
Shared Memory and GPU Parallelization of an Operational
Atmospheric Transport and Dispersion Application

Fan Yu*, Peter E. Strazdins*, Joerg Henrichs†, Tim F. Pugh†

*:Computer Systems Group,
Research School of Computer Science,

The Australian National University
†: Bureau of Meteorology, Melbourne, Australia

(slides available from http://cs.anu.edu.au/∼Peter.Strazdins/seminars)

The 20th IEEE International Workshop on Parallel and Distributed
Scientific and Engineering Computing,

Rio de Janeiro,
24 May 2019

http://cs.anu.edu.au/systems
http://cs.anu.edu.au
http://www.anu.edu.au
http://cs.anu.edu.au/~Peter.Strazdins/seminars

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 1

1 Talk Overview
• background: the HYSPLIT application

• shared memory parallelization

• program analysis and particle loop refactorization
• OpenMP parallelization
• retaining bit reproducibility

• GPU parallelization

• naive approach
• coarse grain parallelization

• performance

• OpenMP
• CUDA – naive and course-grain parallelization
• coding effort

• conclusions and future work

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 2

2 The HYSPLIT Application

• the Hybrid Single-Particle
Lagrangian Integrated
Trajectory model is a 4th-
generation model from
NOAA’s ARL over 30 years;
has 1000’s users

• computes air parcel trajec-
tories as well as transport
dispersion, deposition and
chemical transformation

• requires gridded meteorological data on a latitude-longitude grid

• has MPI parallelization

• only suitable for coarse-grain
process-level parallelization

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 3

3 The HYSPLIT Application (II)

• has two primary models: air trajectories and air concentration;
the latter is more computationally intensive – we concentrate on this

• pollutants released at certain positions and times are modelled by
particles or puffs
• on each time step, it iterates over all the particles or puffs and per-

forms 5 steps to each:
advection, interpolation, dispersion, deposition and concentration cal-
culation

• the model calculates the distribution of these pollutants according to me-
teorological data (e.g. wind speed)
and the properties of the pollutants

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 4

4 Shared Memory Parallelization: Particle Loop Refactoring

Finish all particle
s/puffs simulatio

n?

Current sub-gri
d can cover the
particle/puff?

Expand
and re-loa
d sub-grid

Particle/p
uff

advection

Data
Interpolati

on

Particle/p
uff

dispersion

Particle/p
uff

depositio
n

Concentrati
on

calculation

No

No

Yes

Yes, exit，go to rest part of second loop

Particle/puff ID + 1

Entering particle loop,
Particle/puff ID = 1

Parloop

Parallel_part

• from program profiling, > 80% execu-
tion time was spent in the interpolation,
dispersion and advection steps inside a
particle loop

• this logically embarrassingly parallel
loop has two features which prohibit par-
allelization:

• sub-grid re-load: conditional on sub-
grids loaded from a previous iteration
• the concentration calculation: many

irregular data dependencies

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 5

5 Particle Loop Refactoring (II)

• we need to split the particle loop into a serial loop (sub-grid re-load,
plus other file I/O operations), a parallel loop followed by a serial loop
(concentration)

• as the sub-grid re-load, advection and interpolation steps were origi-
nally in a subroutine, this had to be first in-lined

• further problem: a variable A set for particle i in the first serial loop must
have the same value for particle i in the other loops

• solution: duplicate every such variable with an array across all parti-
cles, replace references to A with A[i]

• these are set in the first loop
• the meteorological sub-grids similarly need

to be duplicated
As these are a few MB each, only copies of
the differing sub-grids are stored, rather than
one for each particle

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 6

6 OpenMP Parallelization

• after all the above refactoring work, the three sub-loops can be safely
executed one-by-one

• now an !$OMP PARALLEL DO can be safely inserted just before the paral-
lel sub-loop

• the application can be just as trivially parallelized using Pthreads etc

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 7

7 Retaining Bit Reproducibility

• this is extremely important in practice for operational codes!

• the dispersion step requires one Gaussian random number generated
per particle
These are similarly generated by the first loop and be saved in an per-
particle array

• tor the CUDA implementation, we compile with the -emu flag to ensure
IEEE-standard results for exp() and sqrt()

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 8

8 GPU Parallelization: Naive Approach

• the fundamental parallelization techniques used for shared memory are
also the basis for this approach

• allocate GPU threads in the place of OpenMP threads
• a single kernel for advection and interpolation steps, another for dis-

persion
• the deposition step on the GPU showed a low (40%) warp efficiency

and a branch divergence of 18%, with a relative slowdown of 1.85

• thus the approach has the following steps:

• transfer input data (including the set of meteorological sub-grids) to
the GPU
• invoke the two kernels to the GPU
• transfer output data from the GPU
• call the deposition routine with an

optionally parallel (OpenMP) loop

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 9

9 Coarse Grain GPU Parallelization Approach

• idea: reduce the host-device memory overhead and poor GPU utilization
by overlapping different kernel invocations

