Search with Constraints

COMP8620, S2 2008
Advanced Topics in A.I.
Jason Li
The Australian National University
Overview

- What you will get from this lecture:
 - What is Constraint Programming
 - What it’s good for
 - What is [Arc | Generalized-Arc | Path | Bound] Consistency, and how they’re useful
 - What drives efficient searches with constraints
 - How to play Sudoku!
Introduction

- **Constraints**
 - Specifies what you can/can’t do!
 - Find a solution that conform to all the rules

- **Search with constraints**
 - Yes, you still have to search!
 - Once a variable assignment is made, your other choices are limited.
 - You can limit your search space.
Search with Constraints

- Most typical example:

```
SEND
+ MORE
-----
MONEY
```
Holy Grail

- Dream of A.I. and declarative programming
 - Freuder, Walsh
 - User describes a problem
 - Computer comes up with a solution
Constraints and Culture

- Prevalent in many East-Asian cultures
 - Think via constraints
 - You can’t do this, can’t do that...
 - Heavy punishments for social constraint violation
- Compare versions of hell:
Real-world applications

- They are everywhere!
 - Delivery before 10am
 - Within 4km radius of Civic
 - Achieve a grade of at least 80

- Car-assembly lines
 - No more than 2 cars in every 5 are red
Constraint Satisfaction

- In Constraint Satisfaction Problem (CSP), we have:
 - A set of variables (V)
 - Each variable has a set of values (D)
 - Usually finite
 - \{true,false\}, \{red,green,blue\}, \{0,1,2,3,…\}
 - Set of constraints (C)
 - Describe the relationship between the variables
- Goal:
 - Find assignment of each variable to a value such that all constraints are satisfied
CSP Examples

- Sudoku
 - Variables
 - Each entry in the table $X_{row,col}$
 - Domain
 - Each variable between (1..9)
 - Constraints
 - Row: AllDifferent($X_{x,1}, \ldots, X_{x,ncol}$)
 - Column: AllDifferent($X_{1,y}, \ldots, X_{nrow,y}$)
 - Square: AllDifferent($X_{1,1}, \ldots, X_{3,3}$), etc.
CSP Examples

- Olympic games scheduling
 - Variables for each event
 - 50mFreeStyleMen, 100mFreeStyleWomen, 10mDivingMen, etc…
 - Domain is the time for the event
 - Monday9am, Tuesday3pm, etc…
 - Constraints:
 - 50mFreeStyleMen != Monday9am
 - Venue: AllDifferent([50mFreeStyleMen, 100mFreeStyleWomen, …])
 - Capacity: AtMost(3, [50mFreeStyleMen, 100mFreeStyleWomen, …], Tuesday12pm)
Constraints

- A constraint consists of
 - A list of \(n \) variables
 - A relation with \(n \) columns
- Example: \(a \times b = 6 \)
 - \((a, b)\)
 - Relations: see table:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
Binary/Non-Binary Constraints

- **Binary**
 - Scope over 2 variables
 - Not Equal: $a \neq b$
 - Ordering: $a < b$
 - Topological: a is disconnected to b

- **Non-Binary**
 - More than 2 variables
 - AllDifferent(x_1, x_2, x_3, \ldots)
 - $x^2 + 2y^2 - z^2 = 0$
Non-Binary Constraints

- Most non-binary constraints can be reduced to binary constraints
 - AllDifferent(a, b, c) ⇔ a ≠ b, b ≠ c, a ≠ c
- Advantages of non-binary constraints:
 - Polynomial algorithms – efficient solving
 - More on this later on!
Arc-Consistency

- A binary constraint \(\text{rel}(X1,X2) \) is arc-consistent (AC) iff
 - For every value \(v \) for \(X1 \), there is a consistent value \(v' \) for \(X2 \), and vice versa
 - In this case, \(v' \) is called the support of \(v \)

- Example:
 - Both \(x \), \(y \) are prime numbers, \(x \) is less than 10
 - For \(\text{GreaterThan}(x, y) \):
 - 2,3,5 are all supports of \(x = 7 \)
 - But 7 is NOT!
Enforcing Arc-Consistency

