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1 Talk Overview
• background: solving PDEs via sparse grids with the combination tech-

nique, hierarchical surplus representation

• parallel sparse grid combination technique (SGCT) algorithms
• mappings for the block distribution in d-dimensional space
• direct SGCT algorithm: idea, components, overall
• hierarchical surplus algorithm: forming surpluses, coalescing sur-

pluses, direct SGCT extensions
• limitations and extensions

• analysis & experimental results (on Raijin cluster, NCI National Facility)

• making real-world applications fault tolerant using the SGCT
• general methodology
• process recovery using ULFM MPI
• GENE gyrokinetic plasma, Taxila Lattice Boltzmann method, Solid

Fuel Ignition

• conclusions and future work
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2 Background: Sparse Grids

• introduced by Zenger (1991)

• for (regular) grids of dimension d having
uniform resolution n in all dimensions, the
number of grid points is nd

• known as the curse of dimensionality

• a sparse grid provides fine-scale resolution

• can be constructed from regular sub-grids
that are fine-scale in some dimensions and
coarse in others

• has been proven successful for a variety of
different problems:

• good accuracy for given effort (over sin-
gle higher resolution grid)
• various options for fault-tolerance!
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3 Background: Combination Technique for Sparse Grids

• computations over sparse grids may be approximated by being solved
over the corresponding set of regular sub-grids

• overall solution is from ‘combining’ sub-solutions via an inclusion-
exclusion principle (complexity is still O(n lg(n)d−1))

• for 2D at ‘level’ l = 3, combine grids (3, 1), (2, 2) (1, 3) minus (2, 1), (1, 2)
onto (sparse) grid (3, 3) (interpolation is required)

JJ J • I II ×

http://www.anu.edu.au


SNL CA Large-scale Applications made Fault-tolerant using the Sparse Grid Combination Technique 4

4 Robust Combination Techniques

• uses extra set of smaller sub-grids with ||i||1 = m− d (now m ≥ d)

• the redundancy from this is < 1/(2(2d − 1))

• for a single failure on a sub-grid, can find a new combination formula
with an inclusion/exclusion principle avoiding the failed sub-grid

• works for many cases of multiple failures (using a 4th set covers all)

• a failed sub-grid can be recovered from its projection on the combined
sparse grid
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5 Background: Hierarchical Surplus Representation of Grids

• normally use a nodal representation: the value at
point xk is vk = f (xk)

• we can also use a hierarchical representation: the
value at xl,k is the difference between that at xl,k and
its hierarchical neighbours (l denotes the ‘level’)

vl,k =


f (xl,k)− 1

2

(
f (xl−1,(k−1)/2)

+f (xl−1,(k+1)/2)

)
for l > 0

f (xl,k) for l = 0

• we can perform the combination algorithm on each of
the component grid’s common hierarchical surpluses
(a grid of index (i, j) has (i + 1)(j + 1) surpluses)
√

this reduces communication (surpluses corresp. to
the upper diagonal are unique) and avoids interpo-
lation
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6 Background: Hierarchical Surplus Formation

• on a component grid (Gi), each element will correspond to a hierarchical
surplus of index j, where j ≤ i

• e.g. for i = (3, 3) 00 30 20 30 10 30 20 30 00

03 33 23 33 13 33 23 33 03

02 32 22 32 12 32 22 32 02

03 33 23 33 13 33 23 33 03

01 31 21 31 11 31 21 31 01

03 33 23 33 13 33 23 33 03

02 32 22 32 12 32 22 32 02

03 33 23 33 13 33 23 33 03

00 30 20 30 10 30 20 30 00

• the hierarchization process occurs in-place, with the surpluses com-
puted from the initial grid values

• note that the size of surplus of index j is 2j – independent of Gi

• hierarchical surpluses contain common information across different com-
ponent grids
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7 Direct SGCT Algorithm: the Gather-Scatter Idea

• evolve independent simula-
tions over set of compo-
nent grids, solution is a d-
dimensional field (here d=2)

