COMP8620
Lecture 5-6

Neighbourhood Methods, and
Local Search

(with special emphasis on TSP)

Assignment

http://users.rsise.anu.edu.au/~pjk/teaching

* “Project 17

Neighbourhood

For each solution S€ %, _4S) C .&
IS a neighbourhood

In some sense each TE _#(S) is in some
sense “close” to S

Defined in terms of some operation
Very like the “action” in search

Neighbourhood

Exchange neighbourhood:
Exchange k things in a sequence or
partition

Examples:

» Knapsack problem: exchange k, things
inside the bag with k, not in.
(for k; k, =10, 1, 2, 3})

» Matching problem: exchange one
marriage for another

2-opt Exchange

2-opt Exchange

2-opt Exchange

2-opt Exchange

2-opt Exchange

2-opt Exchange

10

3-opt exchange

« Select three arcs
* Replace with three others
2 orientations possible

11

3-opt exchange

12

3-opt exchange

13

3-opt exchange

14

3-opt exchange

T
\

15

3-opt exchange

16

3-opt exchange

17

3-opt exchange

18

3-opt exchange

19

3-opt exchange

20

3-opt exchange

21

3-opt exchange

22

Neighbourhood

Strongly connected:

* Any solution can be reached from any
other

(e.g. 2-opt)

Weakly optimally connected

* The optimum can be reached from any
starting solution

23

Neighbourhood

» Hard constraints create solution
Impenetrable mountain ranges

» Soft constraints allow passes through the
mountains

» E.g. Map Colouring (k-colouring)

— Colour a map (graph) so that no two adjacent
countries (nodes) are the same colour

— Use at most k colours
— Minimize number of colours

24

Map Colouring

>
u”BB

Starting sol

Two optimal solutions

Define neighbourhood as:
Change the colour of at most one vertex

Make k-colour constraint soft...

25

lterative Improvement

. Find initial (incumbent) solution S

. Find T € _AS) which minimises objective
. fZ(T) =2 Z(S)

Stop
Else

S=T

Goto 2

26

lterative Improvement

» Best First (a.k.a Greedy Hill-climbing,
Discrete Gradient Ascent)

— Requires entire neighbourhood to be
evaluated

— Often uses randomness to split ties

 First Found
— Randomise neighbourhood exploration
— Implement first improving change

27

| ocal Minimum

* lterative improvement will stop at a local
minimum

* Local minimum is not necessarily a global
minimum

How do you escape a local minimum?

28

Restart

* Find initial solution using (random)
procedure

* Perform lterative Improvement
» Repeat, saving best

« Remarkably effective
» Used in conjunction with many
other meta-heuristics

29

 Results from SAT

30

Variable Depth Search

Make a series of moves
Not all moves are cost-decreasing

Ensure that a move does not reverse
previous move

Very successful VDS: Lin-Kernighan
algorithm for TSP (1973)

(Originally proposed for Graph Partitioning
Problem (1970))

31

Lin-Kernighan (1973) — o-path

u . v
w
gt T o
u . ------------------- Vv
w’ w Vv

32

Lin-Kernighan (1973)

Essentially a series of 2-opt style moves

Find best o-path
Partially implement the path

Repeat until no more paths can be
constructed

It arc has been added (deleted) it cannot
be deleted (added)

Implement best if cost is less than original

33

Dynasearch

Requires all changes to be independent

Requires objective change to be
cummulative

e.g. A set of 2-opt changes were no two
swaps touched the same section of tour

Finds best combination of exchanges
— Exponential in worst case

34

Variable Neighbourhood Search

» Large Neighbourhoods are expensive
« Small neighbourhoods are less effective

Only search larger neighbourhood when
smaller is exhausted

35

B wh =

Variable Neighbourhood Search

m Neighbourhoods N,
NI <INl < INg| < ... <IN,

Find initial sol S ; best = z (S5)
K=1;
Search N, (S) to find best sol T
If z(T) < z(S)

S=T

K=1
else

K =k+1

36

B~ Wb~

Large Neighbourhood Search

Partial restart heuristic

Create initial solution

Remove a part of the solution
Complete the solution as per step 1
Repeat, saving best

37

LNS — Construct

38

LNS — Construct

39

LNS — Construct

40

LNS — Construct

41

LNS — Construct

42

LNS — Construct

43

LNS — Construct

44

LNS — Construct

45

LNS — Construct

46

LNS — Construct

47

LNS — Construct

48

LNS — Destroy

49

LNS — Destroy

LNS — Destroy

09

LNS — Destroy

52

LNS — Construct

53

LNS — Construct

54

LNS

* The magic is choosing which part of the
solution to destroy

* Different problems (and different
iInstances) need different heuristic

55

Speeding Up 2/3-opt

For each node, store k nearest neighbours
Only link nodes if they appear on list

k = 20 does not hurt performance much
k =40 0.2% better
k = 80 was worse

FD-trees to help initialise

56

Advanced Stochastic Local Search

Simulated Annealing
Tabu Search

Genetic algorithms

Ant Colony optimization

57

Simulated Annealing
Kirkpatrick, Gelatt & Vecchi [1983]

Always accept improvement in obj
Sometimes accept increase in obj

P(accept increase of A) = e &7

T'Is temperature of system
Update T according to “cooling schedule”
(T = 0) == Greedy lterative Improvement

58

Simulated Annealing

* Nice theoretical result:

As number of iters = «, probability of
finding the optimal solution - 1

» Experimental confirmation: On many
problem, long runs yield good results

» Weak optimal connection required

59

1.

