Shared Memory and GPU Parallelization of an Operational
Atmospheric Transport and Dispersion Application

Fan Yu*, Peter E. Strazdins*, Joerg Henrichs{, Tim F. Pughy

*:Computer Systems Group,
Research School of Computer Science,
The Australian National University
T: Bureau of Meteorology, Melbourne, Australia

(slides available from http://cs.anu.edu.au/~Peter.Strazdins/seminars)

The 20th IEEE International Workshop on Parallel and Distributed
Scientific and Engineering Computing,
Rio de Janeiro,
24 May 2019

http://cs.anu.edu.au/systems
http://cs.anu.edu.au
http://www.anu.edu.au
http://cs.anu.edu.au/~Peter.Strazdins/seminars

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application

1 Talk Overview
e background: the HYSPLIT application
e shared memory parallelization

e program analysis and particle loop refactorization
e OpenMP parallelization
e retaining bit reproducibility

e GPU parallelization

e naive approach
e coarse grain parallelization

e performance

e OpenMP
e CUDA — naive and course-grain parallelization
e coding effort

e conclusions and future work

dd4 4o))

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 2

2 The HYSPLIT Application

e the Hybrid Single-Particle
Lagrangian Integrated
Trajectory model is a 4th-
generation model from
NOAA'’s ARL over 30 years;
has 1000’'s users

e computes air parcel trajec-
tories as well as transport
dispersion, deposition and
chemical transformation

e requires gridded meteorological data on a latitude-longitude grid

e has MPI parallelization

e only suitable for coarse-grain
process-level parallelization

N\IU <4< <> >
THE AUSTRALIAN NATIONAI

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 3

3 The HYSPLIT Application (II)

e has two primary models: air trajectories and air concentration;
the latter is more computationally intensive — we concentrate on this

e pollutants released at certain positions and times are modelled by
particles or puffs

e On each time step, it iterates over all the particles or puffs and per-
forms 5 steps to each:
advection, interpolation, dispersion, deposition and concentration cal-
culation

e the model calculates the distribution of these pollutants according to me-
teorological data (e.g. wind speed)

and the properties of the pollutants

N\IU <4< <> >
THE AUSTRALIAN NATIONAI

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 4

4 Shared Memory Parallelization: Particle Loop Refactoring

e from program profiling, > 80% execu-
tion time was spent in the interpolation,
_ dispersion and advection steps inside a

Entering particle loop,
Particle/puff ID = 1

Parloop 7'~

Finish all particle
tio,
tic

! particle loop
pag“ e this logically embarrassingly parallel
radey | loop has two features which prohibit par-
Pt par L2275 ' allelization:

ief.vi?@n..i‘_ e sub-grid re-load: conditional on sub-

grids loaded from a previous iteration
;-P—a;t%e—,-p—-; e the concentration calculation: many

S Irregular data dependencies

Rkt

T oo

dd <o) P>

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 5

5 Particle Loop Refactoring (II)

e we need to split the particle loop into a serial loop (sub-grid re-load,
plus other file I/O operations), a parallel loop followed by a serial loop
(concentration)

e as the sub-grid re-load, advection and interpolation steps were origi-
nally in a subroutine, this had to be first in-lined

e further problem: a variable A set for particle i in the first serial loop must
have the same value for particle i in the other loops

e solution: duplicate every such variable with an array across all parti-
cles, replace references to A with A[i]

e these are set in the first loop

e the meteorological sub-grids similarly need
to be duplicated
As these are a few MB each, only copies of
the differing sub-grids are stored, rather than
one for each particle

THE AUSTRALIAN NATIONAL

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 6

6 OpenMP Parallelization

e after all the above refactoring work, the three sub-loops can be safely
executed one-by-one

e NOow an !$0MP PARALLEL DO can be safely inserted just before the paral-
lel sub-loop

e the application can be just as trivially parallelized using Pthreads etc

dd <o) P>

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 7

7 Retaining Bit Reproducibility

e this is extremely important in practice for operational codes!

e the dispersion step requires one Gaussian random number generated
per particle

These are similarly generated by the first loop and be saved in an per-
particle array

e tor the CUDA implementation, we compile with the —emu flag to ensure
IEEE-standard results for exp() and sqrt ()

