
Large-scale Applications made Fault-tolerant using the
Sparse Grid Combination Technique

Peter Strazdins
Computer Systems Group,

Research School of Computer Science,
The Australian National University

(joint work with Mohsin Ali (NCI NF), Brendan Harding (U. Adelaide) and
Markus Hegland (MSI ANU))

(slides available from http://cs.anu.edu.au/∼Peter.Strazdins/seminars)

MSI Special Year 2019 in Computational Mathematics
Challenges in High Performance Computing workshop

The Australian National University, 03 Sep 2019

http://cs.anu.edu.au/~Peter.Strazdins
http://cs.anu.edu.au/systems
http://cs.anu.edu.au
http://www.anu.edu.au
http://cs.anu.edu.au/~Peter.Strazdins/seminars
http://maths.anu.edu.au/news-events/event-series/special-year-2019-compu\ tational-mathematics

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 1

1 Talk Overview
• background: why FT, solving PDEs via sparse grids with the combination

technique, hierarchical surplus representation

• parallel sparse grid combination technique (SGCT) algorithms
• mappings for the block distribution in d-dimensional space
• direct SGCT algorithm: idea, components, overall
• hierarchical surplus algorithm: forming surpluses, coalescing sur-

pluses, direct SGCT extensions
• limitations and extensions

• analysis & experimental results (on Raijin cluster, NCI National Facility)

• making real-world applications fault tolerant using the SGCT
• general methodology
• process recovery using ULFM MPI
• GENE gyrokinetic plasma, Taxila Lattice Boltzmann method, Solid

Fuel Ignition

• conclusions and future work
JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 2

2 Background: Why Fault-Tolerance is Becoming Important

• exascale computing: for a system with n components, the mean time
before failure is proportional to 1/n

• a sufficiently long-running application will never finish!
• by ‘failure’ we usually mean a transient or permanent failure of a com-

ponent (e.g. node) – this is called a hard fault

• cloud computing: resources (e.g. compute nodes) may have periods of
scarcity / high costs

• for a long-running application, may wish to shrink and grow the nodes
it is running on accordingly – this scenario is also known as elasticity

• low power or adverse operating condition scenarios may cause failures
even with moderate number of components

• of typical interest are ‘bit-flips’ in memory or logic circuitry
• these are termed as soft faults

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 3

3 Background: Sparse Grids

• introduced by Zenger (1991)

• for (regular) grids of dimension d having uni-
form resolution n = 2l + 1 in all dimensions,
the number of grid points is nd

• known as the curse of dimensionality

• a sparse grid provides fine-scale resolution

• can be constructed from regular sub-grids
that are fine-scale in some dimensions and
coarse in others

• has been proven successful for a variety of
different problems:

• good accuracy for given effort
(O(n lg(n)d−1) points)
• various options for fault-tolerance!

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 4

4 Background: Combination Technique for Sparse Grids

• computations over sparse grids may be approximated by being solved
over the corresponding set of regular sub-grids

• overall solution is from ‘combining’ sub-solutions via an inclusion-
exclusion principle (complexity is still O(n lg(n)d−1) where n = 2l + 1)

• for 2D at ‘level’ l = 3, combine grids (3, 1), (2, 2) (1, 3) minus (2, 1), (1, 2)
onto (sparse) grid (3, 3) (interpolation is required)

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 5

5 Robust Combination Techniques

• uses extra set of smaller sub-grids

• the redundancy from this is < 1/(2(2d − 1))

• for a single failure on a sub-grid, can find a new combination formula
with an inclusion/exclusion principle avoiding the failed sub-grid

• works for many cases of multiple failures (using a 4th set covers all)

• a failed sub-grid can be recovered from its projection on the combined
sparse grid

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 6

6 Background: Hierarchical Surplus Representation of Grids

• normally use a nodal representation: the value at
point xk is vk = f (xk)

• we can also use a hierarchical representation: the
value at xi,k = x2l−i·k is the difference between xi,k
and the average of its hierarchical neighbours

vi,k =

f (xi,k)− 1

2

(
f (xi−1,(k−1)/2)

+f (xi−1,(k+1)/2)

)
for i > 0

f (xi,k) for i = 0

• we can perform the combination algorithm on each of
the component grid’s common hierarchical surpluses
(a grid of index (i, j) has (i + 1)(j + 1) surpluses)
√

this reduces communication (surpluses corresp. to
the upper diagonal are unique) and avoids interpo-
lation