B~ W N

Simulated Annealing
Generate initial S

Generate random T € _AS)

A=z (T)-2z(S)
if A <O
S=T;goto 2

if rand() < e &7
S=T;goto 2

60

Simulated Annealing

Initial T

« Set equal to max [acceptable] A
Updating T

e Geometric update: T,,; =o T,

* o usually in [0.9, 0.999]

Don’t want too many changes at one temperature
(too hot):

It (numChangesThisT > maxChangesThisT)
updateT()

61

Simulated Annealing

Updating T
* Many other update schemes
« Sophisticated ones look at mean, std-dev of A

Re-boil (== Restart)
 Re-initialise T

0-cost changes
« Handle randomly

Adaptive parameters

 If you keep falling into the same local minimum,
maxChangesThisT *= 2, or
initial T *= 2

62

Tabu Search

Glover [1986]

Some similarities with VDS

Allow cost-increasing moves
Selects best move in neighbourhood

Ensure that solutions don't cycle by
making return to previous solution “tabu”

Effectively a modified neighbourhood
Maintains more memory than just best sol

63

Tabu Search

Theoretical result (also applies to SA):

* As k- « P(find yourself at an optimal sol)
gets larger relative to other solutions

64

Tabu Search

Basic Tabu Search:

1. Generate initial solution S, S* =S

2. Find best TE€ _/S)
3. If z(T) = z(S)
Add T to tabu list
4 S=T
5 1If 2(S) < z(S*) thenS* =S
6 if stopping condition not met, goto 2

65

Tabu Search

Tabu List:
e List of solutions cannot be revisited

Tabu Tenure
* The length of time a solution remains tabu
» = |ength of tabu list

» Tabu tenure t ensures no cycle of length ¢

66

Tabu Search

Difficult/expensive to store whole solution

 |nstead, store the “move” (delta between S
and T)

» Make inverse move tabu
— e.g. 2-opt adds 2 new arcs to solution
— Make deletion of both(?) tabu

But
» Cycle of length t now possible
» Some non-repeated states tabu

67

Tabu Search

Tabu List:
e List of moves that cannot be undone

Tabu Tenure
» The length of time a move remains tabu

Stopping criteria
* No improvement for <param> iterations
 Others...

68

Tabu Search

 Diversification
— Make sure whole solution space is sampled
— Don't get trapped in small area

* Intensification
— Search attractive areas well

 Aspiration Criteria

— Ignore Tabu restrictions if very attractive (and
can't cycle)

—e.g.: Z(T) < best

69

Tabu Search

 Diversification
— Penalise solutions near observed local minima
— Penalise solution features that appear often
— Penalties can “fill the hole” near a local min

* |ntensification
— Reward solutions near observed local minima
— Reward solution features that appear often

« Use Z(S) = z(S) + penalties

70

Tabu Search — TSP

« TSP Diversification
— Penalise (pred,succ) pairs seen in local
minima
TSP Intensification

— Reward (pred,succ) pairs seen in local
minima

» Z(S) = Z(S) + 2 wcount(l,))
— count(i,J): how many times have we seen (i,))

— w;: weight depending on diversify/intensity
cycle

71

Adaptive Tabu Search

o |f f(tenure) to small, we will return to the
same local min

» Adaptively modify t
— If we see the same local min, increase t

— When we see evidence that local min
escaped (e.g. improved sol), lower t

* ... my current favourite

72

N

NS Ok W

Tabu Search

. Generate initial solution S ; S* =S

Generate V* < _A5)
— Not tabu, or meets aspiration criterea

Find 7T € V* which minimises Z'
S=T

if 2(S) <z(S*) thenS* =S

Update tabu list, aspiration criterea, t
If stopping condition not met, goto 2

73

Path Relinking

Basic idea:

« Given 2 good solutions, perhaps a better solution lies
somewhere in-between

« Try to combine “good features” from two solutions
» Gradually convert one solution to the other

TSP:

e-linking

75

Genetic Algorithms

« Simulated Annealing and Tabu Search
have a single “incumbent” solution
(plus best-found)

» Genetic Algorithms are “population-based”
heuristics — solution population maintained

76

Genetic Algorithms

Problems are solved by an evolutionary process
resulting in a best (fittest) solution (survivor).
Evolutionary Computing

— 1960s by I. Rechenberg

Genetic Algorithms

— Invented by John Holland 1975

— Made popular by John Koza 1992

Nature solves some pretty tough questions —
let's use the same method

...begs the question... if homo sapien is
the answer, what was the question?? .

