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What Is a Linear Programming Problem?

Each soldier built:
• Sell for $27 and uses $10 worth of raw materials. 
• Increase Giapetto’s variable labor/overhead costs by $14.
• Requires 2 hours of finishing labor.
• Requires 1 hour of carpentry labor.

Each train built:
• Sell for $21 and used $9 worth of raw materials.  
• Increases Giapetto’s variable labor/overhead costs by $10.
• Requires 1 hour of finishing labor.
• Requires 1 hour of carpentry labor.  

Example

Giapetto’s, Inc., manufactures wooden 
soldiers and trains. 



3

What Is a Linear Programming Problem?

Each week Giapetto can obtain:

• All needed raw material. 
• Only 100 finishing hours.
• Only 80 carpentry hours.  

Also:

• Demand for the trains is unlimited.
• At most 40 soldiers are bought each week.  

Giapetto wants to maximize weekly profit (revenues – expenses).  
Formulate a mathematical model of Giapetto’s situation that can 
be used maximize weekly profit.
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What Is a Linear Programming Problem?

Decision Variables
x1 = number of soldiers produced each week

x2 = number of trains produced each week

Objective Function In any linear programming model, the 
decision maker wants to maximize (usually revenue or profit) or 
minimize (usually costs) some function of the decision variables.  
This function to maximized or minimized is called the objective 
function.  

For the Giapetto problem, fixed costs are do not depend upon the
the values of x1 or x2. 
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What Is a Linear Programming Problem?

Giapetto’s weekly profit can be expressed in terms of the 
decision variables x1 and x2:

Weekly profit =

weekly revenue – weekly raw material costs – the weekly variable costs

Weekly revenue = 27x1 + 21x2

Weekly raw material costs = 10x1 + 9x2

Weekly variable costs = 14x1 + 10x2

Weekly profit = 

(27x1 + 21x2) – (10x1 + 9x2) – (14x1 + 10x2 ) = 3x1 + 2x2
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What Is a Linear Programming Problem?

Thus, Giapetto’s objective is to choose 
x1 and x2 to maximize 3x1 + 2x2.  

Giapetto’s objective function is:

Maximize z = 3x1 + 2x2
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What Is a Linear Programming Problem?

Constraints  As x1 and x2 increase, Giapetto’s objective function 
grows larger.  For Giapetto, the values of x1 and x2 are limited by 
the following three constraints:

Constraint 1 Each week, no more than 100 hours of finishing time 
may be used.

Constraint 2 Each week, no more than 80 hours of carpentry time 
may be used.

Constraint 3 Because of limited demand, at most 40 soldiers 
should be produced.

These three constraints can be expressed as

Constraint 1:    2 x1 + x2 ≤ 100

Constraint 2:       x1 + x2 ≤ 80

Constraint 3:       x1 ≤ 40

x1, x2 ≥ 0
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What Is a Linear Programming Problem?

Maximise 3x1 + 2x2

Subject to

2 x1 + x2 ≤ 100

x1 + x2 ≤ 80

x1 ≤ 40

x1, x2  ≥ 0
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LP

• Has a linear objective function 
(to be minimized oir maximized)

• Has constraints that limit the 
degree to which the objective can 
be pursued.

• Has a feasible region defining 
valid solutions (may be empty) 

• An optimal solution is a feasible 
solution that results in the largest 
possible objective function value 
when maximizing (or smallest 
when minimizing).
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Standard form of LP

• A linear program is in standard form when 
– The objective is a minimization, 

– all the variables are non-negative , and

– all other constraints are equalities.  

• Multiply maximization objectives by -1 to make a 
minimization

• Add slack variables to ≤ constraints,

• Subtract surplus variables from ≥ constraints.  

• Slack and surplus variables represent the difference 
between the left and right sides of the original 
constraints.

• Slack and surplus variables have objective function 
coefficients equal to 0 (they do not affect the objective 
function).
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Standard form of LP
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Search in LP

It can be shown that:

• The feasible region for any LP will be a 
convex set. 

• The feasible region for any LP has only a 
finite number of extreme points.

• Any LP that has an optimal solution has 
an extreme point that is optimal.
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Search in LP

So, for a small number of variables (like 2), 
you can solve the problem graphically.
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Example 2

Max       5x1 + 7x2

s.t.            x1 < 6 (1)

2x1 + 3x2 < 19 (2)

x1 +   x2 < 8 (3)

x1 > 0  and  x2 > 0
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Graph the first constraint of Example 1,
plus non-negativity constraints.

x2

x1

x1 =  6 is the binding edge of 
the first constraint, where it 
holds with equality.