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 7

7 Background: Hierarchical Surplus Formation

• on a component grid (Gi), each element will correspond to a hierarchical
surplus of index j, where j ≤ i

• e.g. for i = (3, 3) 00 30 20 30 10 30 20 30 00

03 33 23 33 13 33 23 33 03

02 32 22 32 12 32 22 32 02

03 33 23 33 13 33 23 33 03

01 31 21 31 11 31 21 31 01

03 33 23 33 13 33 23 33 03

02 32 22 32 12 32 22 32 02

03 33 23 33 13 33 23 33 03

00 30 20 30 10 30 20 30 00

• the hierarchization process occurs in-place, with the surpluses com-
puted from the initial grid values

• note that the size of surplus of index j is 2j – independent of Gi

• hierarchical surpluses contain common information across different com-
ponent grids

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 8

8 Direct SGCT Algorithm: the Gather-Scatter Idea

• evolve independent simula-
tions over time T on a set of
component grids, solution is
a d-dimensional field (here
d=2)

• each grid is distributed over
a process grid (here these
are 2× 2, 2× 1 or 1× 2)

• gather: combine fields on
a sparse grid (index (5, 5)),
here on a 2× 2 process grid

• scatter: sample (the more
accurate) combined field
and redistribute back to the
component grids

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 9

9 Mappings for the d-dimensional Block Distribution

• can be succinctly expressed in terms of d-dimensional vector arithmetic

• for d = 2,M = (Mx,My), N = (Nx, Ny) ∈ N2, and a ∈ N,
M ≤ N ≡ (Mx ≤ Nx) ∧ (My ≤ Ny); a ≤ N ≡ (a ≤ Nx) ∧ (a ≤ Ny)

M ∗N ≡ (Mx ∗Nx,My ∗Ny); a ∗N ≡ (a ∗Nx, a ∗Ny)

Π(N) = Nx ∗Ny

• we have the following mappings for the block-distribution of a global
length N ∈ Nd over a process grid P ∈ Nd,
for a process of id p ∈ Nd, 0 ≤ p < P ,
and for a global index N̂ ∈ Nd, 0 ≤ N̂ < N :
l(N, p, P) = n + (p == P − 1) ∗ (N%P) : local length of N at process p
g0(N, p, P) = p ∗ n : global index of local index 0 at p
p(N̂ ,N, P) = min(N̂/n, P − 1) : id of process holding global index N̂
o(N̂ ,N, P) = N̂ %n : local offset within this process

corresponding to N̂
where n = N/P

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 10

10 Direct SGCT Algorithm: Gather Stage

• for component grid of size N on process grid P ; sparse grid is of size N ′

on process grid P ′ (r = (N ′ − 1)/(N − 1)): sending part is:

N̂ ′ = r ∗ g0(N, p, P); // scaled global starting index on P ′

p′ = p(N̂ ′, N ′, P ′); ô′ = o(N̂ ,N ′, P ′); // process id & local offset on P ′ . . .
// . . . for 1st message

i=0; n = l(N, p, P);
while ix < nx

while iy < ny
o′ = ô′ ∗ (i==0); // local offset @ p′

n′ = l(N ′, p′, P ′)− o′; // local size @ p′

dn = min(n′/r, n− i); // local size here
send local points i : i + dn of u to p′; // extra points for interpolation
iy+=dny; p′y++;

ix+=dnx; p′x++;

• receiving part is similar, except each component grids’ message is per-
formed serially & received points are interpolated into the sparse grid

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 11

11 Direct SGCT Algorithm

• scatter stage, similar to gather (in reverse)
• send stage on sparse grids’ process grid down-samples respective

points for each component grid
• for fault tolerance, a 3rd (smaller) diagonal of component grids is utilized

• if a process on a component grid fails, a revised set of combination
coefficients are supplied to the SGCT (with 0 for the failed grid)
• the algorithm (and implementation) are otherwise unaffected

• only limitation in terms of process grid size of algorithm is that P ′ must
be a power of 2
• can be overcome if we send extra points to left for interpolation

• current implementation supports d ≤ 3
• main complexity for extending to larger d is in enumerating the com-

ponent grids and the interpolation routine
• can deal with d′ > 3 dim. fields if only d dims. are used for the SGCT
• the gather is performed on a (partial) sparse grid data structure

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 12

12 Hierarchical Surplus-Based SGCT Algorithm

Overall algorithm:

1. hierarchize each component grid, in-
place (independently)

• involves Π(lg2N) send-receive stages

2. apply the (direct) SGCT over each hier-
archical sub-space common to > 1 pro-
cess grids

• in each, only the process grids in-
volved need participate
• note that interpolation is not required

as each surplus is the same size on
each grid

3. un-hierarchize the surpluses to recover
the original grids

A 2D l = 5 SGCT on a sparse
grid of index (9, 9).
Indices of component grids are
in yellow.
Can coalesce SGCT over sub-
spaces to reduce overheads.