• can be easily adopted into the MPI and OpenMP
parallelizations of HYSPLIT

• need only change the kernel invocation,
to incorporate streaming

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 10

10 Coarse Grain GPU Parallelization Approach (II)

• 3 approaches are used

• single-thread approach: a single CPU thread assigns tasks to differ-
ent CUDA streams in a round-robin fashion
• multi-thread approach: each CPU thread assigns tasks to its own

stream
• multi-process approach: each MPI process assigns tasks to its own

stream.
This uses NVIDIA’s Multi-Process Service (MPS) to share a single
CUDA context between the MPI processes

• a parallel OpenMP loop is used for deposition

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 11

11 Performance Results: Configuration

• used a standard test case (called ‘jexanple’, with 30K particles) provided
by the Bureau of Meteorology

• test each of the OpenMP, CUDA naive, and CUDA coarse-grained ver-
sions

• CUDA versions used 32 threads per block

• run on two different machines:

A 8-core 3.3GHz AMD FX-8300 with one NVIDIA GeForce GTX960
GPU (Maxwell, 1024 cores)

B 6-core 2.6GHz Intel Broadwell E5-2650v4 with one NVIDIA Pascal
P100 (3584 cores)

• each CUDA course-grain approach divides the
single kernel and its corresponding data transfer
into 1,2,4,8(6) CUDA streams

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 12

12 Performance Results: OpenMP Version

(left bar on machine A, right on B)

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 13

13 Performance Results: OpenMP Version (II)

Machine A Machine B
whole program parallel part whole program parallel part

Speedups: actual theor. actual theor. actual theor. actual theor.
Original 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×

OMP-1-T 0.83× 1.00× 0.82× 1.00× 0.88× 1.00× 0.87× 1.00×
OMP-2-T 1.53× 1.82× 1.60× 2.00× 1.54× 1.82× 1.60× 2.00×
OMP-4-T 2.77× 3.08× 3.19× 4.00× 2.58× 3.08× 2.98× 4.00×

OMP-8(6)-T 4.01× 4.71× 5.62× 8.00× 3.41× 4.00× 4.29× 6.00×
• on a single thread, 20% (A) and 13% (B) slower than original program

• due to extra overhead in 1st serial loop (maintain data dependencies)

• on B, speed-up on 6 threads vs 1 thread is
only 4.93× for the parallel part

• possibly due to the Intel Xeon’s turbo boost

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 14

14 Performance Results: Naive CUDA Version

center: 1 CPU thread (3.73× (A), 4.00× (B) speedup),
right: 8(6) CPU threads (4.09× (A), 4.77×(B) speedup)
for the deposition step

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 15

15 Results: Coarse-grain CUDA Version, Machine A

• note: for the single- and multi-thread approaches,
times for data transfer and kernel execution
cannot be distinguished

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 16

16 Results: Coarse-grain CUDA Version, Machine B

• note: the OpenMP multi-thread approach
failed to run here

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 17

17 Performance Results: Coarse-grain CUDA Version

• single- and multi-thread approaches show a small improvement, proba-
bly due to hiding of data transfer time

• the multi-process approach also shows a drop in kernel execution time

• may be due to MPS’s context funnelling, which can merge kernels
from independent processes
• note also MPI version of HYSPLIT allows the kernel execution to

overlap with the CPU deposition computation in another process
• on machine A (B), we see a best speedup of 2.16× (2.70×) over the

naive CUDA

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 18

18 Results: Coding Effort

• number of lines of source code changed or created for the two versions:
code category OpenMP CUDA difficulty
main program 706 719 medium
Parloop & its isolation 815 942 high
parallelization barrier removal 457 490 high
interfaces (for parallel programs) 706 811 low
device data (allocate, transfer) – 480 low
device kernel – 292 medium
device subprogram – 1127 mostly low

• the main non-trivial work is in the removal of dependencies.
Complexity & subtlety of the original code makes this a substantial effort!

• the CUDA version requires significantly
more changes, due to:

• GPU memory management
• incompatibilities with CUDA Fortran

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 19

19 Conclusions

• HYSPLIT’s particle loop was the principal target for parallelization

• barriers included particle-dependent I/O and variables
• also concentration calculation, due to a high degree on irregular de-

pendencies

• significant refactoring required; introduced a 10-15% serial overhead

• once done, the OpenMP parallelization was trivial and showed good
parallel speedup
• to retain bit reproducibility, similar refactoring was required

• GPU implementation was similarly based on the refactored code

• the deposition step created significant
divergence and was left on the CPU
• yielded 4–5× speedup (best with

multiple CPUs on deposition)

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 20

20 Conclusions (II) and Future Work

• coarse-grained GPU parallelization with MPI processes gained 2–3×
further speedup

• coding effort analysis showed extensive non-trivial changes required

• CUDA version nearly doubles the number of changes, although these
are mostly less trivial

• possible directions for future work

• OpenACC or device-aware OpenMP version (performance vs code-
base impact)
• an extension to multiple GPUs (particularly useful with MPI+CUDA)

JJ J • I II ×

http://www.anu.edu.au

PDSEC’19 Shared Memory and GPU Parallelization of an Operational Atmospheric Transport and Dispersion Application 21

Thank You!! . . . Questions???

(email peter at cs.anu.edu.au)
JJ J • I II ×

http://www.anu.edu.au

