Experiences in Teaching a Specialty Multicore Computing
Course

Peter Strazdins
Computer Systems Group,
Research School of Computer Science,
The Australian National University

Second NSF/TCPP Workshop on Parallel and Distributed Computing
Education, Shanghai, 21 May 2012

(slides available from http://cs.anu.edu.au/~Peter.Strazdins/seminars)

http://cs.anu.edu.au/~Peter.Strazdins
http://cs.anu.edu.au/systems
http://cs.anu.edu.au
http://www.anu.edu.au
http://cs.anu.edu.au/~Peter.Strazdins/seminars

EduPar-12, May 2012 Experiencesin a Specialty Multicore Computing Course

1 Overview

comp8320 Multicore Computing: Principles and
Practice:

e course context in computer systems curriculum
e design philosophy

e COurse structure: modules, assessment
scheme

e teaching and learning experiences

e programming paradigms
e architectural insights

e infrastructure support: problem domain &
platform related

e conclusions and future work

dd4 4> >)

http://cs.anu.edu.au/student/comp8320
http://www.anu.edu.au

EduPar-12, May 2012 Experiencesin a Specialty Multicore Computing Course 2

2 Context in the ANU Computer Systems Curriculum

course for postgraduates and advanced undergraduates:
e assumed knowledge:

e comp2300 Introduction to Computer Systems: Illustrative and con-
temporary processors

e comp2310 Concurrent and Distributed Systems
e related pre-existing courses:

e comp3320 High Performance Scientific Computation: data modelling,
programming & performance issues

e comp4300 Parallel Systems: practical issues in shared & distributed
memory

Only offered every 2nd year = can’t use as prerequisites!
e Multicore Computing must be a specialty course

e a ‘capstone’, with the most advanced aspects of architecture, concur-
rency and performance evaluation

. PR Y 2=

http://cs.anu.edu.au/student/comp2300
http://cs.anu.edu.au/student/comp2310
http://cs.anu.edu.au/student/comp3320
http://cs.anu.edu.au/student/comp4300
http://www.anu.edu.au

EduPar-12, May 2012 Experiencesin a Specialty Multicore Computing Course 3

3 Design Philosophy

e aim: prepare advanced students for the rapidly unfolding future of multi-
core / manycore

e educational approaches:

e research-based education: relevant research and practice of our group

e cognitive apprenticeship: pass on instructor’s experiences when stu-
dents undertake similar activities

e key goal: teach how architectural effects relate to changes in program
performance

e sophisticated infrastructure must be provided for students to explore
this
e strong emphasis on the use of software tools (e.g. profilers)
Note: the Intel Single-Chip Cloud Computer (SCC) was added for 2011

e No cache coherency = cores are separate nodes, communication via
messages!

“J
THE AUSTRALIAN NATIONAL UNIVER: 44 4 L > > >

http://www.anu.edu.au

EduPar-12, May 2012 Experiencesin a Specialty Multicore Computing Course

4 Module-based Course Structure

module (2 hour lecture) tut. | lab. | ass.

1 | Advent of Multicore 1 |1

2 | Multicore Architecture and the T2 2 |2 1(20%)
3 Advanced OpenMP Programming 3 |1

4 | Performance Issues; Synchronization 3 |4 |1

5| Software Engineering for Multicore 4 |5

6 | Operating System Issues and Virtualization 6

7 | Graphics Processing Units 5 |7 12 ((15%)
8 | On-chip Networks & the Single-chip Cloud Computer|6 |8 |3 (10%)
9 | Trans. Mem., Speculation, Heterogeneous Cores 7
10 Outlook (Manycore) and Review 8

e main references: 3 textbooks, 3 ‘slide-sets’ & various papers

e modules 1-7 scheduled in 1st half of semester

e 2009: small group mini-projects replaced modules 6, 8, 10; ass. 2 & 3

e problematic: high workload, difficult to examine material

e 2011: worked well; module 5 least popular, needed more time on 7 & 8

= /ANU
-
THE AUSTRALIAN NATIONAL UNIVERSITY

dd < o) P)

http://www.anu.edu.au

EduPar-12, May 2012 Experiencesin a Specialty Multicore Computing Course 5

5 EXperiences. Programming Paradigms

e shared memory (OpenMP), device (CUDA), and message passing (RCCE)!
e students picked up CUDA easily from prior experience in OpenMP, e.g.