The point (6, 0) is on the end 
of the binding edge of the first 
constraint plus the non-
negativity of x2.
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Shaded region
contains all

feasible points
for this constraint

Example 2:

Max       5x1 + 7x2
s.t.            x1 < 6

2x1 + 3x2 < 19

x1 +   x2 < 8

x1 > 0  and  x2 > 0

A Graphical Solution Procedure                                  First constraint
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2x1 + 3x2 = 19 is the binding 
edge of the second constraint. 

x2

x1
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Shaded
region contains
all feasible points
for this constraint

Graph the second constraint of Example 1, 
plus non-negativity constraints.

The point (0, 6 1/3) is on the 
end of the binding edge of the 
second constraint plus the non-
negativity of x

1
.

The point (9 1/2, 0) is on the end of 
the binding edge of the second

constraint plus the 
non-negativity of x

2
.

A Graphical Solution Procedure                                  Second constraint

Example 2:

Max       5x1 + 7x2
s.t.            x1 < 6

2x1 + 3x2 < 19

x1 +   x2 < 8

x1 > 0  and  x2 > 0
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x2

x1

x1 + x2 =  8 is the binding edge 
of the third constraint 
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Shaded
region contains
all feasible points
for this constraint

Graph the third constraint of Example 1,
plus non-negativity constraints.

The point (0, 8) is on the end 
of the binding edge of the 
third constraint plus the non-

negativity of x
1

The point (8, 0) is on the end of the point (8, 0) is on the end of the 
binding edge of thebinding edge of the

third constraint plus thethird constraint plus the
nonnon--negativity of negativity of xx

22

A Graphical Solution Procedure                                  Third constraint

Example 2:

Max       5x1 + 7x2
s.t.            x1 < 6

2x1 + 3x2 < 19

x1 +   x2 < 8

x1 > 0  and  x2 > 0
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x1

x2

88
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55

44

33

22

11
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2x1 + 3x2 = 19

x1 + x2 =  8

x1 =  6

Feasible
region

Intersect all constraint graphs to define the 
feasible region.

A Graphical Solution Procedure                                  Feasible region

Example 2:

Max       5x1 + 7x2
s.t.            x1 < 6

2x1 + 3x2 < 19

x1 +   x2 < 8

x1 > 0  and  x2 > 0
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Graph a line with a constant objective function 
value.  For example, 35 dollars of profit.

x1

(7, 0)

(0, 5)

objective function value
5x1 + 7x2 = 35
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x2

A Graphical Solution Procedure                                  A constant-value line

Example 2:

Max       5x1 + 7x2
s.t.            x1 < 6

2x1 + 3x2 < 19

x1 +   x2 < 8

x1 > 0  and  x2 > 0
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x1

5x1 + 7x2 = 35

88

77

66

55

44

33

22

11
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5x1 + 7x2 = 42

5x1 + 7x2 = 39

Graph alternative constant-value lines. 
For example, 35 dollars, 39 dollars, or 42 
dollars of profit.

x2

A Graphical Solution Procedure                            Alternative constant-value lines

Example 2:

Max       5x1 + 7x2
s.t.            x1 < 6

2x1 + 3x2 < 19

x1 +   x2 < 8

x1 > 0  and  x2 > 0
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x1

x2

Maximum constant-value 
line 5x1 + 7x2 = 46

Optimal solution
(x1 = 5, x2 = 3)
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Graph the maximum constant-value line,
graph the optimal solution, then estimate 
coordinates.

A Graphical Solution Procedure                            Estimating the optimal solution

Example 2:

Max       5x1 + 7x2
s.t.            x1 < 6

2x1 + 3x2 < 19

x1 +   x2 < 8

x1 > 0  and  x2 > 0
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Solution spaces

• Example 2 had a unique optimum

• If objective is parallel to a constraint, there 
are infinite solutions

• If feasible region is empty, there is no 
solution

• If feasible region is infinite, the solution may 
be unbounded.
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Solving LP

(Dantzig 1951) Simplex method

• Very efficient in practice

• Exponential time in worst case

(Khachiyan 1979) Ellipsoid method

• Not efficient in practice

• Polynomial time in worst case



24

Solving LP

• Simplex method operates by visiting the extreme 
points of the solution set

• If, in standard form, the problem has m equations in 
n unknowns (m < n), setting (n – m) variables to 0 
give a basis of m variables, and defines an extreme 
point.