• each grid is distributed over
a process grid (here these
are 2× 2, 2× 1 or 1× 2)

• gather: after a simulated
time T is reached, combine
fields on a sparse grid (here
level 5, or index (5, 5))

• scatter: sample (the more
accurate) combined field
and redistribute back to the
component grids
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8 Mappings for the d-dimensional Block Distribution

• can be succinctly expressed in terms of d-dimensional vector arithmetic

• for M = (Mx,My), N = (Nx, Ny) ∈ Nd, and a ∈ N,
M ≤ N ≡ (Mx ≤ Nx) ∧ (My ≤ Ny); a ≤ N ≡ (a ≤ Nx) ∧ (a ≤ Ny)

M ∗N ≡ (Mx ∗Nx,My ∗Ny); a ∗N ≡ (a ∗Nx, a ∗Ny)

Π(N) = Nx ∗Ny

• we have the following mappings for the block-distribution of a global
length N ∈ Nd over a process grid P ∈ Nd,
for a process of id p ∈ Nd, 0 ≤ p < P ,
and for a global index N̂ ∈ Nd, 0 ≤ N̂ < N :
l(N, p, P ) = n + (p == P − 1) ∗ (N%P ) : local length of N at p
g0(N, p, P ) = p ∗ n : global index of local index 0 at p
p(N̂ ,N, P ) = min(N̂/n, P − 1) : id of process holding global index N̂
o(N̂ ,N, P ) = N̂ %n : local offset within this process

corresponding to N̂
where n = N/P
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9 Direct SGCT Algorithm: Gather Stage

• for component grid of size N on process grid P ; sparse grid is of size N ′

on process grid P ′ (r = (N ′ − 1)/(N − 1)): sending part is:

N̂ ′ = rg0(N, p, P ); // scaled global starting index on P ′

p′ = p(N̂ ′, N ′, P ′); ô′ = o(N̂ ,N ′, P ′); // process id & local offset on P ′ . . .
// . . . for 1st message

i=0; n = l(N, p, P );
while ix < nx

while iy < ny
o′ = ô′ ∗ (i==0); // local offset @ p′

n′ = l(N ′, p′, P ′)− o′; // local size @ p′

dn = min(n′/r, n− i); // local size here
send local points i : i + dn of u to p′; // extra points for interpolation
iy+=dny; p′y++;

ix+=dnx; p′x++;

• receiving part is similar, except each component grids’ message is per-
formed serially & received points are interpolated into the sparse grid
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10 Direct SGCT Algorithm

• scatter stage, similar to gather (in reverse)
• send stage on sparse grids’ process grid down-samples respective

points for each component grid
• for fault tolerance, a 3rd (smaller) diagonal of component grids is utilized

• if a process on a component grid fails, a revised set of combination
coefficients are supplied to the SGCT (with 0 for the failed grid)
• the algorithm (and implementation) are otherwise unaffected

• only limitation in terms of process grid size of algorithm is that P ′ must
be a power of 2
• can be overcome if we send extra points to left for interpolation

• current implementation supports d ≤ 3
• main complexity for extending to larger d is in enumerating the com-

ponent grids and the interpolation routine
• can deal with d′ > 3 dim. fields if only d dims. are used for the SGCT
• the gather is performed on a (partial) sparse grid data structure

JJ J • I II ×
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11 Hierarchical Surplus-Based SGCT Algorithm

Overall algorithm:

1. hierarchize each component grid, min-
place (independently)

• involves Π(lg2N) send-receive stages

2. apply the (direct) SGCT over each hier-
archical sub-space common to > 1 pro-
cess grids

• in each, only the process grids in-
volved need participate
• note that interpolation is not required

as each surplus is the same size on
each grid

3. un-hierarchize the surpluses to recover
the original grids

A 2D l = 5 SGCT on a sparse
grid of index (9, 9).
Indices of component grids are
in yellow.
Can coalesce SGCT over sub-
spaces to reduce overheads.
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12 Analysis