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 13

13 Analysis

• typical operating conditions of the SGCT:
• the sparse grid’s process grid P ′ comprises of a subset of processes

from the process grids of the components (Pi)
• assume Pi, P ′ are powers of 2 (required for hierarchical algorithm)
• each sub-grid on a lower diagonal has half the processes as that

above
• let g = g(d, l) = O(ld−1) be the number of sub-grids involved, m denote

the number of data points per process

• direct SGCT, each process in P ′ will receive < 2m points, each process
in each Pi sends and receives Π(P ′/Pi) ≤ g messages
• total cost is then td ≤ 2gα + 3mβ

• should be efficient for large m, but not for large g
• hierarchical SGCT avoids communication of 1

2d
of the surpluses

• will have more startups even if coalesced, partially offset by a ≈30%
lower average effective value of g
• average degree of ||ization ≈ 2/3, but a load imbalance factor of ≈ 2d

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 14

14 Results: SGCT Advection Performance

(a) 2D problem with l = 4 and a 213 ×
213 (sparse) grid, 1024 timesteps.

(b) 3D problem with l = 3 and 29×29×
28 grid, 1024 timesteps.

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 15

15 Results: 2D SGCT Algorithm Performance
Weak Scaling with m = 214 points per process for 2D SGCT perfor-

mance (after a warmup run) with SGCT level l: direct (left) vs hierarchical

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 16

16 Results: 3D SGCT Algorithm Performance
Weak scaling with m = 214 points per process for 3D SGCT performance

(after a warmup run) with SGCT level l:

(a) direct algorithm (b) hierarchical algorithm

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 17

17 Fault Recovery Procedure: Detect Failed Processes

0 1 2 3 4 5 6

Process 3 and 5 on parent fail

0 1 2 3 4 5 6

Shrink the communicator and spawn
failed processes as child with rank 0 and 1

0 1 2 4 6 0 1

Use intercommunicator merge to assign
the two highest ranks to the newly created

0 1 2 3 4 5 6

Sending failed ranks from parent to the
two highest ranks on child and split the

communicator with the same color to assign

0 1 2 4 6 3 5

Changing child to parent

0 1 2 4 6 3 5

Parent

Child

A communicator with global size 7

processes on child part

rank 3 and 5 to the child processes to order
the ranks as it was before the failure

• can detect failed processes in
ULFM MPI as follows:

• attach an error handler en-
suring failures get acknowl-
edged on (original) communi-
cator comm
• call MPI Barrier(comm); if fails:
• revoke it via
MPI Comm revoke(comm)

and create shrunken
communicator via
OMPI Comm shrink(comm, &scomm)

• use
MPI Group difference(..., &fg)

to make a globally consistent
list of failed processes

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 18

18 Fault Recovery Procedure: Process and Data
• process recovery in ULFM MPI:
• use MPI Group translate ranks(fg, ..., comm, ...) to re-rank re-

maining processes
• spawn required number of failed processes via MPI Comm spawn multiple()

• these are called child processes and have own communicator
• use MPI Intercomm merge() to merge child’s comm. with parent’s

with MPI Comm split() to order the ranks
• finally, OMP Comm agree() used to synchronize child and parent pro-

cesses

• data recovery using the SGCT:
must be done on whole of grid where a process has failed (data on non-
failed process will be out-of-date)
• identify lost grids; assign combination coefficient of 0

(do not participate in gather stage of SGCT)
• receive down-sample of combined grid on the scatter stage

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 19

19 Methodology for Integrating the SGCT into an Application

1 G = {Gi}: set of sub-grids;
2 C = {Ci}: set of sub-grid communicators created from W ;
3 g = {gi}: set of fields returned from the application computed on G;
4 u = {ui}: corresponding set of sub-grid solutions;
5 ucI: combined solution of the SGCT;
6 for each Ci ∈ C do in parallel
7 ui ← null; //will make runApplication() initialize gi

8 for each required combination do
9 for each Ci ∈ C do in parallel

10 gi ← runApplication(ui, Gi, Ci);
11 ui ← gi; //on their common points
12 updateBoundary(ui, Ci);