N\IU <4< <> >
THE AUSTRALIAN NATIONAI

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 8

8 GPU Parallelization: Naive Approach

e the fundamental parallelization techniques used for shared memory are
also the basis for this approach
e allocate GPU threads in the place of OpenMP threads

e a single kernel for advection and interpolation steps, another for dis-
persion

e the deposition step on the GPU showed a low (40%) warp efficiency
and a branch divergence of 18%, with a relative slowdown of 1.85
e thus the approach has the following steps:
e transfer input data (including the set of meteorological sub-grids) to
the GPU
e invoke the two kernels to the GPU
e transfer output data from the GPU

e call the deposition routine with an
optionally parallel (OpenMP) loop

THE AUSTRALIAN NATIONAI

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 9

9 Coarse Grain GPU Parallelization Approach

Data arrays transfer Cto G Data arrays transfer C to G
0 7500 0 3750 3751 7500
£ c 5 ; } Kernel 5 g ; ; Kernel § g ; Kernel
=
qr_u g - Tt
8 = Data arrays transfer G to C Data arrays transfer Gto C
0 7500 0 3750 3751 7500
Stream #1 Stream #2
CUDA naive fashion Task-level parallelism fashion

e idea: reduce the host-device memory overhead and poor GPU utilization
by overlapping different kernel invocations

e can be easily adopted into the MPI and OpenMP
parallelizations of HYSPLIT

e need only change the kernel invocation,
to incorporate streaming

<.[ANU PPN
AN NATI

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 10

10 Coarse Grain GPU Parallelization Approach (II)

e 3 approaches are used
e single-thread approach: a single CPU thread assigns tasks to differ-
ent CUDA streams in a round-robin fashion

e multi-thread approach: each CPU thread assigns tasks to its own
stream

e multi-process approach: each MPI process assigns tasks to its own
stream.

This uses NVIDIA’s Multi-Process Service (MPS) to share a single
CUDA context between the MPI processes

e a parallel OpenMP loop is used for deposition

dd <o) P>

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 11

11 Performance Results: Configuration

e used a standard test case (called ‘jexanple’, with 30K particles) provided
by the Bureau of Meteorology

e test each of the OpenMP, CUDA naive, and CUDA coarse-grained ver-
sions

e CUDA versions used 32 threads per block
e run on two different machines:
A 8-core 3.3GHz AMD FX-8300 with one NVIDIA GeForce GTX960

GPU (Maxwell, 1024 cores)

B 6-core 2.6GHz Intel Broadwell E5-2650v4 with one NVIDIA Pascal
P100 (3584 cores)

e each CUDA course-grain approach divides the
single kernel and its corresponding data transfer
into 1,2,4,8(6) CUDA streams

THE AUSTRALIAN NATIONAI

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 12

12 Performance Results: OpenMP Version

OpenMP Version Versus Original Version HYSPLIT Performance By Component

HEl Rest of running time outside particle loop
2601 Rest of running time inside particle loop
2404 Bl Serial part #1 running time
H Parallel part running time
220 Bl Serial part #2 running time
200 [Machine A
= [Machine B
T 180
o
(9]
@ 160
a
Q
£ 140
=
_8 120
=
§ 100
[~
80
60
40
20
O_

Original Version OpenMP 1 thread OpenMP 2 threads OpenMP 4 threads OpenMP 8(6) threads
Experiment configuration

(left bar on machine A, right on B)

dd <o) P>

THE AUSTRALIAN NATIONAL UNIVERSITY

http://www.anu.edu.au

PDSEC’19

Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application

13

13 Performance Results: OpenMP Version (1)

Machine A Machine B

whole program | parallel part |whole program parallel part

Speedups: |actual | theor. |actual | theor. | actual | theor. |actual| theor.
Original |1.00x | 1.00x [1.00x 1.00x |1.00x | 1.00x | 1.00x 1.00x

OMP-1-T [0.83x | 1.00x [0.82x|1.00x |0.88x 1.00x 10.87x|1.00x
OMP-2-T [1.53x | 1.82x [1.60x |2.00x |1.54x 1.82x 1.60x |2.00x
OMP-4-T [2.77x | 3.08x [3.19%x |4.00x |2.58x 3.08x 12.98x |4.00x
OMP-8(6)-T |4.01x | 4.71x [5.62x|8.00x |3.41x | 4.00x |4.29x |6.00x

e 0N a single thread, 20% (A) and 13% (B) slower than original program
e due to extra overhead in 1st serial loop (maintain data dependencies)

e on B, speed-up on 6 threads vs 1 thread is

only 4.93 x for the parallel part
e possibly due to the Intel Xeon’s turbo boost

dd <o) P>

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application

14

14 Performance Results: Naive CUDA Version

CUDA Naive Version Versus Original Version HYSPLIT Performance By Component

260
HEEl Rest of running time outside particle loop
2401 Rest of running time inside particle loop
2204 M Serial part #1 running time
Il Parallel part running time
200 1 Data transfer from CPU to GPU running time
180 CUDA kernels running time
g HEl Data transfer from GPU to CPU running time
S 160 Rest of OpenMP part running time
§ B Serial part #2 running time
g 140 [Machine A
S 120 [Machine B
(@)}
£
c 100
C
=]
& 8o
60
40
20
0 — — |
Original Version CUDA Naive + 1 CPU threads CUDA Naive + 8(6) CPU threads