- We enforce arc-consistency by deleting domain values that cannot have support
 - As they cannot participate in the solution
- It may remove support for other values
- Complexity: $O(nD^2)$
 - n: number of constraints
 - D: domain size
Enforcing Arc-Consistency

- Example:
 - X: \{ 1,2,3,4,5,6,7,8,9,10 \}
 - Y: \{ 3,4,5,6,7 \}
 - Z: \{ 6 \}
 - Constraints:
 - X < Y
 - Y >= Z
Enforcing Arc-Consistency

- Example: (Enforcing Y >= Z)
 - X: \{ 1,2,3,4,5,6,7,8,9,10 \}
 - Y: \{ 3,4,5,6,7 \}
 - Z: \{ 6 \}
 - Constraints:
 - X < Y
 - Y >= Z
Enforcing Arc-Consistency

- Example: (Enforcing X < Y)
 - X: \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}
 - Y: \{ 3, 4, 5, 6, 7 \}
 - Z: \{ 6 \}
 - Constraints:
 - X < Y
 - Y >= Z
Generalized Arc-Consistency

- For CSP with non-binary constraints, it is Generalised Arc-Consistent (GAC) iff:
 - For every variable \(x \) in \(V \)
 - For every constraint \(C(x, y_1, \ldots, y_n) \)
 - For every value \(d \) in \(D(x) \)
 - There are values \(d_1, \ldots, d_n \) in \(D(y_1), \ldots, D(y_n) \)
 - Such that \(C(d, d_1, \ldots, d_n) \) is true.

- \(\text{GAC} = \text{AC} \) for binary constraints
GAC in Action… Sudoku!

- Look at Col 1:
- Enforce: AllDifferent(col_1)
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{8\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{4\}
GAC in Action… Sudoku!

- Look at Col 1:
- Enforce: AllDifferent(row_1)
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{8\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{4\}
GAC in Action... Sudoku!

- Look at Col 1:
- Enforce: AllDifferent(row_2)
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{8\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{4\}
GAC in Action… Sudoku!

- Look at Col 1:
- Enforce: AllDifferent(sq_1)
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{8\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{4\}
GAC in Action… Sudoku!

- Look at Col 1:
 - Enforce: AllDifferent(row_4)
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{8\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{4\}
Look at Col 1:
- Enforce: AllDifferent(row_5)
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{8\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{4\}
GAC in Action… Sudoku!

- Look at Col 1:
- Enforce: AllDifferent(row_6)
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{8\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{4\}
GAC in Action… Sudoku!

- Look at Col 1:
- Enforce: AllDifferent(sq_4)
 - $\{1,2,3,5,6,7,9\}$
 - $\{1,2,3,5,6,7,9\}$
 - $\{8\}$
 - $\{1,2,3,5,6,7,9\}$
 - $\{1,2,3,5,6,7,9\}$
 - $\{1,2,3,5,6,7,9\}$
 - $\{1,2,3,5,6,7,9\}$
 - $\{1,2,3,5,6,7,9\}$
 - $\{4\}$
GAC in Action… Sudoku!

- Look at Col 1:
- Enforce: AllDifferent(row_7)
 - {1,2,3,5,6,7,9}
 - {1,2,3,5,6,7,9}
 - {8}
 - {1,2,3,5,6,7,9}
 - {1,2,3,5,6,7,9}
 - {1,2,3,5,6,7,9}
 - {1,2,3,5,6,7,9}
 - {1,2,3,5,6,7,9}
 - {1,2,3,5,6,7,9}
 - {4}
GAC in Action… Sudoku!

