Finally, section V concludes this paper.

II. PROBLEM FORMULATION

Fig. 1 shows a simple two-bus system where extra real PV

power is injected to the grid. This injected power may produce

a voltage rise at the PCC which can be approximated by:

Vi − Vk =
rikP

inj
i + xikQ

inj
i

Vi
(1)

where Vi is the voltage magnitude at the connection point, rik
and xik are resistance and reactance of the line between buses i
and k, P inj

i and Qinj
i are the injected real and reactive powers

from the connection point at bus i to the grid, respectively.

The voltage rise problem can be managed by proper control

of reactive powers through remaining unused capacity of the

inverters. Notice that the arrow directions in Fig. 1 denote the

assumed sign for the variables, rather than enforcing a one-

way flow of power.

DC

AC

Q
inj
i

P
load
i

Q
load
i

P
inv
i

P
inj
i

Vk

xik

Vi

rik

Q
inv
i

Fig. 1. A simple two bus feeder showing the reverse power flow.

III. PROPOSED METHOD

In this section, we describe our proposed two-stage Volt/Var

control. In the first stage based on the following steps we

calculate the reactive power of each inverter as a scalar

function of local real power injection and voltage magnitude.

Before getting to the details of each step, here is an overview

of the process.

In the first stage, we begin by collecting measurements

throughout the network. We assume that the PV generation

and the residential demand between two measurements belong

to the following uncertainty sets:

P inv ∈ [P inv
0 −ΔP inv , P inv0 +ΔP inv] (2a)

P load ∈ [P load
0 −ΔP load , P load

0 +ΔP load] (2b)

where P inv
0 and P load

0 are the PV and demand at the mea-

surement point, respectively. ΔP inv and ΔP load indicate

the possible deviations from the measurement between two

consecutive measurement point. Based on the uncertainty

interval (2), we develop two scenarios. In the first scenario

we consider the worst case from feeder voltage perspective,

for example in a generation dominated moment the worst case

happens when all the PVs reach to their maximum and all the

demands decrease to their minimum value in the uncertainty

interval. In second scenario we consider the opposite (the best

case), i.e., all the demands reach to their maximum and all

the PVs decrease to their minimum value in the uncertainty

interval. Then, an OPF is solved for each of these scenarios

to obtain the minimum reactive power required from each

inverter to keep the voltages within the limit (Step 1). Next

we want to calculate a piece-wise linear Volt/Var function for

each inverter. The slope of the function shows how much a

change in reactive power injection of a bus, would change its

voltage magnitude. An accurate way to obtain the slope, is

to use the inverse Jacobian matrix for each operating point

(Step 2). Considering the optimal point obtained from Step
1 and the slope obtained in Step 2 we can determine a line

(Step 3). By enforcing the inverter limitations and considering

a symmetrical design for the piece-wise linear function, we

obtain the droop curve (Step 4 and 5, shown in Fig. 2). By

repeating Step 1 to Step 5 for the other two scenarios, we

obtain a piece-wise linear curve for each of them (Step 6). The

last step is to combine the piece-wise linear functions together,
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Fig. 2. Droop curve designed for an operating point where Q
opt
i ≤0.

Fig. 3. A sample of the proposed scalar function of the two variables, real
power injection, and voltage magnitude, for the local controllers. The three
black-dotted lines show the piece-wise linear curves obtained from the three
scenarios.

through linear interpolation, which makes the reactive power

of each inverter a scalar function of local real power injection

(through interpolation) and voltage magnitude (the piece-wise

linear function), shown in Fig. 3. In what follows, we describe

each step in detail.

Step 1: The first step is to formulate an OPF to obtain the

minimum reactive power support, required from the inverters

to keep all the voltages within the accepted limit. We use

the Distflow model to represent the power flow equations, as

the Distflow formulation is well-suited for radial distribution

systems with a tree structure, as shown in [11]. In the Distflow
formulation, a power network is represented by a connected

graph G = (N ,B), where each node represents a bus and each

link represents a line or branch. N = {1, ..., n} denotes set of

buses with cardinality |N |= n and B ⊆ N × N denotes the

set of all branches and (i, k) or i → k shows a branch from

bus i to bus k. For every bus i ∈ N , let vi denote the squared

voltage magnitude. Also, let P inj
i = P inv

i − P load
i denote

the real power injected to the grid from bus i, and Qinj
i =

Qinv
i − Qload

i denote the reactive power injected to the grid

from bus i. For every branch (i, k) ∈ B, let zik = rik + jxik

denote the complex impedance of the line, and lik(t) denote

the squared current magnitude from bus i to bus k. Also, let

Si,k = Pik + jQik be the sending-end complex power from

bus i to bus k. It is also assumed that the substation voltage

v1 is given. What follows is the OPF formulation:

min

n∑
i=1

Qaux
i (3a)