Experiment configuration

center: 1 CPU thread (3.73x (A), 4.00x (B) speedup),
right: 8(6) CPU threads (4.09x (A), 4.77 x(B) speedup)
for the deposition step

dd <o) P>

THE AUSTRALIAN NATIONAL UNIVERSITY

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application

15

15 Results: Coarse-grain CUDA Version, Machine A

50CUDA Coarse-Grained Parallel Version HYSPLIT Performance By Component On Machine A

Data transfer from CPU to GPU running time
I CUDA kernels running time **
[Data transfer from GPU to CPU running time
201 [1 CUDA Stream
[2 CUDA Stream
1 4 CUDA Stream
- [8 CUDA Stream
©
[
S 30+
Q
)
]
£
]
g
.E 20_
C
>
[~4
10- I H
0 .

CUDA Naive Single-thread Multi-thread using OpenMP Multi-process Lljsing MPI+MPS
Different method of coarse-grained parallelism

**For single-thead and OpenMP multi-thread version, this component is the aggregated time for concurrent kernels and data transfer

e note: for the single- and multi-thread approaches,
times for data transfer and kernel execution
cannot be distinguished

THE AUSTRALIAN NATIONAL UNIVERSITY

dd <o) P>

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application

16

16 Results: Coarse-grain CUDA Version, Machine B

Running time(seconds)

50CUDA Coarse-Grained Parallel Version HYSPLIT Performance By Component On Machine B

40 1

304

20 A

104

Data transfer from CPU to GPU running time
CUDA kernels running time **

Data transfer from GPU to CPU running time
1 CUDA Stream

2 CUDA Stream

4 CUDA Stream

6 CUDA Stream

grones

CUDAINaive Single-thread Multi-process using MPI+MPS
Different method of coarse-grained parallelism

*kFor single-thead version, this component is the aggregated time for concurrent kernels and data transfer

e note: the OpenMP multi-thread approach
failed to run here

THE AUSTRALIAN NATIONAL UNIVERSITY

dd <o) P>

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 17

17 Performance Results: Coarse-grain CUDA Version

e single- and multi-thread approaches show a small improvement, proba-
bly due to hiding of data transfer time

e the multi-process approach also shows a drop in kernel execution time

e may be due to MPS’s context funnelling, which can merge kernels
from independent processes

e note also MPI version of HYSPLIT allows the kernel execution to
overlap with the CPU deposition computation in another process

e on machine A (B), we see a best speedup of 2.16x (2.70x) over the
naive CUDA

dd <o) P>

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 18

18 Results: Coding Effort

e number of lines of source code changed or created for the two versions:

code category OpenMP CUDA | difficulty
main program 706 719 | medium
Parloop & its isolation 815 942 high
parallelization barrier removal 457 490 | high
interfaces (for parallel programs) 706 811 low
device data (allocate, transfer) — 480 low
device kernel — 292 medium
device subprogram — 1127 mostly low

e the main non-trivial work is in the removal of dependencies.
Complexity & subtlety of the original code makes this a substantial effort!

e the CUDA version requires significantly
more changes, due to:

e GPU memory management
e incompatibilities with CUDA Fortran

THE AUSTRALIAN NATIONAI

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 19

19 Conclusions

e HYSPLIT'’s particle loop was the principal target for parallelization

e barriers included particle-dependent I/O and variables
e also concentration calculation, due to a high degree on irregular de-
pendencies
e significant refactoring required; introduced a 10-15% serial overhead
e once done, the OpenMP parallelization was trivial and showed good
parallel speedup
e to retain bit reproducibility, similar refactoring was required

e GPU implementation was similarly based on the refactored code

e the deposition step created significant
divergence and was left on the CPU

e yielded 4-5x speedup (best with
multiple CPUs on deposition)

THE AUSTRALIAN NATIONAL

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 20

20 Conclusions (II) and Future Work

e coarse-grained GPU parallelization with MPI processes gained 2—3x
further speedup

e coding effort analysis showed extensive non-trivial changes required

e CUDA version nearly doubles the number of changes, although these
are mostly less trivial

e possible directions for future work

e OpenACC or device-aware OpenMP version (performance vs code-
base impact)

e an extension to multiple GPUs (particularly useful with MP1+CUDA)

N\IU <4< <> >
THE AUSTRALIAN NATIONAI

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 21

Thank You!! ... Questions???

(emalil peter at cs.anu.edu.au)

dd <o) P>

THE AUSTRALIAN NATIONAL UNIVERSITY

http://www.anu.edu.au