• typical operating conditions of the SGCT:
• the sparse grid’s process grid P ′ comprises of a subset of processes

from the process grids of the components (Pi)
• assume Pi, P ′ are powers of 2 (required for hierarchical algorithm)
• each sub-grid on a lower diagonal has half the processes as that

above
• let g = g(d, l) = O(ld−1) be the number of sub-grids involved, m denote

the number of data points per process

• direct SGCT, each process in P ′ will receive < 2m points, each process
in each Pi sends and receives Π(P ′/Pi) ≤ g messages
• total cost is then td ≤ 2gα + 3mβ

• should be efficient for large m, but not for large g
• hierarchical SGCT avoids communication of 1

2d
of the surpluses

• will have more startups even if coalesced, partially offset by a ≈30%
lower average effective value of g
• average degree of ||ization ≈ 2/3, but a load imbalance factor of ≈ 2d

JJ J • I II ×
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13 Results: SGCT Advection Performance

(a) 2D problem with l = 4 and a 213 ×
213 (sparse) grid, 1024 timesteps.

(b) 3D problem with l = 3 and 29×29×
28 grid, 1024 timesteps.
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14 Results: 2D SGCT Algorithm Performance
Weak Scaling with m = 214 points per process for 2D SGCT perfor-

mance (after a warmup run) with SGCT level l: direct (left) vs hierarchical

JJ J • I II ×
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15 Results: 3D SGCT Algorithm Performance
Weak scaling with m = 214 points per process for 3D SGCT performance

(after a warmup run) with SGCT level l:

(a) direct algorithm (b) hierarchical algorithm
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16 Fault Recovery Procedure: Detect Failed Processes

0 1 2 3 4 5 6

Process 3 and 5 on parent fail

0 1 2 3 4 5 6

Shrink the communicator and spawn
failed processes as child with rank 0 and 1

0 1 2 4 6 0 1

Use intercommunicator merge to assign
the two highest ranks to the newly created

0 1 2 3 4 5 6

Sending failed ranks from parent to the
two highest ranks on child and split the

communicator with the same color to assign

0 1 2 4 6 3 5

Changing child to parent

0 1 2 4 6 3 5

Parent

Child

A communicator with global size 7

processes on child part

rank 3 and 5 to the child processes to order
the ranks as it was before the failure

• can detect failed processes in
ULFM MPI as follows:

• attach an error handler en-
suring failures get acknowl-
edged on (original) communi-
cator comm
• call MPI Barrier(comm); if fails:
• revoke it via
MPI Comm revoke(comm)

and create shrunken
communicator via
OMPI Comm shrink(comm, &scomm)

• use
MPI Group difference(..., &fg)

to make a globally consistent
list of failed processes

JJ J • I II ×
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17 Fault Recovery Procedure: Process and Data
• process recovery in ULFM MPI:
• use MPI Group translate ranks(fg, ..., comm, ...) to re-rank re-

maining processes
• spawn required number of failed processes via MPI Comm spawn multiple()

• these are called child processes and have own communicator
• use MPI Intercomm merge() to merge child’s comm. with parent’s

with MPI Comm split() to order the ranks
• finally, OMP Comm agree() used to synchronize child and parent pro-

cesses

• data recovery using the SGCT:
must be done on whole of grid where a process has failed (data on non-
failed process will be out-of-date)
• identify lost grids; assign combination coefficient of 0

(do not participate in gather stage of SGCT)
• receive down-sample of combined grid on the scatter stage

JJ J • I II ×
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18 Methodology for Integrating the SGCT into an Application

