Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application

Fan Yu*, Peter E. Strazdins*, Joerg Henrichs†, Tim F. Pugh†

*:Computer Systems Group, Research School of Computer Science, The Australian National University
†: Bureau of Meteorology, Melbourne, Australia

The 20th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing, Rio de Janeiro, 24 May 2019
1 Talk Overview

- background: the HYSPLIT application
- shared memory parallelization
 - program analysis and particle loop refactorization
 - OpenMP parallelization
 - retaining bit reproducibility
- GPU parallelization
 - naive approach
 - coarse grain parallelization
- performance
 - OpenMP
 - CUDA – naive and course-grain parallelization
- coding effort
- conclusions and future work
2 The HYSPLIT Application

- the Hybrid Single-Particle Lagrangian Integrated Trajectory model is a 4th-generation model from NOAA’s ARL over 30 years; has 1000’s users
- computes air parcel trajectories as well as transport dispersion, deposition and chemical transformation
- requires gridded meteorological data on a latitude-longitude grid
- has MPI parallelization
 - only suitable for coarse-grain process-level parallelization
3 The HYSPLIT Application (II)

• has two primary models: air trajectories and air concentration; the latter is more computationally intensive – we concentrate on this
 • pollutants released at certain positions and times are modelled by particles or puffs
 • on each time step, it iterates over all the particles or puffs and performs 5 steps to each: advection, interpolation, dispersion, deposition and concentration calculation
 • the model calculates the distribution of these pollutants according to meteorological data (e.g. wind speed) and the properties of the pollutants
Shared Memory Parallelization: Particle Loop Refactoring

- from program profiling, > 80% execution time was spent in the interpolation, dispersion and advection steps inside a particle loop
- this logically *embarrassingly parallel* loop has two features which prohibit parallelization:
 - sub-grid re-load: conditional on sub-grids loaded from a previous iteration
 - the concentration calculation: many irregular data dependencies
5 Particle Loop Refactoring (II)

• we need to split the particle loop into a serial loop (sub-grid re-load, plus other file I/O operations), a parallel loop followed by a serial loop (concentration)
 • as the sub-grid re-load, advection and interpolation steps were originally in a subroutine, this had to be first in-lined
• further problem: a variable A set for particle i in the first serial loop must have the same value for particle i in the other loops
 • solution: duplicate every such variable with an array across all particles, replace references to A with $A[i]$
 • these are set in the first loop
• the meteorological sub-grids similarly need to be duplicated
 As these are a few MB each, only copies of the differing sub-grids are stored, rather than one for each particle
6 OpenMP Parallelization

- after all the above refactoring work, the three sub-loops can be safely executed one-by-one
- now an `!$OMP PARALLEL DO` can be safely inserted just before the parallel sub-loop
- the application can be just as trivially parallelized using Pthreads etc
7 Retaining Bit Reproducibility

- this is extremely important in practice for operational codes!
- the dispersion step requires one Gaussian random number generated per particle
 These are similarly generated by the first loop and be saved in an per-particle array
- for the CUDA implementation, we compile with the \texttt{-emu} flag to ensure IEEE-standard results for \texttt{exp()} and \texttt{sqrt()}
8 GPU Parallelization: Naive Approach

- the fundamental parallelization techniques used for shared memory are also the basis for this approach
 - allocate GPU threads in the place of OpenMP threads
 - a single kernel for advection and interpolation steps, another for dispersion
 - the deposition step on the GPU showed a low (40%) warp efficiency and a branch divergence of 18%, with a relative slowdown of 1.85
- thus the approach has the following steps:
 - transfer input data (including the set of meteorological sub-grids) to the GPU
 - invoke the two kernels to the GPU
 - transfer output data from the GPU
 - call the deposition routine with an optionally parallel (OpenMP) loop
9 Coarse Grain GPU Parallelization Approach

- **idea:** reduce the host-device memory overhead and poor GPU utilization by overlapping different kernel invocations

- **can be easily adopted into the MPI and OpenMP parallelizations of HYSPLIT**

 - need only change the kernel invocation, to incorporate streaming
10 Coarse Grain GPU Parallelization Approach (II)

- 3 approaches are used
 - single-thread approach: a single CPU thread assigns tasks to different CUDA streams in a round-robin fashion
 - multi-thread approach: each CPU thread assigns tasks to its own stream
 - multi-process approach: each MPI process assigns tasks to its own stream.

 This uses NVIDIA’s Multi-Process Service (MPS) to share a single CUDA context between the MPI processes
- a parallel OpenMP loop is used for deposition
11 Performance Results: Configuration

• used a standard test case (called ‘jexanple’, with 30K particles) provided by the Bureau of Meteorology

• test each of the OpenMP, CUDA naive, and CUDA coarse-grained versions
 - CUDA versions used 32 threads per block

• run on two different machines:
 A 8-core 3.3GHz AMD FX-8300 with one NVIDIA GeForce GTX960 GPU (Maxwell, 1024 cores)
 B 6-core 2.6GHz Intel Broadwell E5-2650v4 with one NVIDIA Pascal P100 (3584 cores)

• each CUDA course-grain approach divides the single kernel and its corresponding data transfer into 1,2,4,8(6) CUDA streams
Performance Results: OpenMP Version

(Left bar on machine A, right on B)
Performance Results: OpenMP Version (II)

