
Experiences in Teaching a Specialty Multicore Computing
Course

Peter Strazdins
Computer Systems Group,

Research School of Computer Science,
The Australian National University

Second NSF/TCPP Workshop on Parallel and Distributed Computing
Education, Shanghai, 21 May 2012

(slides available from http://cs.anu.edu.au/∼Peter.Strazdins/seminars)

http://cs.anu.edu.au/~Peter.Strazdins
http://cs.anu.edu.au/systems
http://cs.anu.edu.au
http://www.anu.edu.au
http://cs.anu.edu.au/~Peter.Strazdins/seminars


EduPar-12, May 2012 Experiences in a Specialty Multicore Computing Course 1

1 Overview

comp8320 Multicore Computing: Principles and
Practice:

• course context in computer systems curriculum

• design philosophy

• course structure: modules, assessment
scheme

• teaching and learning experiences

• programming paradigms

• architectural insights

• infrastructure support: problem domain &
platform related

• conclusions and future work

◭◭ ◭ • ◮ ◮◮ ×

http://cs.anu.edu.au/student/comp8320
http://www.anu.edu.au


EduPar-12, May 2012 Experiences in a Specialty Multicore Computing Course 2

2 Context in the ANU Computer Systems Curriculum

course for postgraduates and advanced undergraduates:
• assumed knowledge:

• comp2300 Introduction to Computer Systems: illustrative and con-
temporary processors

• comp2310 Concurrent and Distributed Systems

• related pre-existing courses:

• comp3320 High Performance Scientific Computation: data modelling,
programming & performance issues

• comp4300 Parallel Systems: practical issues in shared & distributed
memory

Only offered every 2nd year ⇒ can’t use as prerequisites!

• Multicore Computing must be a specialty course

• a ‘capstone’, with the most advanced aspects of architecture, concur-
rency and performance evaluation

◭◭ ◭ • ◮ ◮◮ ×

http://cs.anu.edu.au/student/comp2300
http://cs.anu.edu.au/student/comp2310
http://cs.anu.edu.au/student/comp3320
http://cs.anu.edu.au/student/comp4300
http://www.anu.edu.au


EduPar-12, May 2012 Experiences in a Specialty Multicore Computing Course 3

3 Design Philosophy

• aim: prepare advanced students for the rapidly unfolding future of multi-
core / manycore

• educational approaches:

• research-based education: relevant research and practice of our group
• cognitive apprenticeship: pass on instructor’s experiences when stu-

dents undertake similar activities

• key goal: teach how architectural effects relate to changes in program
performance

• sophisticated infrastructure must be provided for students to explore
this

• strong emphasis on the use of software tools (e.g. profilers)

Note: the Intel Single-Chip Cloud Computer (SCC) was added for 2011

• no cache coherency ⇒ cores are separate nodes, communication via
messages!

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au


EduPar-12, May 2012 Experiences in a Specialty Multicore Computing Course 4

4 Module-based Course Structure

module (2 hour lecture) tut. lab. ass.
1 Advent of Multicore 1 1
2 Multicore Architecture and the T2 2 2 1 (20%)
3 Advanced OpenMP Programming 3 1
4 Performance Issues; Synchronization 3 4 1
5 Software Engineering for Multicore 4 5
6 Operating System Issues and Virtualization 6
7 Graphics Processing Units 5 7 2 (15%)
8 On-chip Networks & the Single-chip Cloud Computer 6 8 3 (10%)
9 Trans. Mem., Speculation, Heterogeneous Cores 7

10 Outlook (Manycore) and Review 8

• main references: 3 textbooks, 3 ‘slide-sets’ & various papers

• modules 1–7 scheduled in 1st half of semester

• 2009: small group mini-projects replaced modules 6, 8, 10; ass. 2 & 3
• problematic: high workload, difficult to examine material

• 2011: worked well; module 5 least popular, needed more time on 7 & 8

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au


EduPar-12, May 2012 Experiences in a Specialty Multicore Computing Course 5

5 Experiences: Programming Paradigms

• shared memory (OpenMP), device (CUDA), and message passing (RCCE)!

• students picked up CUDA easily from prior experience in OpenMP, e.g.
reverse <<<1, N/2>>> (a d , N);

...

global void reverse(int ∗a, int N)

{ int idx = threadIdx.x;

int v = a[N−idx−1];

a[N−idx−1] = a[idx]; a[idx] = v;

}

#pragma omp parallel num threads (N/2) \
default(shared)

{ int idx = omp get threads num ();

int v = a[N−idx−1];

a[N−idx−1] = a[idx]; a[idx] = v;

}

• 3 assignments were based on single theme (LINPACK)
√

commonality in experience (and infrastructure)
× lack of prior familiarity, tricky, started to “get sick” of one application

• more time was needed for RCCE; programming exercises in ass. 3 had
to be limited

• programmability (design, impl. & debugging) of each paradigm

• student consensus: CUDA was the hardest!