G = {Gi}: set of sub-grids;1

C = {Ci}: set of sub-grid communicators created from W ;2

g = {gi}: set of fields returned from the application computed on G;3

u = {ui}: corresponding set of sub-grid solutions;4

ucI: combined solution of the SGCT;5

for each Ci ∈ C do in parallel6

ui ← null; //makes runApplication() initialize gi7

for each required combination do8

for each Ci ∈ C do in parallel9

gi ← runApplication(ui, Gi, Ci);10

ui ← gi; //on their common points11

updateBoundary(ui, Ci);12

reconstructFaultyCommunicator(W ); //using ULFM MPI13

ucI ← gather(u,W ); //reconstructed grids don’t participate14

u← scatter(ucI,W );15

JJ J • I II ×
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19 The GENE Application

• GENE: Gyrokinetic Electromag-
netic Numerical Experiment

• plasma micro-turbulence code
• multidimensional solver of

Vlasov equation
• fixed grid in five-dimensional

phase space (xr, x⊥, x||, v⊥, v||)
• computes gyroradius-scale fluctuations and transport coefficients

• these fields are the main output of GENE

• hybrid MPI/OpenMP parallelization – high scalability to 2K cores

• dimensions are limited to powers of two

• sparse grid combination technique has yielded good results!

• physical system is relatively homogeneous
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20 Incorporating the SGCT into GENE
• computes a density field g 1, stored in a double-precision array of di-

mensionality (2, Nx, Ny, Nz, Nv, Nu, s), s is the number of ‘species’
• the SGCT can be applied in any 2 or 3 contiguous dimensions

e.g. for a 2D SGCT on Nv and Nu dimensions, we pass a block factor of
B = 2NxNyNz to the SGCT algorithm, and iterate over s
• must pad dimensions of size 2N to 2N + 1 for the SGCT: zero for v, u;

for z, a ‘shift’ is required (using GENE routines)
• a parallelization of p over the non-SGCT dimensions is possible:

perform p SGCT calculations in parallel

• a script creates different directories for each component grid to run in,
and places an appropriately modified parameters file there
• ISO C BINDING & C wrappers to interface Fortran to C++ SGCT code

• small modifications to rungene() to pass down MPI communicator cre-
ated by the SGCT constructor

• in initial value(), code is added to pass g 1 to the SGCT code

JJ J • I II ×
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21 SGCT GENE Performance

• used 2d big 6 with an l = 5 2D SGCT over (Nv, Nu) = (28, 28) and
Nx = 64, Ny = 4, Nz = 16, s = 1, and 3d big 6 with an l = 4 3D SGCT
over (Nz, Nv, Nu) = (26, 28, 28) and Nx = 32, Ny = 4, s = 1. Run for 100
timesteps.

• SGCT (AB) has less work & storage than the corresp. full grid (FG)

JJ J • I II ×
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22 Load Balance for SGCT GENE

• general SGCT strategy to load balance across component grids

• allocate p processes to uppermost diagonal grids, dp2e to next diag.
• this, number of data points (hence work) per process should be equal

• however, data and process grid shape may affect computation and com-
munication performance

• TAU profile for 2D
problem with p = 8

• 3D problem & other
apps were similar

JJ J • I II ×
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23 SGCT GENE Accuracy

• relative 1-norm error over full grid solution for 2D (left) and 3D (right)

• deemed ‘acceptable’

• multiple applications of the SGCT can reduce the error

JJ J • I II ×
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24 SGCT GENE Accuracy - Visualization

• little discernible difference with or without faults
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25 SGCT GENE Fault Recovery

• GENE has in-built checkpointing of g 1 (note: very fast file system here!)

• WR/RD: read/write checkpoint, RM: relaunch MPI application

• RP/RN: recover process on same/different node

• we should have TRN << TRM (may improve in future ULFM MPI)
JJ J • I II ×
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26 The Taxilla Lattice Boltzmann Method Application

• Taxila LBM is open source software for the LBM simulation of flow in
porous and geometrically complex media

• highly scalable Fortran 90-based PetSc modular implementation

• chose a bubble test, in which one partially miscible fluid forms a bubble
inside the other

• the density field is chosen for the output and used for the SGCT

• incorporating the SGCT similar to GENE, with {ui} corresponding to the
rho array

• default global communicators in LBMCreate() are replaced with Ci
• process and data grid sizes are also passed in as parameters
• local rho field extracted for SGCT after running LBMRun() using a

shared pointer
• periodic boundary conditions are used

JJ J • I II ×
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27 SGCT Taxilla LBM Performance and Accuracy

• 2D problem has 213× 213 full grid size with l = 5; 3D has 29× 29× 29 and
l = 4. 200 timesteps.

