COMP8620
Lecture 5-6
Neighbourhood Methods, and Local Search
(with special emphasis on TSP)
Assignment

http://users.rsise.anu.edu.au/~pjk/teaching

• “Project 1”
Neighbourhood

• For each solution $S \in \mathcal{S}$, $\mathcal{M}(S) \subseteq \mathcal{S}$ is a neighbourhood

• In some sense each $T \in \mathcal{M}(S)$ is in some sense “close” to S

• Defined in terms of some operation
• Very like the “action” in search
Neighbourhood

Exchange neighbourhood:
 Exchange k things in a sequence or partition

Examples:
 • Knapsack problem: exchange k_1 things inside the bag with k_2 not in.
 (for $k_i, k_2 = \{0, 1, 2, 3\}$)
 • Matching problem: exchange one marriage for another
2-opt Exchange
2-opt Exchange
2-opt Exchange
2-opt Exchange
2-opt Exchange
2-opt Exchange
3-opt exchange

- Select three arcs
- Replace with three others
- 2 orientations possible
3-opt exchange
Neighbourhood

Strongly connected:
• Any solution can be reached from any other
 (e.g. 2-opt)

Weakly optimally connected
• The optimum can be reached from any starting solution
Neighbourhood

• Hard constraints create solution impenetrable mountain ranges
• Soft constraints allow passes through the mountains

• E.g. Map Colouring (k-colouring)
 – Colour a map (graph) so that no two adjacent countries (nodes) are the same colour
 – Use at most k colours
 – Minimize number of colours
Map Colouring

Starting sol

Define neighbourhood as:
 Change the colour of at most one vertex

Two optimal solutions

Make k-colour constraint soft…
Iterative Improvement

1. Find initial (incumbent) solution S

2. Find $T \in \mathcal{M}(S)$ which minimises objective

3. If $z(T) \geq z(S)$
 - Stop
 - Else
 - $S = T$
 - Goto 2
Iterative Improvement

• Best First (a.k.a Greedy Hill-climbing, Discrete Gradient Ascent)
 – Requires entire neighbourhood to be evaluated
 – Often uses randomness to split ties

• First Found
 – Randomise neighbourhood exploration
 – Implement first improving change
Local Minimum

- Iterative improvement will stop at a local minimum
- Local minimum is not necessarily a global minimum

How do you escape a local minimum?
Restart

- Find initial solution using (random) procedure
- Perform Iterative Improvement
- Repeat, saving best

- Remarkably effective
- Used in conjunction with many other meta-heuristics
• Results from SAT
Variable Depth Search

- Make a series of moves
- Not all moves are cost-decreasing
- Ensure that a move does not reverse previous move

- Very successful VDS: Lin-Kernighan algorithm for TSP (1973) (Originally proposed for Graph Partitioning Problem (1970))
Lin-Kernighan (1973) – δ-path

$u \quad v$

$u \quad v$
Lin-Kernighan (1973)

- Essentially a series of 2-opt style moves
- Find best δ-path
- Partially implement the path
- Repeat until no more paths can be constructed
- If arc has been added (deleted) it cannot be deleted (added)
- Implement best if cost is less than original
Dynasearch

- Requires all changes to be independent
- Requires objective change to be cumulative

- e.g. A set of 2-opt changes were no two swaps touched the same section of tour

- Finds best combination of exchanges
 - Exponential in worst case
Variable Neighbourhood Search

- Large Neighbourhoods are expensive
- Small neighbourhoods are less effective

Only search larger neighbourhood when smaller is exhausted
Variable Neighbourhood Search

- m Neighbourhoods N_i
- $|N_1| < |N_2| < |N_3| < \ldots < |N_m|$

1. Find initial sol S; best $= z(S)$
2. $k = 1$
3. Search $N_k(S)$ to find best sol T
4. If $z(T) < z(S)$
 - $S = T$
 - $k = 1$
else
 - $k = k+1$
Large Neighbourhood Search

• Partial restart heuristic

1. Create initial solution
2. Remove a part of the solution
3. Complete the solution as per step 1
4. Repeat, saving best
LNS – Construct
LNS – Destroy
LNS – Destroy
LNS – Destroy
LNS – Destroy
LNS – Construct
LNS