- Look at Col 1:
- Enforce: AllDifferent(row_8)
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{8\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{1,2,3,5,6,7,9\}
 - \{4\}
Path-Consistency

- Problem: sometimes arc-consistency is not sufficient
 - Usually involves transitivity of relations
- Example (Arc-consistent problem):
 - A \neq B, B \neq C, C \neq A
 - A: \{1,2\}, B: \{2,3\}, C: \{2,3\}
 - For A=2, there’s no solution, but domains are arc consistent
 - Hence, we need path-consistency
 - Also known as (2,1)-consistency
Path-Consistency

- A binary CSP is Path-Consistent iff:
 - For every pair of variable x, y in V
 - with constraint C(x,y)
 - And every other variable z in V
 - With constraint C(x,z), C(y,z)
 - For every pair d1 in D(x), d2 in D(y)
 - Such that C(d1,d2) is true
 - There is a value d in D(z)
 - Such that C(d1,d) C(d2, d) is true.
Path-Consistency in Action!

- Consider the problem again:
 - A \neq B, B \neq C, C \neq A
 - A: \{1,2\}, B: \{2,3\}, C: \{2,3\}
- Arc-Consistency:
 - A=2 gets support: B=3, C=3
 - However, this violates path-consistency!
Path-Consistency

- Path-consistency enforces every constraint work with every other constraint
 - May work with binary constraint network with infinite domains (spatial-temporal reasoning)
- It may still be insufficient, where sometimes 3 constraints must be checked together
 - i,j-consistency
Path Consistency in Action!

- A different perspective:
Path-Consistency in Action!

- A different perspective:
Infinite Domains

- Path-consistency can also work with constraint networks with infinite domains (Montanari 78, Van Beek, 92)
 - Reason about relations between the entities
 - Complexity is $O(n^3)$, if path-consistency implies consistency
 - Any path-consistent CSP has a realization
Path-Consistency

- A confusion of relationships:

Diagram showing relationships between mother-in-law, father-in-law, mother, wife, and daughter.
Path-Consistency

- Applying path-consistency:
Path-Consistency

- Applying path-consistency one more time:
Bound-Consistency

- Sometimes, there are a lot of possibilities in a large number of ordered values
 - It’s inefficient to check all cases
 - Only the bounds are interesting
- When to use bound consistency?
 - Domain is ordered
 - Only necessary to enforce Arc-Consistency on the max/min elements
Bound-Consistency

- A CSP is Bound-Consistent if
 - For every x in V and constraint $C(x,y_1,\ldots,y_n)$
 - For both $d = \min(D(x))$ and $d = \max(D(x))$
 - There are values d_1,\ldots,d_n in $D(y_1),\ldots,D(y_n)$, such that $C(d,d_1,\ldots,d_n)$ is true.
Bound-Consistency in Action!

- **Linear Inequalities:**
 - Constraint: $2X + 3Y \leq 10$
 - $X: \{1,2,3,4,5,6,7,8,9,10\}$
 - $Y: \{1,2,3,4,5,6,7,8,9,10\}$

- **Bound-consistent constraints:**
 - $\text{UpperBound}(X) \leq \left\lfloor \frac{10 - 3\times \text{LowerBound}(Y)}{2} \right\rfloor$
 - $\text{UpperBound}(Y) \leq \left\lfloor \frac{10 - 2\times \text{LowerBound}(X)}{3} \right\rfloor$
Bound-Consistency in Action!

- Linear Inequalities:
 - Constraint: $2X + 3Y \leq 10$

- Enforcing
 - $\text{UpperBound}(X) \leq \lfloor (10 - 3*\text{LowerBound}(Y))/2 \rfloor$
 - $X: \{1,2,3,4,5,6,7,8,9,10\}$
 - $Y: \{1,2,3,4,5,6,7,8,9,10\}$
Bound-Consistency in Action!