• At each point, it moves to a neighbouring extreme 
point by moving one variable into the basis (makes 
value > 0) and moving one out of the basis (make 
value 0)

• It moves to the neighbour that apparently increases 
the objective the most (heuristic)

• If no neighbour increases the objective, we are done 
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Solving LP

Problems in solving using Simplex:

• Basic variables with value 0

• Rounding (numerical instability)

• Degeneracy (many constraints intersecting in 
a small region, so each step moves only a 
small distance)
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Solving LP

• Interior Point Methods
– Apply Barrier Function to each constraint and sum

– Primal-Dual Formulation

– Newton Step

• Benefits
– Scales Better than Simplex

– Certificate of Optimality

-cT

x1

x2
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Solving LP

• Variants of the Simplex method exist

– e.g. Network Simplex for solving flow 
problems

• Problems with thousands of variables and 
thousands of constraints are routinely solved
(even a few million variables if you only have 
low-thousands of constraints)

• Or vice-versa
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Solving the LP

• Simplex method is a “Primal” method: it stays 
feasible, and moves toward optimality

• Other methods are “Dual” methods: they 
maintain an optimal solution toa relaxed 
problem, and move toward feasibility.
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Solving LP

• Everyone uses commercial software to solve 
LPs

• Basic method for a few variables available in 
Excel

• ILOG CPLEX is world leader

• Xpress-MP from Dash Optimization is also 
very good

• Several others in the marketplace

• lp_solve open source project is very useful



30

Using LP

• LP requires 

– Proportionality: The contribution of the objective 
function from each decision variable is proportional to 
the value of the decision variable. 

– Additivity: The contribution to the objective function 
for any variable is independent of the other decision 
variables

– Divisibility: each decision variable be permitted to 
assume fractional values

– Certainty: each parameter (objective function 
coefficients, right-hand side, and constraint 
coefficients) are known with certainty
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Using LP

The Certainty Assumption & Sensitivity analysis

• For each decision variable, the shadow cost 
(aka reduced cost) tells what the benefit from 
changes in the value around the optimal 
value

• Tells us which constraints are binding at the 
optimum, and the value of relaxing the 
constraint
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Beyond LP

Linear Programming sits within a hierarchy of 
mathematical programming problems
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General Optimization Program

� Standard form:

where

� Too general to solve, must specify properties of 
X, f,g and h more precisely.
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Diversion… Complexity Analysis

� (P) – Deterministic Polynomial time algorithm

� (NP) – Non-deterministic Polynomial time 
algorithm, 
� Feasibility can be determined in polynomial time

� (NP-complete) – NP and at least as hard as 
any known NP problem

� (NP-hard) – not provably NP and at least as 
hard as any NP problem,
� Optimization over an NP-complete feasibility 

problem
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Optimization Problem Types –
Real Variables

� Linear Program (LP)

� (P) Easy, fast to solve, convex

� Non-Linear Program (NLP)

� (P) Convex problems easy to solve

� Non-convex problems harder, not guaranteed to find 
global optimum
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Optimization Problem Types –
Integer/Mixed Variables

� Integer Programs (IP) : 
� (NP-hard)  computational complexity

� Mixed Integer Linear Program (MILP)
� Generally (NP-hard)

� However, many problems can be solved surprisingly 
quickly!
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(Mixed) Integer Programming

• Integer Programming: all variables must have 
Integer values

• Mixed Integer Programming : some variables 
have integer values

Exponential solution times
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Integer Programming

Example IP formulation: 

The Knapsack problem:

I wish to select items to 
put in my backpack. 

• There are m items 
available. 

• Item i weights wi kg, 

• Item i has value vi. 

• I can carry Q kg.





=
otherwise0

 itemselect  I if1
Let 

i
xi

{ }1,0         

    s.t.

max       

i

i

∈

≤∑

∑

i

ii

ii

x

Qwx

vx
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Integer Programming

• IP allows formulation “tricks”
e.g. If x then not y: 

(1 – x) M  ≥ y

(M is “big M” – a large value – larger than any 
feasible value for y)
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Solving ILP

How can we solve ILP problems?
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Solving ILP

• Some problem classes have the “Integrality 
Property”: All solution naturally fall on integer points

• e.g.

– Maximum Flow problems

– Assignment problems

• If the constraint matrix has a special form, it will 
have the Integrality Property:

– Totally Unimodular

– Balanced

– Perfect
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Solving ILP

• How about solving LP Relaxation followed by 
rounding?