- The magic is choosing which part of the solution to destroy
- Different problems (and different instances) need different heuristic
Speeding Up 2/3-opt

• For each node, store k nearest neighbours
• Only link nodes if they appear on list

• $k = 20$ does not hurt performance much
• $k = 40$ 0.2% better
• $k = 80$ was worse

• FD-trees to help initialise
Advanced Stochastic Local Search

- Simulated Annealing
- Tabu Search
- Genetic algorithms
- Ant Colony optimization
Simulated Annealing

• Kirkpatrick, Gelatt & Vecchi [1983]

• Always accept improvement in obj
• Sometimes accept increase in obj

\[
P(\text{accept increase of } \Delta) = e^{\Delta/T}
\]

• \(T\) is temperature of system
• Update \(T\) according to “cooling schedule”
• \((T = 0) \equiv\) Greedy Iterative Improvement
Simulated Annealing

• Nice theoretical result:
 As number of iters $\to \infty$, probability of finding the optimal solution $\to 1$

• Experimental confirmation: On many problem, long runs yield good results

• Weak optimal connection required
Simulated Annealing

1. Generate initial S

2. Generate random $T \in \mathcal{M}(S)$

3. $\Delta = z(T) - z(S)$

4. if $\Delta < 0$

 $S = T$; goto 2

5. if rand() $< e^{\Delta/T}$

 $S = T$; goto 2
Simulated Annealing

Initial T
- Set equal to max [acceptable] Δ

Updating T
- Geometric update: $T_{k+1} = \alpha \, T_k$
- α usually in [0.9, 0.999]

Don’t want too many changes at one temperature (too hot):
If $\text{numChangesThisT} > \text{maxChangesThisT}$
update $T()$
Simulated Annealing

Updating T
- Many other update schemes
- Sophisticated ones look at mean, std-dev of Δ

Re-boil (== Restart)
- Re-initialise T

0-cost changes
- Handle randomly

Adaptive parameters
- If you keep falling into the same local minimum, $\text{maxChangesThisT} \times 2$, or $\text{initialT} \times 2$
Tabu Search

- Glover [1986]
- Some similarities with VDS
- Allow cost-increasing moves
- Selects best move in neighbourhood
- Ensure that solutions don’t cycle by making return to previous solution “tabu”
- Effectively a modified neighbourhood
- Maintains more memory than just best sol
Tabu Search

Theoretical result (also applies to SA):

- As $k \to \infty$ $P(\text{find yourself at an optimal sol})$ gets larger relative to other solutions
Tabu Search

Basic Tabu Search:

1. Generate initial solution S, $S^* = S$

2. Find best $T \in \mathcal{N}(S)$

3. If $z(T) \geq z(S)$
 - Add T to tabu list

4. $S = T$

5. if $z(S) < z(S^*)$ then $S^* = S$

6. if stopping condition not met, goto 2
Tabu Search

Tabu List:
- List of solutions cannot be revisited

Tabu Tenure
- The length of time a solution remains tabu
- $= \text{length of tabu list}$

- Tabu tenure t ensures no cycle of length t
Tabu Search

Difficult/expensive to store whole solution
• Instead, store the “move” (delta between S and T)
• Make inverse move tabu
 – e.g. 2-opt adds 2 new arcs to solution
 – Make deletion of both(?) tabu

But
• Cycle of length t now possible
• Some non-repeated states tabu
Tabu Search

Tabu List:
• List of moves that cannot be undone

Tabu Tenure
• The length of time a move remains tabu

Stopping criteria
• No improvement for <param> iterations
• Others…
Tabu Search

• Diversification
 – Make sure whole solution space is sampled
 – Don’t get trapped in small area

• Intensification
 – Search attractive areas well

• Aspiration Criteria
 – Ignore Tabu restrictions if very attractive (and can’t cycle)
 – e.g.: $z(T) < \text{best}$
Tabu Search

• Diversification
 – Penalise solutions near observed local minima
 – Penalise solution features that appear often
 – Penalties can “fill the hole” near a local min

