
Linear Programming,
(Mixed) Integer Linear Programming, and

Branch & Bound

COMP8620
Lecture 3-4

Thanks to
Steven Waslander (Stanford)

H. Sarper (Thomson Learning)
who supplied presentation material

2

What Is a Linear Programming Problem?

Each soldier built:
• Sell for $27 and uses $10 worth of raw materials.
• Increase Giapetto’s variable labor/overhead costs by $14.
• Requires 2 hours of finishing labor.
• Requires 1 hour of carpentry labor.

Each train built:
• Sell for $21 and used $9 worth of raw materials.
• Increases Giapetto’s variable labor/overhead costs by $10.
• Requires 1 hour of finishing labor.
• Requires 1 hour of carpentry labor.

Example

Giapetto’s, Inc., manufactures wooden
soldiers and trains.

3

What Is a Linear Programming Problem?

Each week Giapetto can obtain:

• All needed raw material.
• Only 100 finishing hours.
• Only 80 carpentry hours.

Also:

• Demand for the trains is unlimited.
• At most 40 soldiers are bought each week.

Giapetto wants to maximize weekly profit (revenues – expenses).
Formulate a mathematical model of Giapetto’s situation that can
be used maximize weekly profit.

4

What Is a Linear Programming Problem?

Decision Variables
x1 = number of soldiers produced each week

x2 = number of trains produced each week

Objective Function In any linear programming model, the
decision maker wants to maximize (usually revenue or profit) or
minimize (usually costs) some function of the decision variables.
This function to maximized or minimized is called the objective
function.

For the Giapetto problem, fixed costs are do not depend upon the
the values of x1 or x2.

5

What Is a Linear Programming Problem?

Giapetto’s weekly profit can be expressed in terms of the
decision variables x1 and x2:

Weekly profit =

weekly revenue – weekly raw material costs – the weekly variable costs

Weekly revenue = 27x1 + 21x2

Weekly raw material costs = 10x1 + 9x2

Weekly variable costs = 14x1 + 10x2

Weekly profit =

(27x1 + 21x2) – (10x1 + 9x2) – (14x1 + 10x2) = 3x1 + 2x2

6

What Is a Linear Programming Problem?

Thus, Giapetto’s objective is to choose
x1 and x2 to maximize 3x1 + 2x2.

Giapetto’s objective function is:

Maximize z = 3x1 + 2x2

7

What Is a Linear Programming Problem?

Constraints As x1 and x2 increase, Giapetto’s objective function
grows larger. For Giapetto, the values of x1 and x2 are limited by
the following three constraints:

Constraint 1 Each week, no more than 100 hours of finishing time
may be used.

Constraint 2 Each week, no more than 80 hours of carpentry time
may be used.

Constraint 3 Because of limited demand, at most 40 soldiers
should be produced.

These three constraints can be expressed as

Constraint 1: 2 x1 + x2 ≤ 100

Constraint 2: x1 + x2 ≤ 80

Constraint 3: x1 ≤ 40

x1, x2 ≥ 0

8

What Is a Linear Programming Problem?

Maximise 3x1 + 2x2

Subject to

2 x1 + x2 ≤ 100

x1 + x2 ≤ 80

x1 ≤ 40

x1, x2 ≥ 0

9

LP

• Has a linear objective function
(to be minimized oir maximized)

• Has constraints that limit the
degree to which the objective can
be pursued.

• Has a feasible region defining
valid solutions (may be empty)

• An optimal solution is a feasible
solution that results in the largest
possible objective function value
when maximizing (or smallest
when minimizing).

0

'

≥

=

≤

x

eDx

bAx

xcmin

subject to

x n x 1

c n x 1

A m1 x n

b m1 x 1

D m2 x n

e m2 x n

10

Standard form of LP

• A linear program is in standard form when
– The objective is a minimization,

– all the variables are non-negative , and

– all other constraints are equalities.

• Multiply maximization objectives by -1 to make a
minimization

• Add slack variables to ≤ constraints,

• Subtract surplus variables from ≥ constraints.

• Slack and surplus variables represent the difference
between the left and right sides of the original
constraints.

• Slack and surplus variables have objective function
coefficients equal to 0 (they do not affect the objective
function).

11

Standard form of LP

0≥

≥

≤

=

x

gFx

eDx

bAx

cxmin

s.t.

0,, ≥

=−

=+

=

zyx

gzFx

eyDx

bAx

cxmin

s.t.

y are slack variables, z surplus

12

Search in LP

It can be shown that:

• The feasible region for any LP will be a
convex set.