- Linear Inequalities:
 - Constraint: \(2X + 3Y \leq 10\)
- Enforcing
 - \(\text{UpperBound}(Y) \leq \lfloor (10 - 2*\text{LowerBound}(X))/3 \rfloor\)
 - \(X: \{1,2,3,4,5,6,7,8,9,10\}\)
 - \(Y: \{1,2,3,4,5,6,7,8,9,10\}\)
- Note only 2 bounds needs checking
Maintaining local-consistency

- **Tree Search**
 - Assign variable to value
 - Enforce consistency
 - Remove future values / add constraints
 - If no possible values can be assigned, backtrack

- **Local search**
 - Generate a complete assignment
 - Make changes in violated constraints
What makes constraints fast

- How the problem is modelled:
- Heuristic-guided search
- Efficient propagation of constraints
 - When enforcing constraints, prune as much as possible, but not at too greater costs
Trade offs

- Too strong consistency:
 - Too much overhead at each node of the search tree
- Too weak consistency:
 - Not pruning enough of the search space
- Unfortunately, this can only be determined empirically
 - Carry out experiments, see which one does better
Trade offs

- Propagation vs. Search
 - In general, we don’t want to spend more time enforcing consistency than doing search
 - Problem dependent
In Summary

- Inference with constraints prunes potential search-space
- A CSP $<V,D,C>$ is consisted of
 - Variables
 - Domains
 - Constraints
In Summary

- Arc-Consistency removes impossible values for each binary constraint
- Generalized-Arc-Consistency removes impossible values for non-binary constraints
- Path-Consistency removes impossible values between constraints
- Bound-Consistency checks AC for upper and lower bounds in ordered domains
Search with Constraints

Part 2
Overview

- What are Global Constraints?
 - Why we use them
 - AllDifferent constraint
 - The Marriage Theorem and Hall Intervals
 - Puget’s Algorithm

- What is Symmetry?
 - How to break them
Global Constraints

- A constraint involving a arbitrary number of variables
 - AllDifferent
 - LexOrder
- Can be modelled with binary constraints
 - E.g. AllDifferent(X1,X2,X3)
 $\Leftrightarrow X_1 \neq X_2, X_2 \neq X_3, X_1 \neq X_3$
- In practice, they can be more efficiently solved without this decomposition
Golomb Ruler

- Marking ticks on a ruler
- Unique distance between any two ticks
- Applications
 - X-Ray Crystallography
 - Radio Astronomy
- Problem 006 in CSPLib
Golomb Ruler

- Naive solution: exponentially long ruler
 - Ticks at 0, 1, 3, 7, 15, 31, 63, 127, 255, etc…
- Key is to find a ruler of minimal length
 - Known for up to 23 ticks
 - Distributed internet project for larger lengths
Golomb Ruler as CSP

- Explicit Representation
- Variable: X_i for each tick
 - Auxillary Variables: $D_{ij} = |X_i - X_j|$
- Constraints:
 - $X_i < X_j$ for all $i < j$
 - AllDifferent(D_{11}, D_{12}, D_{13}, ...)
 - Minimize(X_n)
AllDifferent Constraint

- One of the oldest global constraints
 - ALICE: [Lauriere 78]
- They are everywhere!
 - Golomb Ruler: \texttt{AllDifferent}(D_{11}, D_{12}, D_{13}, \ldots)
 - Standard constraint
 - Incorporated by all constraint solvers
AllDifferent Constraint

- Can be modelled with binary constraints
 - AllDifferent(X1,X2,X3)
 \[\Leftrightarrow X1\neq X2, X2\neq X3, X1\neq X3\]

- However, this may be done more efficiently
 - X1: \{1,2\}, X2: \{1,2\}, X3: \{1,2,3\}
 - X3 can never be 1 or 2
 - How can we exploit this?

- Efficient algorithms:
 - [Puget AAAI’98] Bound Consistency Algorithm runs in \(O(n \log n)\)
Bound Consistency with AllDifferent

- Uses Hall’s Theorem
 - Also termed “Marriage Theorem”
 - Given k sets
 - There is an unique and distinct element in each set iff
 - For $0 < j \leq k$
 - Any union of j of the sets has at least j elements

- Example:
 - $X1: \{1,2\}, X2: \{1,2\}$ is okay
 - $X1: \{1,2\}, X2: \{1,2\}, X3: \{1,2\}$ will not work.
Marriage Theorem

- There are n men and women in a town…
 - Each man is happy to be married to any woman
 - Each woman has some preferred men to marry (subset of all men)
- Given j women…
 - The number of men they wish to marry must be j or more!
Following Hall’s (Marriage) Theorem

- Hall Interval
 - Interval of domain values that has just as many variables as domain values
 - E.g. $X1:\{1,2\}, \ X2:\{1,2\}$
 - Two variables in the interval $\{1,2\}$

- AllDifferent is Bound-Consistent iff:
 - Each interval in the domain do not cover more variables than its length (Hall Interval)
 - A variable with possible domain value outside a Hall Interval do not have value within it
Bound-Consistency in Action!