P inj
j =

∑
k:j→k

Pjk − (Pij − rij lij) ∀j ∈ N (3b)

Qinj
j =

∑
k:j→k

Qjk − (Qij − xij lij) ∀j ∈ N (3c)

vj=vi−2(rijPij+xijQij)+(r
2
ij+x2ij)lij ∀(i, j) ∈B (3d)

lij =
P 2
ij +Q2

ij

vi
∀(i, j) ∈ B (3e)

P inv2

i +Qinv2

i ≤ Smax2

i ∀i ∈ N (3f)

Qaux
i ≥ −Qinv

i , Qaux
i ≥ Qinv

i ∀i ∈ N (3g)

where (3b)-(3e) denote the Distflow model, and (3f) denotes

the apparent power equation, enforcing the inverter capacity

constraint. Qaux
i is a positive auxiliary variable defined to

linearize the absolute value of Qinv
i through constraints (3g).

Remark: Problem (3) is not convex due to the quadratic

equality constraint (3e). As shown in [12], the SOCP relax-

ation of the Distflow model suggested by [11] is not exact

when the ampacity constraints of the lines are binding, i.e., the

answer provided by the OPF will not lie within the feasible

region. Also, as shown in [13], although the linear Distflow
model is convex, it overestimates the voltage magnitude, and in

turn, significantly increases the reactive power required to keep

the voltages within the limit. Our simulations in a moderately

sized distribution system show that if the variables are properly

bounded, problem (3) can be efficiently solved by solvers such

as IPOPT, and the answer obtained through solving the non-

convex model is feasible and superior to the answer obtained

by the linear Distflow model. For an extremely large system,

one can replace the non-convex power flow model with the

linear distflow model model, and use the rest of our approach.

Step 2: Calculate the inverse Jacobian matrix. The Jacobian

matrix of the power flow equations can be formulated as

follows:

J =

⎡
⎢⎣

∂Pinj

∂δ
∂Pinj

∂V

∂Qinj

∂δ
∂Qinj

∂V

⎤
⎥⎦ (4)

where J is the Jacobian matrix, operator ∂ denotes partial

derivative, and δ is the vector of voltage angles. Defining Yii ≡
Gii+jBii, and using the bus injection model [14], we obtain:

P inj
i = GiiV

2
i +

n∑
k=2
k �=i

ViVk|Yik|cos(θik + δk − δi) (5a)

Qinj
i = −BiiV

2
i −

n∑
k=2
k �=i

ViVk|Yik|sin(θik + δk − δi) (5b)

where Yik = |Yik| � θik shows the admittance between buses

i and k, and δi denotes the voltage angle at bus i. Taking

the partial derivative from (5), we obtain the Jacobian matrix.

Based on the inverse Jacobian matrix, we obtain the following:

ΔVk =
n∑

i=2

(
∂Vk

∂P inj
i

ΔP inj
i +

∂Vk

∂Qinj
i

ΔQinj
i ) (6)
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Considering Qinj
i = Qinv

i − Qload
i , we obtain the voltage

sensitivity of bus k to changes in its inverter reactive power

as follows:

ΔVk =
∂Vk

∂Qinv
k

ΔQinv
k (7)

Step 3: Consider the sensitivity of voltage magnitude to

reactive power at each bus as slope of a line. Considering

the slope, and the pair (V opt
k , Qopt

k ) obtained from Step 1, we

obtain the following line equation:

Qinv
i −Qopt

i =
−1
∂Vi

∂Qinv
i

(Vi − V opt
i ) (8)

Notice that the term ∂Vi

∂Qinv
i

is always positive if the system is

in normal operating condition. This is because, by definition, if

V-Q sensitivity is positive for every bus, the system is voltage

stable, and if V-Q sensitivity is negative for at least one bus,

the system is voltage unstable [15]. Therefore, the negative

sign in (8) ensures a negative slope for Q-V droop curves for

normal operating conditions.

Step 4: Intersect line (8) with two lines Qinv
i = 0 and

Qinv
i = −Qmax

i , when Qopt
i ≤ 0 (see horizontal lines in

Fig. 2), and similarly with two lines Qinv
i = 0 and Qinv

i =
Qmax

i , when Qopt
i ≥ 0. The intersection will give two voltage

and reactive power pairs.