-cT

x1

x2

LP Solution

Integer Solution
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Solving ILP

• In general, though, it don’t work

• LP solution provides lower bound on IP

• But, rounding can be arbitrarily far away from integer 
solution

-cT

x1

x2
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Solving ILP

• Combine both approaches

– Solve LP Relaxation to get fractional solutions

– Create two sub-branches by adding 
constraints

-cT

x1

x2

LP Solution

Integer 

Solution
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Solving ILP

• Combine both approaches

– Solve LP Relaxation to get fractional solutions

– Create two sub-branches by adding 
constraints

-cT

x1

x2
x1 ≥ 2
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Solving ILP

• Combine both approaches

– Solve LP Relaxation to get fractional solutions

– Create two sub-branches by adding 
constraints

-cT

x1

x2

x1 ≤ 1
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Branch & Bound

• Branch and Bound Algorithm

1.Solve LP relaxation for lower bound on cost for 
current branch

• If solution exceeds upper bound, branch is terminated

• If solution is integer, replace upper bound on cost

2.Create two branched problems by adding constraints 
to original problem

• Select integer variable with fractional LP solution

• Add integer constraints to the original LP 

3.Repeat until no branches remain, return optimal 
solution.
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Branch & Bound

• Example: Problem with 4 variables, all 
required to be integer
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

x1≤1 x1≥2
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

x1≤1 x1≥2
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞
Infeasible

x1≤1 x1≥2
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

Infeasible

x1≤1 x1≥2



54

Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

x1≤1 x1≥2

x2≤2
x2≥3
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

x1≤1 x1≥2

x2≤2
x2≥3
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

x4≤1 x4≥2
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

z* = 381
x=(1,2,4,0)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

x4≤1 x4≥2
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

z* = 381
x=(1,2,4,0)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

x4≤1 x4≥2
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

z* = 381
x=(1,2,4,0)

z* = 382.1
x=(1,2,4,3.3)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

x4≤1 x4≥2
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

z* = 380
x=(1,2,3,4)

z* = 378.1
x=(1,2,4,1.2)

z* = 381
x=(1,2,4,0)

z* = 382.1
x=(1,2,4,3.3)

x1≤1 x1≥2

x2≤2
x2≥3

x3≤3 x3≥4

x4≤1 x4≥2
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Branch and Bound

• Each integer feasible solution is an upper 
bound on solution cost, 

– Branching stops 

– It can prune other branches

– Anytime result: can provide optimality bound

• Each LP-feasible solution is a lower bound on 
the solution cost

– Branching may stop if LB ≥ UB
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Cutting Planes

• Creating a branch is a lot of work

• Therefore Make bounds tight

• Cutting plane:  A new constraint that

– Keeps all integer solutions

– Forbids the current fractional LP solution

• First suggested by Gomory even before Simplex 
was invented

– “Gomory Cut” is a general cutting plane that can be 
applied to any LP
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Cutting Planes

• Example: Knapsack problem

• Lets say we have the fractional solution

x1 = 0.3, x2 = 0.3, and x3 = 0.5

• Assume also that items 1, 2, and 3 are large 
enough that you cannot select all three

• A valid inequality is

x1 + x2 + x3 ≤ 1

• This forbids the current solution

• … but all legal integer solutions are still valid
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Cutting Planes

• Cutting Planes are applied within a branch-
and-bound node to tighten the bound

• Can force a lower-bound high enough that 
the node is excluded

• May be lucky enough to force an integer 
solution
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

z* = 378.1
x=(1,2,2.9,4.1)`

x3 + x4 ≤ 7
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

z* = 378.1
x=(1,2,2.9,4.1)`

x3 + x4 ≤ 7

x3≤2 x3≥3
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

z* = 378.1
x=(1,2,2.9,4.1)`

x3 + x4 ≤ 7

z* = ∞
infeasible)

x3≤2 x3≥3
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

z* = 378.1
x=(1,2,2.9,4.1)`

x3 + x4 ≤ 7

z* = ∞
infeasible)

z* = 380
x=(1,2,3,4)

x3≤2 x3≥3
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Branch & Bound

z* = 356.1
x=(1.2,2.6,3.2,2.8)

Initial LP

z* = 364.1
x=(1,2.8,3.2,2.4)

z* = ∞

infeasible

z* = 375.2
x=(1,2,3.5,3.1)

z* = 384.1
x=(1,3,4.1,2.2)

x1≤1 x1≥2

x2≤2
x2≥3

z* = 378.1
x=(1,2,2.9,4.1)`

x3 + x4 ≤ 7

z* = ∞
infeasible)

z* = 380
x=(1,2,3,4)

x3≤2 x3≥3
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Vehicle Routing Problem

• n customers (n in 100 … 10,000)

• m vehicles

• ci,j – the distance/cost of travel 

• qi – load at customer i

• Qk – capacity of vehicle k

What vehicle should visit each customer, and in what 
order, to minimize costs

• 1 vehicle � TSP

• ci,j == 0 � Bin packing
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Traditional formulation

• :





=
otherwise0

 on vehicle  precedes  if1 kji
xijk

...