<<<1, N/2>>> d, N);
reverse / (a) #pragma omp parallel num threads(N/2) \

default (shared)

{ int idx = omp get threads num();
int v = a[N—idx—1];
a[N—idx—1] = alidx]; alidx] = v;

__global__ void reverse(int *a, int N)
{ int idx = threadldx.x;
int v = al[N—idx—1];
a[N—idx—1] = alidx]; alidx] = v;
) }
e 3 assignments were based on single theme (LINPACK)

v/ commonality in experience (and infrastructure)
x lack of prior familiarity, tricky, started to “get sick” of one application

e more time was needed for RCCE; programming exercises in ass. 3 had
to be limited

e programmability (design, impl. & debugging) of each paradigm
e student consensus: CUDA was the hardest!

-, 44 <> »»>

http://www.anu.edu.au

EduPar-12, May 2012 Experiencesin a Specialty Multicore Computing Course 6

6 EXperiences. Architectural Insights (from LINPACK)

N e LINPACK on the UltraSPARC T2: fixed decom-
position scheme

e What was the main cause for performance

N T g loss for > 32 threads?
] ' jrw e by using profiling tools (Solaris analyzer),
i | most students inferred was due to destruc-
N tive sharing
e P, Inferable for an increasing amount of time
o In barriers

e LINPACK on CUDA: main task was a robust matrix multiply kernel

e instructor-provided kernel caused error on subsequent cudaFree();

e over-write suspected, but not detected when kernel was rigorously
tested in isolation (??7?)
e 1 student solved this ‘challenge problem’: over-read!

“J
[]
THE AUSTRALIAN NATIONAL UNIVER: 4 4 4 > > >

http://www.anu.edu.au

EduPar-12, May 2012 Experiencesin a Specialty Multicore Computing Course

7 Experiences. Architectural Insights (SCC)

e LINPACK: only components (e.g. matrix multi- 0.0) G B |02 0,21
ply implemented
(1,0 (1 (1.2 (1,2
evary P x @) grid shape & explain the perfor- A c
mance (2,0 (= 1] 2,2 (23

e SCC'’s 48 cores gave plenty of ratios!

e most explained correctly the counterintuitive |*° 21 (2.2
result that near-square are best (why?)

(3,3)

e explain effect of r repetitions (1 x 8 grid, 1000 x 1000 x 48 multiply)
broadcast RCCE ring tree
MFLOPS (r = 1) 107 106 140
MFLOPS (r =10)| 164 170 172

e Was too subtle for students — suggested cache effects
e experiments on a 1 x 1 grid negated this!

e lack of any profiling tools for SCC cores made this hard

= |/ANU
-
THE AUSTRALIAN NATIONAL UNI

IVERSITY 44 < ® > >>

http://www.anu.edu.au

EduPar-12, May 2012 Experiencesin a Specialty Multicore Computing Course 8

8 Infrastructural Support - Problem Domain Related

e principal learning activity was optimizing components and varying pa-
rameters, analyzing their effects
e required sophisticated test programs, e.g.
runXe ./linpack [-p] [-b NB] [-wW [-v v] [-k] [-ainfo] N
with support for debugging and rigorous correctness checking
e for CUDA, isolated test matrix multiply test program also needed

e debugging by printing (- p) only useful if a; ; = rt + 73

e but for GPU (IV < 8192), roundoff errors dwarfed subtle alg. errors!

e solution: limit the result to exact integers, by setting matrices as:
CLZ"]' = TZ<Z%M<TZ, NB)) -+ Tj(j%M(Tj, NB))

2w/2
M(?‘, k) — ——— Where w is the mantissa width
(r+ 1)k
e for SCC, checking result against serial algorithm took > 1 minute!

e solution: fast (parallel) prediction for the above scheme

“J
THE AUSTRALIAN NATIONAL UNIVER: 44 4 L > > >

http://www.anu.edu.au

EduPar-12, May 2012 Experiencesin a Specialty Multicore Computing Course 9

9 Infrastructure Support: Platform Related

e need: to take a large number of measurements reliably (mutual exclu-
sion) and efficiently (few seconds)

e students are used to having dedicated resources whenever they want
them!