- Consider our old example:
 - X1: \{1,2\}, X2: \{1,2\}, X3: \{1,2,3\}
 - AllDifferent(X1,X2,X3)
- Obviously:
 - [1…2] is a Hall Interval covering X1, X2
 - X3 has a value outside a Hall Interval, therefore we prune it
- Result is Bound-Consistent:
 - X1:{1,2}, X2: \{1,2\}, X3: \{3\}
Puget’s Algorithm

- Naive implementation consider $O(n^2)$ intervals
- Puget order the intervals in $O(n \log n)$ time
 - Then go through them in order
- Best BC-Algorithm for AllDifferent
 - Still, in some problems GAC can do better
 - Problems closer to combinatorial problems
Further problem in Golomb Ruler

- Problem: there are trivial repetitions of the same solution in the search space.
 - Ruler 1: Ticks at: 0, 1, 4, 6
 - Ruler 2: Ticks at: 0, 2, 5, 6
- Is there any fundamental difference between the above two rulers?
Symmetry

- Symmetries occur frequently in Constraint Programming and Search
 - Any permutations of rows or columns of a table
 - Real-world scheduling problems
- It’s a very active area of CP research
Breaking Symmetry

- In Golomb Ruler, we ensure the ruler cannot be reversed.
- Easiest way to break symmetry is to add additional constraints:
 - $D_{12} < D_{n-1,n}$
- Another symmetry: preventing permutations in the ticks:
 - $X_1 < X_2 < \ldots X_n$
Another Example of Symmetry

- Consider two bins:
 - Example of row-symmetry (Walsh)

a)
\[
\begin{array}{c|c}
\hline
A & B \\
\hline
5 & 6 \\
3 & 4 \\
1 & 2 \\
\hline
\end{array}
\]

\[
A \quad \begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
\end{array}
\]

b)
\[
\begin{array}{c|c}
\hline
A & B \\
\hline
6 & 5 \\
4 & 3 \\
2 & 1 \\
\hline
\end{array}
\]

\[
A \quad \begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]

Another Example of Symmetry

- Such symmetry can be broken by lexicographical constraints
 - $\text{Row}(A) \leq \text{LEX} \text{ Row}(B)$

<table>
<thead>
<tr>
<th></th>
<th>a)</th>
<th>b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Breaking Symmetry

- Symmetries hide in all kind of problems
- They are expensive!
 - Therefore breaking them is essential in making CP/Search efficient
- General methods may add exponential number of constraints! [Crawford, Ginsberg and Luks]
- Other way of breaking symmetry
 - Ignore them in search strategy
Breaking Symmetry

- Two major strategies in modifying search strategy:
 - During Search:
 - After exploring a branch, implicitly add constraints preventing exploring other symmetric branches
 - Dominance Detection:
 - Before exploring a branch, check if it is dominated by a previously visited branch
Summary

- Global Constraints are efficient with clever algorithms
 - AllDifferent and Marriage Theorem
- Symmetries can surface in many problems
 - They can be broken by adding constraints
 - Most times lexicographical constraints
 - They can also be broken by modifying search strategies
Get your hands dirty!

- Most constraint solvers have two layers
 - High level: non-expert user input
 - Low level: for computer/expert user
- They come with easy examples!
- Try some yourself!
 - MiniZinc/FlatZinc:
 - http://www.g12.csse.unimelb.edu.au/minizinc/
 - Tailor/Minion:
 - http://www.dcs.st-and.ac.uk/~andrea/tailor/index.html
 - GeCode:
 - http://www.gecode.org/