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au


EduPar-12, May 2012 Experiences in a Specialty Multicore Computing Course 6

6 Experiences: Architectural Insights (from LINPACK)

j
j

j
j

L

U

A

j

l L

P

N

N U

L

T

ii

ui
j

i

i

j+w

j+w

i

• LINPACK on the UltraSPARC T2: fixed decom-
position scheme

• what was the main cause for performance
loss for ≥ 32 threads?

• by using profiling tools (Solaris analyzer),
most students inferred was due to destruc-
tive sharing

• inferable for an increasing amount of time
in barriers

• LINPACK on CUDA: main task was a robust matrix multiply kernel

• instructor-provided kernel caused error on subsequent cudaFree();

• over-write suspected, but not detected when kernel was rigorously
tested in isolation (???)

• 1 student solved this ‘challenge problem’: over-read!

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au


EduPar-12, May 2012 Experiences in a Specialty Multicore Computing Course 7

7 Experiences: Architectural Insights (SCC)

• LINPACK: only components (e.g. matrix multi-
ply implemented

• vary P × Q grid shape & explain the perfor-
mance

• SCC’s 48 cores gave plenty of ratios!

• most explained correctly the counterintuitive
result that near-square are best (why?)

• explain effect of r repetitions (1× 8 grid, 1000× 1000× 48 multiply)
broadcast RCCE ring tree
MFLOPS (r = 1) 107 106 140
MFLOPS (r = 10) 164 170 172

• was too subtle for students – suggested cache effects
• experiments on a 1× 1 grid negated this!

• lack of any profiling tools for SCC cores made this hard

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au


EduPar-12, May 2012 Experiences in a Specialty Multicore Computing Course 8

8 Infrastructural Support - Problem Domain Related

• principal learning activity was optimizing components and varying pa-
rameters, analyzing their effects

• required sophisticated test programs, e.g.
runXe ./linpack [-p] [-b NB] [-w W] [-v v] [-k] [-a info] N

with support for debugging and rigorous correctness checking

• for CUDA, isolated test matrix multiply test program also needed

• debugging by printing (-p) only useful if ai,j = rii + rjj

• but for GPU (N ≤ 8192), roundoff errors dwarfed subtle alg. errors!
• solution: limit the result to exact integers, by setting matrices as:

ai,j = ri(i%M(ri,NB)) + rj(j%M(rj,NB))

M(r, k) =
2w/2

(r + 1)k
where w is the mantissa width

• for SCC, checking result against serial algorithm took > 1 minute!

• solution: fast (parallel) prediction for the above scheme

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au


EduPar-12, May 2012 Experiences in a Specialty Multicore Computing Course 9

9 Infrastructure Support: Platform Related

• need: to take a large number of measurements reliably (mutual exclu-
sion) and efficiently (few seconds)

• students are used to having dedicated resources whenever they want
them!

• for GPUs, used NCI’s Xe cluster: access via batch system

• soon becomes unwieldy! solution runXe pseudo-interactive script

• the SCC is a single user machine: all process on cores run as root!

• only 1 processor per core can safely access message passing buffers

• interfering jobs lock up machine (eventually bring it down!)

• solution: provide a submission script ensuring safe, exclusive access

• overall and per-core lockfiles with timeouts was not robust enough

• needed to be combined with seek-and-purge of non-system processes
on cores

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au


EduPar-12, May 2012 Experiences in a Specialty Multicore Computing Course 10

10 Conclusions and Future Work

• key learning goal of understanding how architectural effects relate to
changes in program performance

• modular structure with programming and performance analysis activities
well supported this

• suitable infrastructure (highly sophisticated, instrumented test programs
and job control scripts) was needed

• possible for course-work students to even use SCC safety & effi-
ciently

• students with a general computer systems background, could meet the
courses’ learning objectives (including learning 3 different programming
paradigms)

• caveat: more time is needed for learning message passing
• correctly interpreting performance data remains difficult without tools

• full course details including infrastructure are freely available at
http://cs.anu.edu.au/student/comp8320

◭◭ ◭ • ◮ ◮◮ ×

http://cs.anu.edu.au/student/comp8320
http://www.anu.edu.au


EduPar-12, May 2012 Experiences in a Specialty Multicore Computing Course 11

Acknowledgements!

• Sun Microsystems (now Oracle)
for the donation of the Ultra-
SPARC T2

• Intel Corporation for the donation
of the Single-chip Cloud Computer

• NCI National Facility for support
and usage of the Xe GPU cluster

Questions???

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