• The feasible region for any LP has only a
finite number of extreme points.

• Any LP that has an optimal solution has
an extreme point that is optimal.

13

Search in LP

So, for a small number of variables (like 2),
you can solve the problem graphically.

14

Example 2

Max 5x1 + 7x2

s.t. x1 < 6 (1)

2x1 + 3x2 < 19 (2)

x1 + x2 < 8 (3)

x1 > 0 and x2 > 0

15

Graph the first constraint of Example 1,
plus non-negativity constraints.

x2

x1

x1 = 6 is the binding edge of
the first constraint, where it
holds with equality.

The point (6, 0) is on the end
of the binding edge of the first
constraint plus the non-
negativity of x2.

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10

Shaded region
contains all

feasible points
for this constraint

Example 2:

Max 5x1 + 7x2
s.t. x1 < 6

2x1 + 3x2 < 19

x1 + x2 < 8

x1 > 0 and x2 > 0

A Graphical Solution Procedure First constraint

16

2x1 + 3x2 = 19 is the binding
edge of the second constraint.

x2

x1

88

77

66

55

44

33

22

11

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 109 10

Shaded
region contains
all feasible points
for this constraint

Graph the second constraint of Example 1,
plus non-negativity constraints.

The point (0, 6 1/3) is on the
end of the binding edge of the
second constraint plus the non-
negativity of x

1
.

The point (9 1/2, 0) is on the end of
the binding edge of the second

constraint plus the
non-negativity of x

2
.

A Graphical Solution Procedure Second constraint

Example 2:

Max 5x1 + 7x2
s.t. x1 < 6

2x1 + 3x2 < 19

x1 + x2 < 8

x1 > 0 and x2 > 0

17

x2

x1

x1 + x2 = 8 is the binding edge
of the third constraint

88

77

66

55

44

33

22

11

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 109 10

Shaded
region contains
all feasible points
for this constraint

Graph the third constraint of Example 1,
plus non-negativity constraints.

The point (0, 8) is on the end
of the binding edge of the
third constraint plus the non-

negativity of x
1

The point (8, 0) is on the end of the point (8, 0) is on the end of the
binding edge of thebinding edge of the

third constraint plus thethird constraint plus the
nonnon--negativity of negativity of xx

22

A Graphical Solution Procedure Third constraint

Example 2:

Max 5x1 + 7x2
s.t. x1 < 6

2x1 + 3x2 < 19

x1 + x2 < 8

x1 > 0 and x2 > 0

18

x1

x2

88

77

66

55

44

33

22

11

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 109 10

2x1 + 3x2 = 19

x1 + x2 = 8

x1 = 6

Feasible
region

Intersect all constraint graphs to define the
feasible region.

A Graphical Solution Procedure Feasible region

Example 2:

Max 5x1 + 7x2
s.t. x1 < 6

2x1 + 3x2 < 19

x1 + x2 < 8

x1 > 0 and x2 > 0

19

Graph a line with a constant objective function
value. For example, 35 dollars of profit.

x1

(7, 0)

(0, 5)

objective function value
5x1 + 7x2 = 35

88

77

66

55

44

33

22

11

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 109 10

x2

A Graphical Solution Procedure A constant-value line

Example 2:

Max 5x1 + 7x2
s.t. x1 < 6

2x1 + 3x2 < 19

x1 + x2 < 8

x1 > 0 and x2 > 0

20

x1

5x1 + 7x2 = 35

88

77

66

55

44

33

22

11

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 109 10

5x1 + 7x2 = 42

5x1 + 7x2 = 39

Graph alternative constant-value lines.
For example, 35 dollars, 39 dollars, or 42
dollars of profit.

x2

A Graphical Solution Procedure Alternative constant-value lines

Example 2:

Max 5x1 + 7x2
s.t. x1 < 6

2x1 + 3x2 < 19

x1 + x2 < 8

x1 > 0 and x2 > 0

21

x1

x2

Maximum constant-value
line 5x1 + 7x2 = 46

Optimal solution
(x1 = 5, x2 = 3)

88

77

66

55

44

33

22

11

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 109 10

Graph the maximum constant-value line,
graph the optimal solution, then estimate
coordinates.

A Graphical Solution Procedure Estimating the optimal solution

Example 2:

Max 5x1 + 7x2
s.t. x1 < 6

2x1 + 3x2 < 19

x1 + x2 < 8

x1 > 0 and x2 > 0

22

Solution spaces

• Example 2 had a unique optimum

• If objective is parallel to a constraint, there
are infinite solutions

• If feasible region is empty, there is no
solution

• If feasible region is infinite, the solution may
be unbounded.