• Intensification
 – Reward solutions near observed local minima
 – Reward solution features that appear often

• Use $z'(S) = z(S) + \text{penalties}$
Tabu Search – TSP

• **TSP Diversification**
 – Penalise (pred,succ) pairs seen in local minima

• **TSP Intensification**
 – Reward (pred,succ) pairs seen in local minima

\[z'(S) = z(S) + \sum_{ij} w_{ij} \text{count}(i,j) \]
 – \(\text{count}(i,j) \): how many times have we seen \((i,j)\)
 – \(w_{ij} \): weight depending on diversify/intensify cycle
Adaptive Tabu Search

• If t (tenure) to small, we will return to the same local min

• Adaptively modify t
 – If we see the same local min, increase t
 – When we see evidence that local min escaped (e.g. improved sol), lower t

• … my current favourite
Tabu Search

1. Generate initial solution S; $S^* = S$
2. Generate $V^* \subseteq \mathcal{N}(S)$
 - Not tabu, or meets aspiration criteria
3. Find $T \in V^*$ which minimises z'
4. $S = T$
5. if $z(S) < z(S^*)$ then $S^* = S$
6. Update tabu list, aspiration criteria, t
7. if stopping condition not met, goto 2
Path Relinking

Basic idea:
- Given 2 good solutions, perhaps a better solution lies somewhere in-between
- Try to combine “good features” from two solutions
- Gradually convert one solution to the other
Path Re-linking

TSP:

1 2 3 4 5 6
1 2 3 5 6 4
1 3 2 5 6 4
1 3 5 2 6 4
1 3 5 6 4 2
Genetic Algorithms

• Simulated Annealing and Tabu Search have a single “incumbent” solution (plus best-found)

• Genetic Algorithms are “population-based” heuristics – solution population maintained
Genetic Algorithms

• Problems are solved by an evolutionary process resulting in a best (fittest) solution (survivor).
• Evolutionary Computing
 – 1960s by I. Rechenberg
• Genetic Algorithms
 – Invented by John Holland 1975
 – Made popular by John Koza 1992

• Nature solves some pretty tough questions – let’s use the same method

…begs the question… if homo sapien is the answer, what was the question??
Genetic Algorithms

Vocabulary

- **Gene** – An encoding of a single part of the solution space (often binary)
- **Genotype** – Coding of a solution
- **Phenotype** – The corresponding solution
- **Chromosome** – A string of “Genes” that represents an individual – i.e. a solution.
- **Population** - The number of “Chromosomes” available to test
Vocabulary

Genotype: coded solutions
Phenotype: actual solutions

Measure fitness

Genotypes
10011110
1000001
0011110
0010101
1111111

Search space

Phenotypes
78
64
30
21
127

Solution space

Note: in some evolutionary algorithms there is no clear distinction between genotype and phenotype
Vocabulary

Individual (Chromosome)

![Bitstring Diagram]

Biology

<table>
<thead>
<tr>
<th>Biology</th>
<th>Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome or individual</td>
<td>Bitstring that represents a candidate solution</td>
</tr>
<tr>
<td>Gene</td>
<td>A single bit (or a block of bits, in some cases)</td>
</tr>
<tr>
<td>Crossover</td>
<td>Random exchange of genetic material between chromosomes</td>
</tr>
<tr>
<td>Mutation</td>
<td>Random change of a certain bit in a chromosome</td>
</tr>
<tr>
<td>Genotype</td>
<td>Bit configuration of a chromosome</td>
</tr>
<tr>
<td>Phenotype</td>
<td>Solution decoded from a chromosome</td>
</tr>
</tbody>
</table>
Crossover

Parent chromosome 1

1 0 0 0 0 0 1 1

Parent chromosome 2

1 1 0 1 1 1 1 1 0

Offspring chromosome 1

1 0 0 0 1 1 1 1 0

Offspring chromosome 2

1 1 0 1 0 0 1 1 1

Crossover point

Single-point crossover
Mutation

• Alter each gene independently with a prob p_m (mutation rate)
• $1/\text{pop_size} < p_m < 1/\text{chromosome_length}$

![Diagram of Single-point Mutation]

Original chromosome: 1 0 0 0 1 1 1 0

Single-point mutation

Mutated chromosome: 1 0 0 0 0 1 1 0
Reproduction

- Chromosomes are selected to crossover and produce offspring
- Obey the law of Darwin: Best survive and create offspring.