Step 5: Assuming a symmetrical design for the piece-

wise linear curve over the 1pu voltage, we obtain the droop

function. Fig. 2 shows such a design for a scenario where

Qopt
i ≤ 0. Also, in this step, we enforce a new rule to

increase the efficiency of the design. Having a large dead-

band can prevent unnecessary reactive power usage. Therefore,

we consider a minimum symmetrical dead-band for the droop,

equal to the dead-band of IEEE 1547 standard. We left a more

systematic design of the dead-band to future works.

Step 6: Repeat Step 1 to Step 5 for the two other scenarios,

i.e., the best and worst cases. By doing so, we obtain three

droop curves for the three different operating points.

Step 7: Perform a linear interpolation between the three

curves obtained in Step 6. This will result in a scalar function

of two variables, namely real power injection and voltage

magnitude for each inverter. Fig. 3 shows an example of such

a design. Notice that as P inv
i increases, the available reactive

power decreases due to the inverter capacity limitation.

In the second stage, each local controller measures the

local voltage and real power injections to the grid in real-

time. Then, using the function from stage one, it determines

the value of reactive power support. This process can be

repeated periodically (e.g., every 5 minutes) to improve the

performance. In the second stage we consider a safety rule.

We consider that if in real time the real power injection

changes significantly from the measurement (more than twice

the uncertainty bound) the fixed droop, suggested by IEEE

1547, replaces the function.

IV. SIMULATIONS AND RESULTS

We consider a real 30-bus modern underground LV feeder

with R/X ≈ 2 located in Hobart, Australia shown in Fig. 4.

Fig. 4. 30-bus low-voltage feeder.

0 500 1000 1500
Time (minute)

0

5

10

R
ea

l P
ow

er
 (

kW
) House 5 House 16 PV

Fig. 5. Load and PV minutely patterns. Load pattern at bus 5 and 16 are
presented here to show different patterns are used in each bus.

One minute resolution load and PV data is obtained based on

the CREST demand model [16], shown in Fig. 5. Each of the

29 different residential customers (Bus1 is considered as the

slack bus) have a different load pattern, and 50% have rooftop

PV with a correlated solar input. To test the performance of

the proposed method, we conduct two tests. In the first one, we

consider uniform changes in real power injection and compare

the performance of our design with the fixed droop curve, and

also with the optimal answer of solving the OPF (3). In the

second test, we use the CREST demand model. The resolution

of the data is one minute, and we collect measurements every

5 minutes. The metrics of interest are, voltage profile, total

reactive power support, and real power loss in the network

conductors. The PV inverters are sized at 9kVA.

A. Uniform Change in Data

The linear interpolation used in Step 7 can closely follow

the optimal answer so long as the network operating point

does not change significantly. For example, Fig. 6 shows the

reactive power support of all the inverters for the three schemes

for minute 604, where the PV generation is at its maximum.

ΔP inv and ΔP load are considered 5% of the measurement

value, and we uniformly increase the PV and decrease the

demand from 0% to 7%. It can be seen that for 0% and 5%

the results are exactly equal to the optimal answer, and for

the other scenarios are near optimal. This result was expected,

since we solved an OPF for the measurement and the worst

case i.e., 5% uniform increase in PV and 5% uniform decrease

in demand of all the buses.

The mentioned scenarios are for the cases where the system

is operated near its voltage limit. Fig. 7 shows the reactive

power support for minute 834, where all the voltages without

any reactive power support are in the acceptable limit. This

case is of utmost importance as a considerable portion of a day

is made up of times where no reactive support is necessary.
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Fig. 6. Injected reactive power at each bus in minute 604, for each method and
varying uniform % changes from the stage 1 forecast power. Since we solve
an OPF for the measured operating point and the worst case (5% deviation
in PV and demand) the results for these scenarios happen to be exactly equal
to the optimal solution.
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1
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R
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ct
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 (
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R

)

25% change

Fig. 7. Reactive power support for different levels of uniform change from
measurement in minute 834.

Using a fixed droop will significantly increase real power

loss in the conductors for long hours in a day, which can

be prevented with our method. For example, our approach can

decrease the real power loss by 5% compared to the fixed

droop in minute 834, when the operating point is subjected to

25% uniform variation relative to the stage one forecast.