    

  

1

c minimize
kj,i,

ij

kQqx

kxx

x

x

kj

j

ijk

i

i

ijk

j

ijk

k

ijk

j

ijk

∀≤

∀=

=

∑∑

∑∑

∑∑

∑
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Set Partitioning Formulation

• Create “potential tours” (tour for a single 
vehicle)

• Save order tour visit customers separately

• Find cost cj of tour j by solving the associated 
TSP
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Set Partitioning Forumaltion

{ }1,0

)2(1

)1(

min

otherwise0

solution in the used is column 1

∈

∀=

=





=

∑

∑

x

ia

kx

cx

i
x

j

ij

j

j

i

Set Covering: Replace “=“ in constraint 2 by “≥”
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Set Partitioning Formulation

Method:

• Generate a set of columns

• Find cost of each column

• Use Set Partitioning to choose the best set of 
columns (integer solution required – rats)

But

• Exponential number of possible columns
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Column Generation

• Given a solution to the LP, shadow price (reduced 
cost) ri of each constraint 2 gives the “value” of 
each customer at the current solution.

• A column j is guaranteed to enter if 

0<+∑ j

i

iij cra
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Column Generation

• Subproblem is “Constrained, Prize-Collecting 
Shortest Path”

• Routes must honour all constraints of original 
problem (e.g. capacity constraints)

• Unfortunately also NP complete

• But good heuristic available
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Column Generation

New Method:

• Generate initial columns

• Repeat: 

– Solve [integer] Set Partitioning Problem

– Generate –ve reduce-cost column(s

• Until no more columns can be produced

• Solution is optimal if method is completed
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Next week: 

Neighbourhood-based Local Search

Lecture notes available at:

http://users.rsise.anu.edu.au/~pjk/teaching
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Task Allocation

• n jobs, m machines

• Job i requires qi capacity

• At most Qj assigned to each machine
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Forumlation

jQqx

ix

xc

ji
x

i

jiij

j

ij

ji

ijij

ij

∀≤

∀=





=

∑

∑

∑

1

min

otherwise0

 machine  toassigned is  task if1

,

Easy subproblem

Complicating constraints
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Lagrangean Relaxation

ix

xc

j

ij

ji

ijij

∀=∑

∑

1

min
,

jQqx ji

i

ij ∀≤∑

Problem P:

Optimum value = z*
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Lagrangean Relaxation

ix

xc

j

ij

ji

ijij

∀=∑

∑

1

min
,

jQqx ji

i

ij ∀−∑ -ve: OK
+ve: Amount of infeasibility
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Lagrangean Relaxation

ix

xc

j

ij

ji

ijij

∀=∑

∑

1

min
,

ji

i

ij

j

Qqx −∑∑ Total infeasibility
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Lagrangean Relaxation

ix

xc

j

ij

ji

ijij

∀=∑

∑

1

min
,

ji

i

ij

j

Qqx −∑∑ Total infeasibility
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Lagrangean Relaxation

ix

xc

j

ij

ji

ijij

∀=∑

∑

1

min
,

)( ji

i

ij

j

j Qqx −+ ∑∑λ

Total infeasibility



93

Lagrangean Relaxation

ix

xc

j

ij

ji

ijij
x

∀=∑

∑

1

min
,

)( ji

i

ij

j

j Qqx −+ ∑∑λ=)(λD
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Lagrangean Relaxation

• Duality theory tells us that

• and the optimum x is the same for both

• (for equality constraints, λ is unconstrained)

• So now we have a continuous optimization 
problem

*)(max
0

zD =
≥

λ
λ
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Lagrangean Optimization

• Finding

can be done via a number of optimization 
methods…. 

)(max
0

λ
λ

D
≥
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Next week: 

Neighbourhood-based Local Search

Lecture notes available at:

http://users.rsise.anu.edu.au/~pjk/teaching