- Roulette-wheel selection
- Tournament Selection
- Rank selection
- Steady state selection
Roulette Wheel Selection

Main idea: better individuals get higher chance
- Chances proportional to fitness
- Assign to each individual a part of the roulette wheel
- Spin the wheel n times to select n individuals

<table>
<thead>
<tr>
<th></th>
<th>Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chr. 1</td>
<td>3</td>
</tr>
<tr>
<td>Chr. 2</td>
<td>1</td>
</tr>
<tr>
<td>Chr. 3</td>
<td>2</td>
</tr>
</tbody>
</table>
Tournament Selection

- Tournament competition among N individuals ($N=2$) are held at random.
- The highest fitness value is the winner.
- Tournament is repeated until the mating pool for generating new offspring is filled.
Rank Selection

• Roulette-wheel has problem when the fitness value differ greatly

• In rank selection the
 – worst value has fitness 1,
 – the next 2,......,
 – best has fitness N.
Rank Selection vs Roulette

Roulette Wheel

Rank

P(accept)

75%

2% 5%

8%

10%

P(accept)

33% 20% 27% 13% 7%
Crossover

• Single –site crossover
• Multi-point crossover
• Uniform crossover
Single-site

- Choose a random point on the two parents
- Split parents at this crossover point
- Create children by exchanging tails
- P_c typically in range (0.6, 0.9)
n-point crossover

- Choose n random crossover points
- Split along those points
- Glue parts, alternating between parents
- Generalisation of 1 point (still some positional bias)
Uniform crossover

- Assign 'heads' to one parent, 'tails' to the other
- Flip a coin for each gene of the first child
- Make an inverse copy for the second child
- Inheritance is independent of position
Genetic Algorithm

Fitness P(select)

2 4 7 4 8 5 5 2 24 31%
3 2 7 5 2 4 1 1 23 29%
2 4 4 1 5 1 2 4 20 26%
3 2 5 4 3 2 1 3 11 14%

Cross-over

3 2 7 4 8 5 5 2
2 4 7 5 2 4 1 1
3 2 7 5 2 1 2 4
2 4 4 1 5 4 1 1

Mutate

3 2 7 4 8 1 6 2
2 4 7 5 2 4 1 1
3 2 2 5 2 1 2 4
2 4 4 1 5 4 1 7
Memetic Algorithm

• Memetic Algorithm = Genetic Algorithm + Local Search

• E.g.:
 – LS after mutation
 – LS after crossover
Demo

Ant Colony Optimization

- Another “Biological Analogue”

- Observation: Ants are very simple creatures, but can achieve complex behaviours

- Use pheromones to communicate
Ant Colony Optimization

- Ant leaves a pheromone trail
- Trails influence subsequent ants
- Trails evaporate over time

E.g. in TSP
- Shorter Tours leave more pheromone
- Evaporation helps avoid premature intensification
ACO for TSP

- $p_k(i,j)$ is prob. moving from i to j at iter k

\[
p_k(i,j) = \begin{cases}
\frac{[\tau_{i,j}^k]^\alpha [c_{i,j}]^\beta}{\sum_{h \in N_i} [\tau_{i,h}^k]^\alpha [c_{i,h}]^\beta} & \text{if } (i, j) \in N_i \\
0 & \text{otherwise}
\end{cases}
\]

- α, β parameters
ACO for TSP

• Pheromone trail evaporates at rate ρ

$$\tau^k_{ij} = \rho \tau^{k-1}_{ij} (t) + \Delta \tau_{ij}$$

• Pheromone added proportional to tour quality

$$\Delta \tau^k_{i,j} = \begin{cases} \frac{Q}{L_k} & \text{if } (i, j) \in \text{tour} \\ 0 & \text{otherwise} \end{cases}$$
References