B. Real Data: Detailed for Some Minutes

In this part, we test the performance of our design using

the data from the CREST demand model. For the minutes

that the bus voltages are well-below the limit, the proposed

method avoids wastefully using reactive power like the optimal

solution. For example, Fig. 8 shows the performance of the

three schemes when measurements are gathered in minute

835, and used for the next 5 minutes (Only three minutes

are reported here to prevent repetition).

In the minutes where the bus voltages are close to their

limit, requiring reactive support from more than one inverter,

is more challenging, especially when changes in demand and

generation are out of the designed uncertainty bound. Fig. 9

0 5 10 15 20 25 30
-1.5
-0.5
0.5

Minute=876 Proposed Method Fixed Droop Optimal

0 5 10 15 20 25 30
-2
-1
0

R
ea

ct
iv

e 
po

w
er

 (
kV

A
R

)

Minute=877

0 5 10 15 20 25 30
Bus number

-2
-1
0

Minute=878

Fig. 8. Reactive power support at minutes 876 to 878 when the measurement
is collected at minute 834.
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ct
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er
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Proposed Method Fixed Droop Optimal

Fig. 9. Aggregated reactive power support of the three schemes for minutes
600 to 609, with measurements at minutes 600 and 605.

shows the aggregated reactive power support for the three

different schemes in minutes 600 to 609. The measurements

are collected in minutes 600 and 605 and used for their

corresponding next 5 minutes. The aggregated reactive power

injections in the proposed design is less than or equal to

the fixed droop in all of the minutes and buses. Also, in

minutes 603 to 605, the injection powers of most buses change

significantly from the measurement in minute 600, more than

140% in most of the buses. This would activate the safety

feature described in section III. As a result, in these minutes,

the inverters are using the standard droop, and consequently,

the proposed and fixed droop obtain the same results.

C. Real Data: Over the whole day

In this subsection, we look at the three schemes over a

whole day. The simulation results are summarized in Fig. 10,

and detailed in Table I. We can see that the proposed method

successfully keeps the voltages within the accepted range over

the whole day, while managing to use less reactive power than

the fixed droop, and it achieves near-optimal real power loss.

It decreases the required reactive power by 61%, and the real

power loss by 3.3% compared to the fixed droop approach.

D. Further Improvement on the Proposed Design

Our proposed method is based on linear interpolation be-

tween the three operating points (the measurement, the worst

case, and the best case). Therefore, as the uncertainty interval

(ΔP inv and ΔP load) expands, the performance of our method

deteriorates, which is confirmed by our simulations. To tackle

this problem, we propose a further improvement in the design

by partitioning the uncertainty interval into multiple smaller

sections, and then repeat the same process as discussed in
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Fig. 10. Aggregate reactive power support and real power loss of the three
schemes over the whole day.

TABLE I
AGGREGATED REACTIVE POWER SUPPORT AND REAL POWER LOSS USING

DIFFERENT SCHEMES.

Approach
Aggregated reactive

power (kVARh)
real power
loss (kWh)

No. of voltage
violation

Fixed droop 20.374 5.795 0
Proposed 7.924 5.603 0
Optimal 1.217 5.537 0

No Control 0 5.519 11

TABLE II
AGGREGATED REACTIVE POWER SUPPORT AND REAL POWER LOSS USING

THE IMPROVED METHOD.

Approach
Aggregated reactive

power (kVARh)
real power
loss (kWh)

No. of voltage
violation

Proposed γ = 2 7.924 5.603 0
Proposed γ = 4 7.548 5.591 0
Proposed γ = 6 7.126 5.579 0
Proposed γ = 8 7.074 5.575 0

section III. To illustrate, consider an uncertain parameter

x ∈ [x0−Δx, x0+Δx], where x0 denotes the value of x at the

measurement time. The proposed partitioning is as follows:

γ = 2 : [x0−Δx , x0 , x0+Δx] (9)

γ = 4 : [x0−Δx , x0−Δx

2
, x0 , x0+

Δx

2
, x0+Δx]

...

where γ is an arbitrary even number which denotes the number

of segments to cut the uncertainty interval. Notice that γ = 2
is the same as having three operating points, the measurement,

the worst case, and the best case. As the γ increases, we have

access to more scenarios. The idea is to solve OPF (3) for each

of the operating points to obtain additional Volt/Var curves

and perform linear interpolation between them all. Table II

summarizes the results using the improved method over the

whole day. It can be seen that the performance of our approach

improves as the number of partitions increases.