• accuracy (relative 1-norm difference to full grid) is 1.13E−2 and 3.98E−2,
respectively

JJ J • I II ×
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28 Taxilla Accuracy - Visualization

• comparison of density field for a 27 × 27 grid for an l = 5 SGCT

• smaller grid is used due to expense of computation
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29 The Solid Fuel Ignition Application

• involves solving the Bratu problem

−∆u(x, y, z)− λ expu(x,y,z) = 0, 0 < x, y, z < 1

where ∆ is the Laplace operator and λ defines the degree of non-
linearity

• a simpler application; also Fortran-90 PetSc code base

• incorporating the SGCT similar to Taxilla LBM, with {ui} corresponding
to the x array in SNESSolve()

• default global communicators in SNESCreate() and DMDACreate2d()
are replaced with Ci
• process and data grid sizes are also passed in as parameters to
DMDACreate2d()

• c get sfi field() is called to pass the field to the SGCT codes
• zero boundary conditions are used

• experiments used λ = 6 and Jacobian finite difference approximations

JJ J • I II ×
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30 Solid Fuel Ignition: Performance and Accuracy

• 2D problem has 211× 211 full grid size with l = 5; 3D has 28× 28× 28 and
l = 4. 200 timesteps.

• 2D SGCT is ≈ 3× faster, 3D ≈ 9×; accuracy is 1.27E−3 and 1.28E−3,
respectively

JJ J • I II ×
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31 Solid Fuel Ignition: Accuracy - Visualization

• comparison of field for a 211 × 211 grid for an l = 5 SGCT
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32 Conclusions (I)

• the SGCT can give good accuracy-performance tradeoffs on a range of
PDE simulations

• with little extra computational cost, it can also be made fault-tolerant!
• current ULFM MPI infrastructure is sufficient to support this

• the first fully parallel SGCT algorithms have been developed for 2&3D

• complexity managed by vector arithmetic description
• sparse grid data structured needed for direct algorithm, coalescing of

supluses needed for the hierarchical
• the direct algorithm is faster and is very scalable with core courts;

also more scalable with level l and dimensionality d
• if fields are already hierarchized, recommend de-hierarchizing and

using the direct algorithm
• algorithms designed for high resolution grids on smaller l and d
• codes are available from http://users.cecs.anu.edu.au/∼peter/projects/sgct
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33 Conclusions (II)

• a methodology to incorporate the SGCT has been proven on 3 complex
pre-existing applications

• relatively modest source code modifications required
• a level of l = 5 (l = 4) for 2D (3D) gave 2× (5–9×) speed benefit for

an ‘acceptable’ loss of accuracy
• multiple SGCT can reduce error loss, especially for multiple failures
• SGCT recovery time compares favorably to checkpointing
• system is robust to multiple failures and combinations
• Taxilla LBM and SFI are new (and successful) case studies!

• the SGCT is ready to support exascale computing!
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34 Future Work

• some improvements can be made to the direct SGCT

• removing restriction the SGCT process grid is a power of 2 can im-
prove performance by a factor of ≤ 2

• test the methodology on other applications

• solution must be ‘smooth’ for the SGCT to be effective

• can be extended to higher d; however, requires no more than 1 grid per
process

• apply the SGCT to handle soft faults

• detection may be challenging: ‘smearing’, application dependence
• combine point-wise, in blocks or whole grids?
• the hierarchical algorithm has a major advantage:

common information in the component grids can be directly com-
pared
• more challenging time and memory requirements are likely

JJ J • I II ×
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Thank You!! . . . Questions??? Comments???
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