Genetic Algorithms

Vocabulary

» Gene — An encoding of a single part of the
solution space (often binary)

» Genotype — Coding of a solution
* Phenotype — The corresponding solution

 Chromosome — A string of “Genes” that
represents an individual — i1.e. a solution.

* Population - The number of
“Chromosomes” available to test

78

Vocabulary

Genotype: coded solutions
Phenotype: actual solutions

4

Measure fitness

Genotypes

1001110
1000001
0011110
0010101
1111111

Search space

Note: in some evolutionary algorithms there is no clear
distinction between genotype and phenotype 79

Vocabulary

Individual (Chromosome)

1

0 0 0 0 0 1 1

L

Locus (position) Gene

Biology Computation
Chromosome or|Bitstring that represents a candidate solution
individual
Gene A single bit (or a block of bits, in some cases)
Crossover Random exchange of genetic material between chromosomes
Mutation Random change of a certain bit in a chromosome
Genotype Bit configuration of a chromosome
Phenotype Solution decoded from a chromosome

80

Crossover

iCrossover point

0 0 0 0

0

1

1

1 0 1 1 1 1 0
Single-poin@crossover
0 0 0 1 1 1 0

Parent
chromosome 1

Parent
chromosome 2

Offspring
chromosome 1

Offspring
chromosome 2

81

Mutation

 Alter each gene independently with a prob p,,
(mutation rate)

* 1/pop_size < p,, < 1/ chromosome_length

i Bit to be mutated

1 0 ol o 1 1 1| o | Original

chromosome
Single-point@m utation

1 ol o o | 0 1 1 | o | Mutated
chromosome

Reproduction

Chromosomes are selected to crossover
and produce offspring

Obey the law of Darwin:
Best survive and create offspring.

Roulette-wheel selection
Tournament Selection
Rank selection

Steady state selection

83

Roulette Wheel Selection

Main idea: better individuals get higher chance

— Chances proportional to fitness
— Assign to each individual a part of the roulette wheel

— Spin the wheel n times to select n individuals

P(select)
Fithess
Chr. 1 3
Chr. 2 1
Chr. 3 2

Tournament Selection

* Tournament competition among N
iIndividuals (N=2) are held at random.

* The highest fithess value is the winner.

* Tournament is repeated until the mating
pool for generating new offspring is filled.

85

Rank Selection

* Roulette-wheel has problem when the
fitness value differ greatly

* In rank selection the
— worst value has fithess 1,

—the next 2,...... ,
— best has fithess N.

86

Rank Selection vs Roulette

/5%

P(accept)

2% 50/,

10%

Roulette Wheel

P(accept)
7%

27%

Rank

87

Crossover

 Single —site crossover
* Multi-point crossover
» Uniform crossover

88

Single-site

Choose a random point on the two parents
Split parents at this crossover point

Create children by exchanging tails

P. typically in range (0.6, 0.9)

parents

children

n-point crossover

Choose n random crossover points

Split along those points

Glue parts, alternating between parents
Generalisation of 1 point (still some positional

bias)

parents

children

Uniform crossover

Assign 'neads' to one parent, 'tails' to the other
Flip a coin for each gene of the first child

Make an inverse copy for the second child
Inheritance is independent of position

oo0|j0/O|O0|O|O|O|O|O0|O0|0|O0(0|0|0|0O

parents

T AT [P 415 (37T [P0 A BT (M

children

Genetic Algorithm

Fitness P(select)
214 418|552 24 31% 21715 41111
3|2 5 4 1 41714 5ls5]z
2|2 1 1 4 w 2|7(5(214]1]1
2|2 4 2 2 11 14% 4141 11214
Cross-ovear Mutate
_< 1418|5122 o 21714181152
7161241 1]1 o 4171812141111
—
_< Tl612|1]12]4 » 2|2 S1211]121]4
41115141 1]1 P 414111514 1|?!

Memetic Algorithm

* Memetic Algorithm =
Genetic Algorithm +
Local Search

* E.9.:
— LS after mutation
— LS after crossover

93

Demo

* http://www.rennard.org/alife/english/gavintr
gb.html

94

Ant Colony Optimization

* Another “Biological Analogue”

» Observation: Ants are very simple

creatures, but can achieve complex
behaviours

» Use pheromones to communicate

Ant Colony Optimization

Ant leaves a pheromone trall
Trails influence subsequent ants
Trails evaporate over time

E.g.in TSP

— Shorter Tours leave more pheromone

— Evaporation helps avoid premature
iIntensification

96

ACO for TSP

* p.(1,)) is prob. moving from /to j at iter k

[e, 1
pk(ivj):< Z[h] [Czh]ﬂ

he N,

0 otherwise

.

* a, [parameters

if (i, j)e N,

97

ACO for TSP

 Pheromone trail evaporates at rate p

* Phermone added proportional to tour quality

98

References

 Emile Aarts and Jan Karel Lenstra (Eds),
Local Search in Combinatorial Optimisation
Princeton University Press, Princeton NJ,
2003

» Holger H. Hoos and Thomas Stutzle,
Stochastic Local Search, Foundations and
Applications, Elsevier, 2005

99