23

Solving LP

(Dantzig 1951) Simplex method

• Very efficient in practice

• Exponential time in worst case

(Khachiyan 1979) Ellipsoid method

• Not efficient in practice

• Polynomial time in worst case

24

Solving LP

• Simplex method operates by visiting the extreme
points of the solution set

• If, in standard form, the problem has m equations in
n unknowns (m < n), setting (n – m) variables to 0
give a basis of m variables, and defines an extreme
point.

• At each point, it moves to a neighbouring extreme
point by moving one variable into the basis (makes
value > 0) and moving one out of the basis (make
value 0)

• It moves to the neighbour that apparently increases
the objective the most (heuristic)

• If no neighbour increases the objective, we are done

25

Solving LP

Problems in solving using Simplex:

• Basic variables with value 0

• Rounding (numerical instability)

• Degeneracy (many constraints intersecting in
a small region, so each step moves only a
small distance)

26

Solving LP

• Interior Point Methods
– Apply Barrier Function to each constraint and sum

– Primal-Dual Formulation

– Newton Step

• Benefits
– Scales Better than Simplex

– Certificate of Optimality

-cT

x1

x2

27

Solving LP

• Variants of the Simplex method exist

– e.g. Network Simplex for solving flow
problems

• Problems with thousands of variables and
thousands of constraints are routinely solved
(even a few million variables if you only have
low-thousands of constraints)

• Or vice-versa

28

Solving the LP

• Simplex method is a “Primal” method: it stays
feasible, and moves toward optimality

• Other methods are “Dual” methods: they
maintain an optimal solution toa relaxed
problem, and move toward feasibility.

29

Solving LP

• Everyone uses commercial software to solve
LPs

• Basic method for a few variables available in
Excel

• ILOG CPLEX is world leader

• Xpress-MP from Dash Optimization is also
very good

• Several others in the marketplace

• lp_solve open source project is very useful

30

Using LP

• LP requires

– Proportionality: The contribution of the objective
function from each decision variable is proportional to
the value of the decision variable.

– Additivity: The contribution to the objective function
for any variable is independent of the other decision
variables

– Divisibility: each decision variable be permitted to
assume fractional values

– Certainty: each parameter (objective function
coefficients, right-hand side, and constraint
coefficients) are known with certainty

31

Using LP

The Certainty Assumption & Sensitivity analysis

• For each decision variable, the shadow cost
(aka reduced cost) tells what the benefit from
changes in the value around the optimal
value

• Tells us which constraints are binding at the
optimum, and the value of relaxing the
constraint

32

Beyond LP

Linear Programming sits within a hierarchy of
mathematical programming problems

33

General Optimization Program

� Standard form:

where

� Too general to solve, must specify properties of
X, f,g and h more precisely.

34

Diversion… Complexity Analysis

� (P) – Deterministic Polynomial time algorithm

� (NP) – Non-deterministic Polynomial time
algorithm,
� Feasibility can be determined in polynomial time

� (NP-complete) – NP and at least as hard as
any known NP problem

� (NP-hard) – not provably NP and at least as
hard as any NP problem,
� Optimization over an NP-complete feasibility

problem

35

Optimization Problem Types –
Real Variables

� Linear Program (LP)

� (P) Easy, fast to solve, convex

� Non-Linear Program (NLP)

� (P) Convex problems easy to solve

� Non-convex problems harder, not guaranteed to find
global optimum

36

Optimization Problem Types –
Integer/Mixed Variables

� Integer Programs (IP) :
� (NP-hard) computational complexity

� Mixed Integer Linear Program (MILP)
� Generally (NP-hard)

� However, many problems can be solved surprisingly
quickly!

37

(Mixed) Integer Programming

• Integer Programming: all variables must have
Integer values

• Mixed Integer Programming : some variables
have integer values

Exponential solution times

38

Integer Programming

Example IP formulation:

The Knapsack problem:

I wish to select items to
put in my backpack.

• There are m items
available.

• Item i weights wi kg,

• Item i has value vi.

• I can carry Q kg.





=
otherwise0

 itemselect I if1
Let

i
xi

{ }1,0

 s.t.

max

i

i

∈

≤∑

∑

i

ii

ii

x

Qwx

vx

39

Integer Programming

• IP allows formulation “tricks”
e.g. If x then not y:

(1 – x) M ≥ y

(M is “big M” – a large value – larger than any
feasible value for y)

40

Solving ILP

How can we solve ILP problems?