13 reconstructFaultyCommunicator(W); //using ULFM MPI
14 ucI ← gather(u,W); //reconstructed grids don’t participate

15 u← scatter(ucI,W);

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 20

20 The GENE Application

• GENE: Gyrokinetic Electromag-
netic Numerical Experiment

• plasma micro-turbulence code
• multidimensional solver of

Vlasov equation
• fixed grid in five-dimensional

phase space (xr, x⊥, x||, v⊥, v||)
• computes gyroradius-scale fluctuations and transport coefficients

• these fields are the main output of GENE

• hybrid MPI/OpenMP parallelization – high scalability to 2K cores

• dimensions are limited to powers of two

• sparse grid combination technique has yielded good results!

• physical system is relatively homogeneous

JJ J • I II ×

http://www.ipp.mpg.de/~fsj/gene/
http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 21

21 Incorporating the SGCT into GENE
• computes a density field g 1, stored in a double-precision array of di-

mensionality (2, Nx, Ny, Nz, Nv, Nu, s), s is the number of ‘species’
• the SGCT can be applied in any 2 or 3 contiguous dimensions

e.g. for a 2D SGCT on Nv and Nu dimensions, we pass a block factor of
B = 2NxNyNz to the SGCT algorithm, and iterate over s
• must pad dimensions of size 2N to 2N + 1 for the SGCT: zero for v, u;

for z, a ‘shift’ is required (using GENE routines)
• a parallelization of p over the non-SGCT dimensions is possible:

perform p SGCT calculations in parallel

• a script creates different directories for each component grid to run in,
and places an appropriately modified parameters file there
• ISO C BINDING & C wrappers to interface Fortran to C++ SGCT code

• small modifications to rungene() to pass down MPI communicator cre-
ated by the SGCT constructor

• in initial value(), code is added to pass g 1 to the SGCT code

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 22

22 SGCT GENE Performance

• used 2d big 6 with an l = 5 2D SGCT over (Nv, Nu) = (28, 28) and
Nx = 64, Ny = 4, Nz = 16, s = 1, and 3d big 6 with an l = 4 3D SGCT
over (Nz, Nv, Nu) = (26, 28, 28) and Nx = 32, Ny = 4, s = 1. Run for 100
timesteps.

• SGCT (AB) has less work & storage than the corresp. full grid (FG)

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 23

23 Load Balance for SGCT GENE

• general SGCT strategy to load balance across component grids

• allocate p processes to uppermost diagonal grids, dp2e to next diag.
• thus, no. of data points (hence work) per process should be equal

• however, data and process grid shape may affect computation and com-
munication performance

• TAU profile for 2D
problem with p = 8

• 3D problem & other
apps were similar

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 24

24 SGCT GENE Accuracy

• relative 1-norm error over full grid solution for 2D (left) and 3D (right)

• deemed ‘acceptable’

• multiple applications of the SGCT can reduce the error

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 25

25 SGCT GENE Accuracy - Visualization

• little discernible difference with or without faults

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 26

26 SGCT GENE Fault Recovery

• GENE has in-built checkpointing of g 1 (note: very fast file system here!)

• WR/RD: read/write checkpoint, RM: relaunch MPI application

• RP/RN: recover process on same/different node

• we should have TRN << TRM (may improve in future ULFM MPI)
JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 27

27 The Taxilla Lattice Boltzmann Method Application

• Taxila LBM is open source software for the LBM simulation of flow in
porous and geometrically complex media

• highly scalable Fortran 90-based PetSc modular implementation

• chose a bubble test, in which one partially miscible fluid forms a bubble
inside the other

• the density field is chosen for the output and used for the SGCT

• incorporating the SGCT similar to GENE, with {ui} corresponding to the
rho array

• default global communicators in LBMCreate() are replaced with Ci
• process and data grid sizes are also passed in as parameters
• local rho field extracted for SGCT after running LBMRun() using a

shared pointer
• periodic boundary conditions are used

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 28

28 SGCT Taxilla LBM Performance and Accuracy

• 2D problem has 213× 213 full grid size with l = 5; 3D has 29× 29× 29 and
l = 4. 200 timesteps.