<table>
<thead>
<tr>
<th>Machine</th>
<th>Machine A</th>
<th>Machine B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>whole program</td>
<td>parallel part</td>
</tr>
<tr>
<td>Speedups:</td>
<td>actual</td>
<td>theor.</td>
</tr>
<tr>
<td>Original</td>
<td>1.00×</td>
<td>1.00×</td>
</tr>
<tr>
<td>OMP-1-T</td>
<td>0.83×</td>
<td>1.00×</td>
</tr>
<tr>
<td>OMP-2-T</td>
<td>1.53×</td>
<td>1.82×</td>
</tr>
<tr>
<td>OMP-4-T</td>
<td>2.77×</td>
<td>3.08×</td>
</tr>
<tr>
<td>OMP-8(6)-T</td>
<td>4.01×</td>
<td>4.71×</td>
</tr>
</tbody>
</table>

- on a single thread, 20% (A) and 13% (B) slower than original program
 - due to extra overhead in 1st serial loop (maintain data dependencies)
- on B, speed-up on 6 threads vs 1 thread is only 4.93× for the parallel part
 - possibly due to the Intel Xeon’s turbo boost
14 Performance Results: Naive CUDA Version

center: 1 CPU thread (3.73 × (A), 4.00 × (B) speedup),
right: 8(6) CPU threads (4.09 × (A), 4.77 ×(B) speedup)
for the deposition step
15 Results: Coarse-grain CUDA Version, Machine A

![CUDA Coarse-Grained Parallel Version HYPLIT Performance By Component On Machine A]

- Data transfer from CPU to GPU running time
- CUDA kernels running time
- Data transfer from GPU to CPU running time
- 1 CUDA Stream
- 2 CUDA Stream
- 4 CUDA Stream
- 8 CUDA Stream

**For single-thread and OpenMP multi-thread version, this component is the aggregated time for concurrent kernels and data transfer

- **note:** for the single- and multi-thread approaches, times for data transfer and kernel execution cannot be distinguished
Results: Coarse-grain CUDA Version, Machine B

CUDA Coarse-Grained Parallel Version HYSPLIT Performance By Component On Machine B

- Data transfer from CPU to GPU running time
- CUDA kernels running time **
- Data transfer from GPU to CPU running time
- 1 CUDA Stream
- 2 CUDA Stream
- 4 CUDA Stream
- 6 CUDA Stream

**For single-thread version, this component is the aggregated time for concurrent kernels and data transfer

- note: the OpenMP multi-thread approach failed to run here
17 Performance Results: Coarse-grain CUDA Version

- single- and multi-thread approaches show a small improvement, probably due to hiding of data transfer time
- the multi-process approach also shows a drop in kernel execution time
 - may be due to MPS’s context funnelling, which can merge kernels from independent processes
 - note also MPI version of HYSPLIT allows the kernel execution to overlap with the CPU deposition computation in another process
- on machine A (B), we see a best speedup of 2.16× (2.70×) over the naive CUDA
18 Results: Coding Effort

- number of lines of source code changed or created for the two versions:

<table>
<thead>
<tr>
<th>code category</th>
<th>OpenMP</th>
<th>CUDA</th>
<th>difficulty</th>
</tr>
</thead>
<tbody>
<tr>
<td>main program</td>
<td>706</td>
<td>719</td>
<td>medium</td>
</tr>
<tr>
<td>Parloop & its isolation</td>
<td>815</td>
<td>942</td>
<td>high</td>
</tr>
<tr>
<td>parallelization barrier removal</td>
<td>457</td>
<td>490</td>
<td>high</td>
</tr>
<tr>
<td>interfaces (for parallel programs)</td>
<td>706</td>
<td>811</td>
<td>low</td>
</tr>
<tr>
<td>device data (allocate, transfer)</td>
<td></td>
<td>480</td>
<td>low</td>
</tr>
<tr>
<td>device kernel</td>
<td></td>
<td>292</td>
<td>medium</td>
</tr>
<tr>
<td>device subprogram</td>
<td></td>
<td>1127</td>
<td>mostly low</td>
</tr>
</tbody>
</table>

- the main non-trivial work is in the removal of dependencies. Complexity & subtlety of the original code makes this a substantial effort!

- the CUDA version requires significantly more changes, due to:
 - GPU memory management
 - incompatibilities with CUDA Fortran
Conclusions

• HYSPLIT’s particle loop was the principal target for parallelization
 • barriers included particle-dependent I/O and variables
 • also concentration calculation, due to a high degree on irregular dependencies

• significant refactoring required; introduced a 10-15% serial overhead
 • once done, the OpenMP parallelization was trivial and showed good parallel speedup
 • to retain bit reproducibility, similar refactoring was required

• GPU implementation was similarly based on the refactored code
 • the deposition step created significant divergence and was left on the CPU
 • yielded 4–5× speedup (best with multiple CPUs on deposition)
20 Conclusions (II) and Future Work

- coarse-grained GPU parallelization with MPI processes gained $2 - 3 \times$ further speedup
- coding effort analysis showed extensive non-trivial changes required
 - CUDA version nearly doubles the number of changes, although these are mostly less trivial
- possible directions for future work
 - OpenACC or device-aware OpenMP version (performance vs code-base impact)
 - an extension to multiple GPUs (particularly useful with MPI+CUDA)
Thank You!!

…Questions???

(email peter at cs.anu.edu.au)