e for GPUs, used NCI’'s Xe cluster: access via batch system
e soon becomes unwieldy! solution r unXe pseudo-interactive script
e the SCC is a single user machine: all process on cores run as r oot !

e only 1 processor per core can safely access message passing buffers
e interfering jobs lock up machine (eventually bring it down!)

e solution: provide a submission script ensuring safe, exclusive access

e overall and per-core lockfiles with timeouts was not robust enough

e needed to be combined with seek-and-purge of non-system processes
on cores

dd < o) P)

http://www.anu.edu.au

EduPar-12, May 2012 Experiencesin a Specialty Multicore Computing Course 10

10 Conclusions and Future Wor k

e key learning goal of understanding how architectural effects relate to
changes in program performance

e modular structure with programming and performance analysis activities
well supported this

e suitable infrastructure (highly sophisticated, instrumented test programs
and job control scripts) was needed

e possible for course-work students to even use SCC safety & effi-
ciently

e students with a general computer systems background, could meet the
courses’ learning objectives (including learning 3 different programming
paradigms)

e caveat: more time is needed for learning message passing
e correctly interpreting performance data remains difficult without tools

e full course details including infrastructure are freely available at
htto://cs.anu.edu.au/student/comp8320

= /ANU
-
THE AUSTRALIAN NATIONAL

I UNIVERSITY

dd < o) P)

http://cs.anu.edu.au/student/comp8320
http://www.anu.edu.au

EduPar-12, May 2012 Experiencesin a Specialty Multicore Computing Course 11

Acknowledgements!

E‘@ v l"h"-‘] ﬁ 1 B | http:/fcs.anu. edu. au/student/compa320/ - r‘ ‘-‘l ¥ ‘ ogle -'f“,“.

[l ANU - Callege of Engineering and Co... 5 v
CECS Home | ANU Home | Search ANU

ANU College of Engineering and Computer Science

o S un M | C rosyste ms (n ow O rac I e) - = School of Computer Science

. IR COMP8320:
fOI‘ the donat|0n Of the Ultra' o Multicore Computing: Principles and

' StudyAt

SPARC T2 Sssosement Practice:

Semester 2 2011

Course staff: Dr Peter Strazdins (coordinator and lecturer)

* Lecture Notes

@ Tute/Labs
Software engineers who do not understand parallel [multicore] processing will

e Inte | Cor p o) ra’[i on fO r th e d on a’[| on |creismes becorne ubsolate! - Frofescar Budalnh Hlgehmiar, keyriate addross ot the

Discussion ISPA'06 conference
Reading Material

of the Single-chip Cloud Computer |

‘ Getting Help « We will be getting a state-of-the-art Intel Single Chip Cloud Computer

(SCC)! This is an experimental 48-core chip whose on-chip network 1s

. F— CECS Links without cache coherency!

. N C I N atl 0 n al FaCI I Ity for S u p po rt SoCS Home « We will not run the Small Team Reslearch Projects in 2011, with the
assessment changed to regular assignments, plus (possibly) an essay on

CECS Home X far 2 3
a "special interest' topic.

* ANU Home s Instsad, both SCC + Multicore On-chip Networks and GPUs will be
an d usag e Of th e Xe G P l | CI uster added as regular course "modules' (2 hour lecture, tute/labs +
= assignment work).
&
H General Information
* The course's formal requisite is enrolment in the

Master of Computing. Howsver, one-off
enrollments may be made by people with the
required assumed knowledge. Also students

- taking other degrees, including 4th year
u a I On S??? undergraduates, may seek to enrol through
= = = special permission (contact the courss
co-ordinator).

+ Assumed knowledge is equivalent to having
done the squivalent of an introductory course
on computer architecture, a course on
concurrency, and intermediate programming
and data structure courses.

Pleass see the StudyAt entry for Course
Description and Learning Qutcomes.

+ Lecture times and venus: sse the ANU
Dong

THE AUSTRALIAN NATIONAL UNIVERSITY < 4 4 L > » >

http://www.anu.edu.au