• accuracy (relative 1-norm difference to full grid) is 1.13E−2 and 3.98E−2,
respectively

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 29

29 Taxilla Accuracy - Visualization

• comparison of density field for a 27 × 27 grid for an l = 5 SGCT

• smaller grid is used due to expense of computation

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 30

30 The Solid Fuel Ignition Application

• involves solving the Bratu problem

−∆u(x, y, z)− λ expu(x,y,z) = 0, 0 < x, y, z < 1

where ∆ is the Laplace operator and λ defines the degree of non-
linearity

• a simpler application; also Fortran-90 PetSc code base

• incorporating the SGCT similar to Taxilla LBM, with {ui} corresponding
to the x array in SNESSolve()

• default global communicators in SNESCreate() and DMDACreate2d()
are replaced with Ci
• process and data grid sizes are also passed in as parameters to
DMDACreate2d()

• c get sfi field() is called to pass the field to the SGCT codes
• zero boundary conditions are used

• experiments used λ = 6 and Jacobian finite difference approximations

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 31

31 Solid Fuel Ignition: Performance and Accuracy

• 2D problem has 211× 211 full grid size with l = 5; 3D has 28× 28× 28 and
l = 4. 200 timesteps.

• 2D SGCT is ≈ 3× faster, 3D ≈ 9×; accuracy is 1.27E−3 and 1.28E−3,
respectively

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 32

32 Solid Fuel Ignition: Accuracy - Visualization

• comparison of field for a 211 × 211 grid for an l = 5 SGCT

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 33

33 Conclusions (I)

• the SGCT can give good accuracy-performance tradeoffs on a range of
PDE simulations

• with little extra computational cost, it can also be made fault-tolerant!
• current ULFM MPI infrastructure is sufficient to support this

• the first fully parallel SGCT algorithms have been developed for 2&3D

• complexity managed by vector arithmetic description
• sparse grid data structured needed for direct algorithm, coalescing of

surpluses needed for the hierarchical
• the direct algorithm is faster and is very scalable with core courts;

also more scalable with level l and dimensionality d
• if fields are already hierarchized, recommend de-hierarchizing and

using the direct algorithm
• algorithms designed for high resolution grids on smaller l and d
• codes are available from http://users.cecs.anu.edu.au/∼peter/projects/sgct

JJ J • I II ×

http://users.cecs.anu.edu.au/~peter/projects/sgct
http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 34

34 Conclusions (II)

• a methodology to incorporate the SGCT has been proven on 3 complex
pre-existing applications

• relatively modest source code modifications required
• for GENE, a level of l = 5 (l = 4) for 2D (3D) gave 2× (5–9×) speed

benefit for an ‘acceptable’ loss of accuracy
• multiple SGCT can reduce error loss, especially for multiple failures
• SGCT recovery time compares favourably to checkpointing
• system is robust to multiple failures and combinations
• GENE, Taxilla LBM and SFI are successful case studies!

• the SGCT is ready to support exascale computing!

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 35

35 Future Work

• currently, we restart failed processes (on same node or spare nodes).
An alternate approach is to ‘shrink’ the process grids on failure

• test the methodology on other applications

• solution must be ‘smooth’ for the SGCT to be effective

• can be extended to higher d; however, requires no more than 1 grid per
process

• apply the SGCT to handle soft faults

• detection may be challenging: ‘smearing’, application dependence
• combine point-wise, in blocks or whole grids?
• the hierarchical algorithm has a major advantage:

common information in the component grids can be directly com-
pared
• more challenging time and memory requirements are likely

JJ J • I II ×

http://www.anu.edu.au

SY2019 Challenges in HPCLarge-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 36

Thank You!! . . . Questions??? Comments???

Acknowledgements:
• NCI National Facility, for access to the Raijin cluster

• Australian Research Council for funding under Linkage Project LP110200410

• Fujitsu Laboratories Europe, for funding as a collaborative partner

• colleagues Jay Larson and Chris Kowitz for advice

Publications:
• Md Mohsin Ali, Peter E. Strazdins, Brendan Harding, Markus Hegland, J. Walter Larson, A Fault-Tolerant

Gyrokinetic Plasma Application using the Sparse Grid Combination Technique, Proceedings of the 2015
International Conference on High Performance Computing & Simulation (HPCS 2015), pp499-507, Am-
sterdam, July 2015. (Outstanding Paper Award).

• Peter E. Strazdins, Md Mohsin Ali and Brendan Harding, Design and Analysis of Two Highly Scalable
Sparse Grid Combination Algorithms. Journal of Computational Science, 17(3):547-561, Nov 2016.

• M.M. Ali, P.E. Strazdins, B. Harding, and M. Hegland, Complex scientific applications made fault-tolerant
with the sparse grid combination technique, International Journal of High Performance Computing Ap-
plications, 30(3):335–359, Aug 2016.

JJ J • I II ×

http://www.anu.edu.au