V. CONCLUSION

In this paper, a two-stage real-time Volt/Var control ap-

proach is proposed to maximize the opportunity for an inverter

to provide reactive power support. In the first stage, we

periodically gather network-wide information, and systemat-

ically update local control parameters to ensure near-optimal

operation of smart inverters. In the second stage, a real-time

feedback control is designed that decides about the reactive

power contribution of its inverter based on the local voltage

and real power injection. Our simulations show that our design

obtains near-optimal results, that can keep the voltages in more

scenarios than the IEEE standard 1547 within the predefined

range, while decreasing the required reactive power by 60%,

and the real power loss by 3.3%. We also provide further

improvement on our design, by a novel partitioning in the

uncertainty interval, that can further decrease the reactive

power and real power loss, at the cost of more computation at

each interval. A further extension in our work is to consider

real power curtailment, as in some scenarios, there would be

no solution to the overvoltage problem, using only reactive

power of inverters.

REFERENCES

[1] S. Hashemi and J. Østergaard. Efficient control of energy storage for
increasing the PV hosting capacity of LV grids. IEEE Transactions on
Smart Grid, 9(3):2295–2303, 2018.

[2] M. Zeraati, M. E. Hamedani Golshan, and J. M. Guerrero. Distributed
control of battery energy storage systems for voltage regulation in
distribution networks with high PV penetration. IEEE Transactions on
Smart Grid, 9(4):3582–3593, 2018.

[3] S. M. N. R. Abadi, M. Mahmoodi, P. Scott, L. Blackhall, and
S. Thiebaux. Active management of LV residential networks under high
PV penetration. In 2019 IEEE Milan PowerTech, pages 1–6, 2019.

[4] B. K. Perera, P. Ciufo, and S. Perera. Point of common coupling (PCC)
voltage control of a grid-connected solar photovoltaic (PV) system.
In IECON 2013 - 39th Annual Conference of the IEEE Industrial
Electronics Society, pages 7475–7480, 2013.

[5] F. Olivier, P. Aristidou, D. Ernst, and T. Van Cutsem. Active man-
agement of low-voltage networks for mitigating overvoltages due to
photovoltaic units. IEEE Transactions on Smart Grid, 7(2):926–936,
2016.

[6] L. Wang, R. Yan, and T. K. Saha. Voltage management for large scale
PV integration into weak distribution systems. IEEE Transactions on
Smart Grid, 9(5):4128–4139, 2018.

[7] Y. Chistyakov, E. Kholodova, K. Netreba, A. Szabo, and M. Metzger.
Combined central and local control of reactive power in electrical
grids with distributed generation. In 2012 IEEE International Energy
Conference and Exhibition (ENERGYCON), pages 325–330, 2012.

[8] H. S. Bidgoli and T. Van Cutsem. Combined local and centralized
voltage control in active distribution networks. IEEE Transactions on
Power Systems, 33(2):1374–1384, 2018.

[9] R. A. Jabr. Linear decision rules for control of reactive power
by distributed photovoltaic generators. IEEE Transactions on Power
Systems, 33(2):2165–2174, 2018.

[10] R. A. Jabr. Robust volt/var control with photovoltaics. IEEE Transac-
tions on Power Systems, 34(3):2401–2408, 2019.

[11] M. Farivar and S. H. Low. Branch flow model: Relaxations and convexi-
fication—part i. IEEE Transactions on Power Systems, 28(3):2554–2564,
2013.

[12] M. Nick, R. Cherkaoui, J. L. Boudec, and M. Paolone. An exact convex
formulation of the optimal power flow in radial distribution networks
including transverse components. IEEE Transactions on Automatic
Control, 63(3):682–697, 2018.

[13] M. S. S. Abad, J. Ma, D. Zhang, A. S. Ahmadyar, and H. Marzooghi.
Probabilistic assessment of hosting capacity in radial distribution sys-
tems. IEEE Transactions on Sustainable Energy, 9(4):1935–1947, 2018.

[14] J. J. Grainger and W. D. Stevenson. Power system analysis. McGraw-
Hill, 1994.

[15] P. Kundur, Prabha, N. J. Balu, and M. J. Lauby. Power system stability
and control, volume 7. McGraw-hill New York, 1994.

[16] E. McKenna and M. Thomson. High-resolution stochastic integrated
thermal–electrical domestic demand model. Applied Energy, 165:445–
461, 2016.

611

Authorized licensed use limited to: Australian National University. Downloaded on May 03,2021 at 06:20:41 UTC from IEEE Xplore.  Restrictions apply. 