41

Solving ILP

• Some problem classes have the “Integrality
Property”: All solution naturally fall on integer points

• e.g.

– Maximum Flow problems

– Assignment problems

• If the constraint matrix has a special form, it will
have the Integrality Property:

– Totally Unimodular

– Balanced

– Perfect

42

Solving ILP

• How about solving LP Relaxation followed by
rounding?

-cT

x1

x2

LP Solution

Integer Solution

43

Solving ILP

• In general, though, it don’t work

• LP solution provides lower bound on IP

• But, rounding can be arbitrarily far away from integer
solution

-cT

x1

x2

44

Solving ILP

• Combine both approaches

– Solve LP Relaxation to get fractional solutions

– Create two sub-branches by adding
constraints

-cT

x1

x2

LP Solution

Integer

Solution

45

Solving ILP

• Combine both approaches

– Solve LP Relaxation to get fractional solutions

– Create two sub-branches by adding
constraints

-cT

x1

x2
x1 ≥ 2

46

Solving ILP

• Combine both approaches

– Solve LP Relaxation to get fractional solutions

– Create two sub-branches by adding
constraints

-cT

x1

x2

x1 ≤ 1

47

Branch & Bound

• Branch and Bound Algorithm

1.Solve LP relaxation for lower bound on cost for
current branch

• If solution exceeds upper bound, branch is terminated

• If solution is integer, replace upper bound on cost

2.Create two branched problems by adding constraints
to original problem

• Select integer variable with fractional LP solution

• Add integer constraints to the original LP

3.Repeat until no branches remain, return optimal
solution.

48

Branch & Bound

• Example: Problem with 4 variables, all
required to be integer

49

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

50

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

x1≤1 x1≥2

51

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

x1≤1 x1≥2

52

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞
Infeasible

x1≤1 x1≥2

53

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

Infeasible

x1≤1 x1≥2

54

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

x1≤1 x1≥2

x2≤2
x2≥3

55

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

x1≤1 x1≥2

x2≤2
x2≥3

56

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

57

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

58

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

59

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

60

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

61

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

62

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

x4≤1 x4≥2

63

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

z* = 381
x=(1,2,4,0)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

x4≤1 x4≥2

64

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

z* = 381
x=(1,2,4,0)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

x4≤1 x4≥2

65

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

z* = 381
x=(1,2,4,0)

z* = 382.1
x=(1,2,4,3.3)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

x4≤1 x4≥2

66

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

z* = 381
x=(1,2,4,0)

z* = 382.1
x=(1,2,4,3.3)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

x4≤1 x4≥2

67

Branch and Bound

• Each integer feasible solution is an upper
bound on solution cost,

– Branching stops

– It can prune other branches

– Anytime result: can provide optimality bound

• Each LP-feasible solution is a lower bound on
the solution cost

– Branching may stop if LB ≥ UB

68

Cutting Planes

• Creating a branch is a lot of work

• Therefore Make bounds tight

• Cutting plane: A new constraint that

– Keeps all integer solutions

– Forbids the current fractional LP solution

• First suggested by Gomory even before Simplex
was invented

– “Gomory Cut” is a general cutting plane that can be
applied to any LP

69

Cutting Planes

• Example: Knapsack problem

• Lets say we have the fractional solution

x1 = 0.3, x2 = 0.3, and x3 = 0.5

• Assume also that items 1, 2, and 3 are large
enough that you cannot select all three

• A valid inequality is

x1 + x2 + x3 ≤ 1

• This forbids the current solution

• … but all legal integer solutions are still valid

70

Cutting Planes

• Cutting Planes are applied within a branch-
and-bound node to tighten the bound

• Can force a lower-bound high enough that
the node is excluded

• May be lucky enough to force an integer
solution

71

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

72

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

z* = 378.1
x=(1,2,2.9,4.1)`

x3 + x4 ≤ 7

73

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

z* = 378.1
x=(1,2,2.9,4.1)`

x3 + x4 ≤ 7

x3≤2 x3≥3

74

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

z* = 378.1
x=(1,2,2.9,4.1)`

x3 + x4 ≤ 7

z* = ∞
infeasible)

x3≤2 x3≥3

75

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

z* = 378.1
x=(1,2,2.9,4.1)`

x3 + x4 ≤ 7

z* = ∞
infeasible)

z* = 380
x=(1,2,3,4)

x3≤2 x3≥3

76

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

z* = 378.1
x=(1,2,2.9,4.1)`

x3 + x4 ≤ 7

z* = ∞
infeasible)

z* = 380
x=(1,2,3,4)

x3≤2 x3≥3

77

Vehicle Routing Problem

• n customers (n in 100 … 10,000)

• m vehicles

• ci,j – the distance/cost of travel

• qi – load at customer i

• Qk – capacity of vehicle k

What vehicle should visit each customer, and in what
order, to minimize costs

• 1 vehicle � TSP

• ci,j == 0 � Bin packing

78

Traditional formulation

• :





=
otherwise0

 on vehicle precedes if1 kji
xijk

...

1

c minimize
kj,i,

ij

kQqx

kxx

x

x

kj

j

ijk

i

i

ijk

j

ijk

k

ijk

j

ijk

∀≤

∀=

=

∑∑

∑∑

∑∑

∑

79

Set Partitioning Formulation

• Create “potential tours” (tour for a single
vehicle)

• Save order tour visit customers separately

• Find cost cj of tour j by solving the associated
TSP

80

Set Partitioning Forumaltion

{ }1,0

)2(1

)1(

min

otherwise0

solution in the used is column 1

∈

∀=

=





=

∑

∑

x

ia

kx

cx

i
x

j

ij

j

j

i

Set Covering: Replace “=“ in constraint 2 by “≥”

81

Set Partitioning Formulation

Method:

• Generate a set of columns

• Find cost of each column

• Use Set Partitioning to choose the best set of
columns (integer solution required – rats)

But

• Exponential number of possible columns

82

Column Generation

• Given a solution to the LP, shadow price (reduced
cost) ri of each constraint 2 gives the “value” of
each customer at the current solution.

• A column j is guaranteed to enter if

0<+∑ j

i

iij cra

83

Column Generation

• Subproblem is “Constrained, Prize-Collecting
Shortest Path”

• Routes must honour all constraints of original
problem (e.g. capacity constraints)

• Unfortunately also NP complete

• But good heuristic available

84

Column Generation

New Method:

• Generate initial columns

• Repeat:

– Solve [integer] Set Partitioning Problem

– Generate –ve reduce-cost column(s

• Until no more columns can be produced

• Solution is optimal if method is completed

85

Next week:

Neighbourhood-based Local Search

Lecture notes available at:

http://users.rsise.anu.edu.au/~pjk/teaching

86

Task Allocation

• n jobs, m machines

• Job i requires qi capacity

• At most Qj assigned to each machine

87

Forumlation

jQqx

ix

xc

ji
x

i

jiij

j

ij

ji

ijij

ij

∀≤

∀=





=

∑

∑

∑

1

min

otherwise0

 machine toassigned is task if1

,

Easy subproblem

Complicating constraints

88

Lagrangean Relaxation

ix

xc

j

ij

ji

ijij

∀=∑

∑

1

min
,

jQqx ji

i

ij ∀≤∑

Problem P:

Optimum value = z*

89

Lagrangean Relaxation

ix

xc

j

ij

ji

ijij

∀=∑

∑

1

min
,

jQqx ji

i

ij ∀−∑ -ve: OK
+ve: Amount of infeasibility

90

Lagrangean Relaxation

ix

xc

j

ij

ji

ijij

∀=∑

∑

1

min
,

ji

i

ij

j

Qqx −∑∑ Total infeasibility

91

Lagrangean Relaxation

ix

xc

j

ij

ji

ijij

∀=∑

∑

1

min
,

ji

i

ij

j

Qqx −∑∑ Total infeasibility

92

Lagrangean Relaxation

ix

xc

j

ij

ji

ijij

∀=∑

∑

1

min
,

)(ji

i

ij

j

j Qqx −+ ∑∑λ

Total infeasibility

93

Lagrangean Relaxation

ix

xc

j

ij

ji

ijij
x

∀=∑

∑

1

min
,

)(ji

i

ij

j

j Qqx −+ ∑∑λ=)(λD

94

Lagrangean Relaxation

• Duality theory tells us that

• and the optimum x is the same for both

• (for equality constraints, λ is unconstrained)

• So now we have a continuous optimization
problem

*)(max
0

zD =
≥

λ
λ

95

Lagrangean Optimization

• Finding

can be done via a number of optimization
methods….

)(max
0

λ
λ

D
≥

96

Next week:

Neighbourhood-based Local Search

Lecture notes available at:

http://users.rsise.anu.edu.au/~pjk/teaching

